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Cluster Formation due to Collisions in Granular Material

A. Kudrolli, M. Wolpert, and J. P. Gollub
Physics Department, Haverford College, Haverford, Pennsylvania 19041

and Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 9 September 1996)

The role of inelastic collisions in granular hydrodynamics is studied experimentally in a two
dimensional system of spherical particles rolling on a smooth surface and driven by a moving wall.
Clusters form at high particle densities; the velocity distribution is narrowed, and the collision rate is
enhanced within the clusters. The clusters migrate downward in the presence of a very slight tilt, but
are not dispersed. A one dimensional model captures the effect of gravitation on the observed statistical
distributions. [S0031-9007(97)02416-2]

PACS numbers: 83.70.Fn, 05.20.Dd, 46.10.+z, 83.10.Pp

Granular flows give rise to a variety of phenomena that
have both fluid and solid aspects [1,2]. Recently, consider-
able attention has been devoted to the role of inelastic col-
lisions in granular flow. Numerical and theoretical work
on particles that are allowed to “cool” due to inelastic col-
lisions reveals “inelastic collapse” (an infinite number of
collisions in a finite time) [3,4]. In two dimensions, string-
like structures are produced [5]. The role of inelasticity has
also been studied in a steady state situation where the par-
ticles are in contact with an energy reservoir [6]. Most of
the particles are observed to form slowly moving clusters,
while a few have high velocities, thus violating equiparti-
tion of energy. Recently, “temperature” and density pro-
files (as a function of distance from the energy source) and
velocity distributions have been considered theoretically in
two dimensions, in the nearly elastic limit [7]. Understand-
ing the role of inelastic collisions may eventually be useful
in elucidating the fascinating macroscopic properties dis-
played by granular flows, such as convection, parametric
wave propagation, and size segregation [8–10].

In this Letter we present an experiment that addresses
the role of inelastic collisions. The system consists of
100–2000 steel spheres rolling on a smooth bounded
rectangular surface; one of the side walls is displaced
periodically to supply energy. This system has several
additional effects such as rolling and sliding friction that
have not yet been studied theoretically. The surface can
also be tilted slightly (upward from the driving wall) so that
gravitation can be made either important or insignificant.

We observe strong aggregation or clustering of parti-
cles as their number is increased. We study this phenome-
non statistically by measuring probability distributions for
particle density and particle velocity as a function of par-
ticle numberN , rate of energy input, distance from the
energy source, and angle of inclinationu. The clustering
occurs far from the moving wall foru  0, and near it for
small positive angles. These phenomena are also observed
numerically by extending the one-dimensional model of
Ref. [6] to include gravity. The presence of clusters leads
to a reduction in the mean velocity and a strong narrowing
of the velocity distribution. Within the clusters, the colli-

sion rate is enhanced. When clusters are produced near the
periodically moving wall, parametric hydrodynamic insta-
bilities and other collective effects appear.

The experiment consists of 3.2 mm diameter stainless
steel particles rolling on a Delrin surface that was ma-
chined and polished to a uniformity of 0.001 cm. Delrin
was chosen because of its low coefficient of rolling friction
with steelsmr ø 2.0 3 1023d. The coefficient of restitu-
tion r for the steel particles is0.93 6 0.02; this value was
obtained by bouncing particles on a stainless steel block
and is similar to values reported elsewhere [11]. The fixed
sidewalls of the apparatus are made of stainless steel, and
the driving wall is made of Garolite [12]. The lengthL
of the system perpendicular to the moving wall can be ad-
justed. In the data presented here, a30 cm 3 30 cm area
is used, but similar results are obtained when the area is re-
duced. The positions of the particles are obtained using a
Dalsa CCD variable scan camera that captures512 3 512
pixel images with an adjustable exposure time.

The driving wall is moved through a fixed distance of
1 cm using two computer controlled solenoids that push
the sidewall and one that returns it. (An impulsive force
allows larger particle velocities than does sinusoidal forc-
ing.) The velocityyw of the wall increases monotonically
during its displacement:yw ø sad2 1 bdd1y2, wherea
andb are constants. The velocity that a particle acquires
during its collision with the wall depends both on its ini-
tial velocity and on the instant of the collision within the
driving cycle. As a result, the distribution of particle ve-
locities generated by the external source is broad, and its
mean value can be selected.

