Document Type

Journal Article

Role

Author

Standard Number

0004-637X

Journal Title

Astrophysical Journal

Volume

647

Issue

2

First Page

1426

Last Page

1436

Publication Date

2006

Abstract

In the era of high-resolution submillimeter interferometers, it will soon be possible to observe the neutral circumstellar medium directly involved in gas giant planet (GGP) formation at physical scales previously unattainable. In order to explore possible signatures of GGP formation via disk instabilities, we have combined a three-dimensional (3D), nonlocal thermodynamic equilibrium (LTE) radiative transfer code with a 3D, finite differences hydrodynamical code to model molecular emission lines from the vicinity of a 1.4MJ self-gravitating proto-GGP. Here we explore the properties of rotational transitions of the commonly observed dense gas tracer, HCO+. Our main results are as follows: (1) Very high lying HCO+ transitions (e.g., HCO+ J = 7-6) can trace dense clumps around circumstellar disks. Depending on the molecular abundance, the proto-GGP may be directly imageable by the Atacama Large Millimeter Array (ALMA). (2) HCO+ emission lines are heavily self-absorbed through the proto-GGP's dense molecular core. This signature is nearly ubiquitous and only weakly dependent on assumed HCO+ abundances. The self-absorption features are most pronounced at higher angular resolutions. Dense clumps that are not self-gravitating only show minor self-absorption features. (3) Line temperatures are highest through the proto-GGP at all assumed abundances and inclination angles. Conversely, due to self-absorption in the line, the velocity-integrated intensity may not be. High angular resolution interferometers such as the Submillimeter Array (SMA) and ALMA may be able to differentiate between competing theories of GGP formation.

Faculty Start Year

2013

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.