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A continuum rod model of sequence-dependent DNA structure

Robert S. Manning® and John H. Maddocks®
Institute for Physical Science and Technology and Department of Mathematics, University of Maryland,
College Park, Maryland 20742

Jason D. Kahn®
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742

(Received 20 May 1996; accepted 28 June 1996

Experimentally motivated parameters from a base-pair-level discrete DNA model are averaged to
yield parameters for a continuum elastic rod with a curved unstressed shape reflecting the local
DNA geometry. The continuum model permits computations with discretization lengths longer than
the intrinsic discretization of the base-pair model, and, for this and other reasons, yields an efficient
computational formulation. Obtaining continuum stiffnesses is straightforward, but obtaining a
continuum unstressed shape is hindered by the “noisy” small-scale structure and rapid helix twist
of the discrete unstressed shape. Filtering of the discrete data and an analytic transformation from
the true normal-vector field to a natufahtwisted frame allows a stable continuum fit. Equilibrium
energies of closed rings predicted by the continuum model are found to match the energies of the
underlying discrete model to within 0.5%. The model is applied to a set of 11 short DNA molecules
(= 150 bp and properly distinguishes their cyclization probabilitidsfactory when compared

both to experimental cyclization rates and to Monte Carlo simulations. The continuum model does
not include entropic contributions to the free energy. However, because of its rapid and accurate
computation of internal energy, the continuum model should, when combined with further work on
entropic effects, be a useful method for computing experimental DNA free energie4996®
American Institute of Physic§S0021-960606)51437-9

I. INTRODUCTION Section Il we outline the continuum theory of elastic rods.
In Section IV, we present the basic formalism for finding
Recently, there has been considerable interest in modeéquilibria in both the discrete and continuum problems. The
ing the large-scale deformation of DNA molecules usingdetermination of continuum stiffnesses is presented in Sec-
elastic rod theories(see e.g., recent review articles by tion V, and the determination of the continuum unstressed
Schlick and OlsoR). However, with some notable shape is presented in Section VI, including a crucial filtration
exceptions,® most continuum studies have modeled DNA of the discrete centerline and an analytic transformation from
by a straight uniform rod, which neglects the DNA's intrin- the rapidly twisting normal-vector field tracking the sugar—
sic curvature. Our goal is to develop a model using an intrinphosphate chains to an untwisted natural frame. In Section
sically bent and twisted elastic rod whose curvatures are de¢ll, we summarize our procedure for determining continuum
termined directly from the properties of the underlying base-model parameters from discrete model parameters and sub-
pair sequence. Sequence-dependent effects have besequently computing equilibrium configurations and ener-
included in other DNA studies, such as all-atom motlafsd  gies. In Section VIII we investigate the robustness of these
models which treat each base-pair as a rigid #mft,but  continuum computations. In Section 1X, we verify the accu-
these methods can be prohibitively time-consuming for allracy of the continuum model by comparing equilibrium en-
but the smallest DNA molecules. ergies and configurations of the discrete model and of the
A theory of elastic rods encompassing effects of intrinsiccorresponding continuum model. Finally, in Section X we
curvature is a classic topic of continuum mechaficRe-  apply the continuum rod theory to model the cyclization
cently, an associated computationally efficient formulationrates of a family of short DNA molecules and compare cy-
has been develop&df with a particular emphasis on solv- clization energies to values determined both experimentally
ing the loop boundary-value problem arising in modelingand from Monte Carlo simulations. These comparisons dem-
cyclized DNA. The continuum model requires input param-onstrate that for large-scale bending deformations, the con-
eters giving the rod’s unstressed shape and stiffnesses, andtinuum model with sequence-dependent structure captures
this paper, we propose and verify a procedure for determinthe essential physics of the DNA cyclization.
ing these parameters from the DNA base-pair sequence.