Sample images are shown in Fig. 1 of the particle
distribution for N  100 and 1860; the driving wall is
located at the lower edge of the figure. Because of residual
friction, it is necessary to tilt the surface very slightly
(0.05±) in order to obtain sustained motion; this ensures
that some of the particles are struck by the driving wall
during each cycle. The particles appear bright against
a dark background. In the caseN  100, the particles
appear to be distributed randomly in space, and few are
at rest. On the other hand, forN  1860 the particles
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FIG. 1. Sample images showing a random distribution of
particles at low total particle numberN, and clustering at
higher N. The driving wall is at the bottom. (a)N  100;
(b) N  1860.

cluster near the side opposite the driving wall as can be
seen from Fig. 1(b). The particles in the highly clustered
region have very small velocities, but those between the
clustered particles at the top and the driving walls move
rapidly. Some particles that strike the driving wall emerge
with very high velocities (up to 200 cmys in some cases)
and scatter many times from the other particles, rapidly
transferring energy to them. The incident particle may
become part of the cluster while others are released from it.
The cluster contains both regular crystals and disordered
regions. It is possible that interparticle friction enhances
the stability of the cluster. Finally, if the driving is
suddenly switched off, particles collide a few times and
then come to rest, but clustered domains persist.

To extract the positions of the particles automatically,
we use first a threshold intensity to locate the spots associ-
ated with the particles and to discriminate against noise.
We then locate pixels within the spots that are inten-
sity maxima in bothx and y directions. Occasionally,
multiple maxima within a single spot occurs; these du-
plicates are detected and their positions averaged. This
scheme correctly detects about 97% of the particles. By
analyzing a large number of images, a statistical ensemble
is produced. The probability distribution functionPsnd of
the local particle numbern [and also the spatial concen-
tration variationns yd as a function of positiony from the
energy source] can be extracted. To obtain both of these
quantities, we divide the image of the enclosure into small
boxes (typicallyLy16 or Ly32 on a side) and determine

the occupation probability for different numbersn of par-
ticles in a box.

The density distributionsPsnd are plotted in Fig. 2(a)
for three different total numbersN of particles. For lowN
(e.g.,N  100), the distribution is not far from a Poisson
distribution, as would be expected if there are no correla-
tions. AsN is increased, the distribution shifts to larger
number densityn. For N  500 or more, a clear peak is
visible in Psnd; this is the hallmark of the clustering seen
in Fig. 1. The cutoff of the distribution in approximately
equal to the value ofn for close packing. Approximately
400–500 particles are required to produce strong cluster-
ing. This estimate is not changed significantly by a factor
of 2 reduction inL, but the transition is fairly broad.

The spatial density variationns yd as a function of dis-
tance from the driving wall is plotted in Fig. 2(b). One
clearly sees that the particles are more or less uniformly
distributed for lowN, and that a peak develops progres-
sively near the far wall asN is increased. (The apparent
reduction in the peak size for largeN is a consequence of
the normalization factor.)

Next we discuss a case where the table is tilted slightly
further to 0.22±, a value sufficient to counteract rolling fric-
tion so that all the particles move to the driving wall when
the forcing is switched off. ForN  100, forcing causes
the particles again to be randomly distributed as in the pre-
vious case shown in Fig. 1. However, asN is increased
to about 500, clustering again occurs, but in this casenear
the energy source. An example forN  1000 is shown
in Fig. 3. For a constant driving force, the location of the
clusters varies strongly (but smoothly) from the far wall
to the driving wall as the angle of inclination is increased
from 0.05± to 0.2±. In addition, the particles display

FIG. 2. (a) Probability distributions of the local number
density, Psnd, for three different values ofN. (b) Spatial
density variationns yd, normalized by the global densityknl,
as a function of distancey from the driving wall. Lines join
the data points.
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FIG. 3. Sample image forN  1000 particles, showing
strong clustering near the driving wall. When the surface is
tilted by u  0.22± upwards from the cluster.

archlike structures that oscillate subharmonically. A simi-
lar effect has been seen in vertically vibrated granular ma-
terial [13,14]. In Fig. 3, the driving is sufficient to produce
peak velocities of 50 cmys. The clusters are seen even at
much higher forcing amplitudes, for which the typical ki-
netic energy acquired at the system boundary is an order
of magnitude greater than the gravitational potential en-
ergy. The density distributionsPsnd and spatial density
variationns yd are shown for this slightly inclined case in
Fig. 4. The density distributions are quite similar to those
of Fig. 2, but of coursens yd peaks for smally instead of
for large y. The upward shift in the peak inns yd at the
highest value ofN is a result of the finite particle size.

A full picture of these phenomena requires speed dis-
tributionsPsyd. These can be accurately measured using
an automated algorithm providedy , 30 cmys. (Hence,
lower velocities are used when velocity measurements
are desired, as in Figs. 3–5.) Three images of the par-
ticles separated by 42 ms are acquired, and the positions
of the corresponding particles are determined in each
one. To identify corresponding particles in the differ-
ent frames, the algorithm searches first for particles that
move the least between the first and second frames. The
third frame is used both as a check to eliminate erroneous
matches and to improve the accuracy. We have found
this method to work for 90% of the particles, provided
that the interframe displacement is less than the typical
nearest neighbor distance. The remaining particles are
missed; this leads to an underestimate of the number of
fast particles.

