Document Type

Journal Article

Role

Author

Standard Number

1091-6490

Journal Title

Proceedings of the National Academy of Sciences

Volume

102

Issue

36

First Page

12656

Last Page

12661

Publication Date

2005

Abstract

Protein design studies using coiled coils have illustrated the potential of engineering simple peptides to self-associate into polymers and networks. Although basic aspects of self-assembly in protein systems have been demonstrated, it remains a major challenge to create materials whose large-scale structures are well determined from design of local protein–protein interactions. Here, we show the design and characterization of a helical peptide, which uses phased hydrophobic interactions to drive assembly into nanofilaments and fibrils (“nanoropes”). Using the hydrophobic effect to drive self-assembly circumvents problems of uncontrolled self-assembly seen in previous approaches that used electrostatics as a mode for self-assembly. The nanostructures designed here are characterized by biophysical methods including analytical ultracentrifugation, dynamic light scattering, and circular dichroism to measure their solution properties, and atomic force microscopy to study their behavior on surfaces. Additionally, the assembly of such structures can be predictably regulated by using various environmental factors, such as pH, salt, other molecular crowding reagents, and specifically designed “capping” peptides. This ability to regulate self-assembly is a critical feature in creating smart peptide biomaterials.

Faculty Start Year

1997

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.