Using this technique, speed distributionsPsyd were
determined in the range100 , N , 1860 for u  0.22±,
but the results are expected to be similar for smalleru.
Figure 5(a) showsPsyd for n  100, 500, and 1860.
The mean velocity decreases with increasingN , with
most of the particles being nearly at rest, and a small
number of “hot” particles with large velocities. These
fast particles are located preferentially in low density re-
gions, and their relative number declines with increas-
ing N because of the strong dissipation produced by the

FIG. 4. (a) Density distributionsPsnd and (b) spatial density
variationns yd for u  0.22±, as in Fig. 3. The particles cluster
near the driving wall.

cluster. The number of hot particles may be somewhat
augmented by the presence of instabilities, as this pro-
vides regions of lower density through which energy can
be transmitted.

The mean collision rateRs yd is highly inhomoge-
neous when a cluster is present. Even though the veloci-
ties are reduced within the clusters, the collision rate is
much greater there. We determineRs yd from the ratio
ys ydy,s yd, where the mean free path,s yd is determined
from the measured densityrs yd [7]. The resulting col-

FIG. 5. (a) Speed distributionPsyd for several values ofN.
The mean velocity decreases with increasingN . (b) The
collision rateRs yd as a function of distance from driving wall
becomes strongly inhomogeneous at highN. (u  0.22±.)
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lision rate is displayed in Fig. 5(b) for several values of
N . For largeN the collision rate is substantially enhanced
within the clusters. Note that the peak inRs yd is closer to
the wall than is the peak in the density distribution.

A qualitatively similar observation of clustering (in 2D)
away from the energy source (as in Figs. 1 and 2) was
made in the numerical and theoretical work of Grossman,
Zhou, and Ben-Naim [7], who explain clustering for1 2

r ø 1 by assuming an energy balance argument and local
“thermal” equilibrium. However, there are significant
differences between the model and this experiment. The
theoretical work does not include particle rotation. Though
it is reasonable to ignore the sharing of energy between
rotation and translation at the instant of collision, rotation
produces an effectively smaller coefficient of restitution
in the experiment by the following mechanism. The
particles are rolling at the instant of collision. After
the collision, particle spin produces relative motion with
respect to the surface. The resulting frictional slipping
leads to additional dissipation until the rolling condition
is restored over a distance of several mm. We determined
experimentally that theeffectivecoefficient of restitution
(including this additional loss to the surface) is about 0.7 on
average. However, it varies over the range0.5 , r , 0.9,
with the larger values applying to grazing collisions and
smaller values to backscattering or collisions with the wall.
The approach of Ref. [7] is not quantitatively applicable
for values ofr this far from unity. However, the behavior
of the densityns yd shown in Fig. 2(b) is qualitatively
similar to that given in Ref. [7].

We explored the role of weak gravitation numerically
by generalizing the one dimensional model of Ref. [6].
The values ofr, N, and u were chosen to be appro-
priate for the experiment. Without gravity, the particles
cluster at the side opposite to the driving wall as in
Ref. [6] for 1D and in Ref. [7] for 2D. Foru  0.22±,
the simulation shows clustering near the driving wall for
10 particles, and no aggregation for 3 particles. These
numbers correspond to 1000 and 300 particles, respec-
tively, in 2D. (Corresponding cases would have the same
numbers of particles along a line perpendicular to the
forcing wall.) The computed densityns yd is shown for
these cases in Fig. 6; the results are qualitatively similar
to what is found experimentally (see Fig. 4). Numeri-
cally, the cluster shifts from one wall to the other at a
remarkably small angle (below 0.005±). Experimentally
this critical angle is somewhat larger (about 0.1±) because
of friction with the surface. Finally, we note that verti-
cally oriented 1D granular media have been studied both
experimentally and numerically [11].

In conclusion, density and velocity distributions, and
spatially resolved density profiles and collision rates, all
show pronounced effects due to clustering at high particle
number. We do not see evidence of the stringlike clus-
ters seen in numerical simulations of transient decay; they
may not be present when energy is injected continuously,

FIG. 6. Numerical simulation of a one dimensional model
including gravitation foru  0.22± and r  0.7. The cases
N  3 and N  10 correspond to 300 and 1000 particles in
two dimensions. The spatial density variationns yd is similar
to that seen experimentally in Fig. 4(b), with clustering near
the driving wall.

as in this experiment. Experiments were performed with
reducedL, with both larger and smaller particles (1.6–
4.5 mm), and with higher forcing amplitude and/or fre-
quency. The resulting behavior is qualitatively similar to
that presented here. Many variants of these experiments
are possible. For example, mixtures of particles of differ-
ent densities and coefficients of restitution could lead to
insight concerning particle segregation phenomena.
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