In Section Il we present the discrete wedge-angle modell,I A DISCRETE BASE-PAIR LEVEL MODEL FOR DNA
a widely accepted base-pair level model for DNA, and in

Each of the two strands of DNA consists of a sugar—
phosphate chain and, at regular intervals, side chains called

3E|ectronic mail: rmanning@ipst.umd.edu

bElectronic mail: jhm@ipst.umd.edu bases, of which there are 4 types: ader{ifig cytosine(C),
Electronic mail: kahn@adnadn.umd.edu guanine (G), and thymine(T). The two sugar—phosphate
5626 J. Chem. Phys. 105 (13), 1 October 1996 0021-9606/96/105(13)/5626/21/$10.00 © 1996 American Institute of Physics
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Manning, Maddocks, and Kahn: Continuum rod model of DNA 5627

chains wind about each other in a double helix and are bound cost —sinrt O
ﬁ?hetger by one of two pairings of bases: A with T, or C RO—|sinr cosr O,
We present here one of the commonly used discrete 0 0 1
models for DNA, namely the wedge-angle mod&le em-
phasize that the central ideas of this paper do not rely intrinthend(*1) | j=1,2 3, is obtained by rotating{"’ by an angle

sically on the specific details of this particular choice of dis- - aboutdg) (notey). The rotation matrbR(® is described by
crete model; with slight adaptations, the procedures weg gyler angles £, M 6™)  which represent successive
propose could be used to obtain continuum versions of othgiytations about!) d® anddg). That is, we define
discrete base-pair level models, such as the junction model

or trinucleotide model$?

The wedge-angle model treats the base-pairs as rigid cos7 —sin7 0
units, which stack on top of each other according to the R (r)=| sint cos7 0
atomic geometries and interactions of the base-paifse- 0 0 1

garded as a rigid body, base-paican be completely de-
scribed by an orthonormélame i.e., an originr ) and a set

of 3 mutually perpendicular unit vectors{’,d$’,d¥’). The cos¢ 0 sing

origin rV is located at the center of the base-pelf, points Ry(#)=| O 1 0
N ¢ ’

toward the center of the next 'base-pajﬁ, points to the “sing 0 cos¢

center of the major groove, amtg') is determined by mutual

perpendicularity 5" =d{’x d{"); see Figure 1. It will prove

convenient to label the first frame Iby=0 and the last frame 1 0 0

by i=N. Ry6)=| 0 cosf sing |,

To determine framé+1 given framei, one performs a
three-dimensional rotation whose representatiothe basis
of frame iis given by an orthogonal 3-by-3 matriX!). For
example, if and theith rotation matrix is given by

0 —sinfd cosé

RO=R(6",¢", 7" =R (F")Ry(8)Ry(¢")
COS¢ cosT+sin @ sin¢ sint —cosé sinT sin ¢ cosT—sin 6 cos¢ sin 7
=| cos¢ sinT—sinf sing cost cosf cosT  Sin ¢ sin 7+sin § cos¢ cosT |, (2.2
—Ccos @ sin ¢ —sin 6 Cos 6 cos ¢

There are several other definitions of Euler angles in combBNA’s unstressed shapand call the corresponding Euler
mon usage corresponding to different choices and orders @ngles theunstressed anglesThe wedge-angle model as-
rotation axes® The apparent inconsistency in the definition sumes that the values of”, ", and 7 depend only on

of R, as compared td&R, and R, arises because we want the stacking interactions of base-pdirandi + 1, and not on
7>0 to represent a counter-clockwise rotation aboyto  any other base-pair§the nearest-neighbor assumpion
match the right-handed twist of natural A- and B-form DNA. There are 4 different base-pairs and hence 16 possible
The change-of-basis formula and a simple recursion show-base-pair stacks; thus, the parameters to describe the un-
that the coordinates ofdf’,d$?,d{’) in the standard basis stressed shape are 16 triples of angles

(i.e., the laboratory frameare given by the columns of the

matrix RORM  R(0-1) (:9,;1),3')AT/AT, (b,:f’ﬁ')AT/CG, (b,zf)ﬁ')AT/Gc, ce
() — ROR(L) (i-1) D50 0.b 7
dl R R e R el, (6,¢77)TAIGC1 (91¢1T)TA/TA .
di)=RORW . R(~Dg,, (2.2

However, only 10 of these triples are independent due to
dg): RORD Ri-Deg,, symmetry considerations. There are several sets of these un-
stressed angles used in the literature, determined either by
Model parametersAn important set of parameters for empirical analysis of electrophoretic mobilities for a variety
this discrete model are the Euler angled’( 4, 7()) that  of sequencege.g., those of Trifono¥y or by a similar analy-
describe the minimum-energy configuration of the DNA insis combined with molecular mechani¢s.g., those of De
the absence of external forces. We call this configuration th&antig%); see Table I.

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996
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5628 Manning, Maddocks, and Kahn: Continuum rod model of DNA

assumes that the energy increases quadratically when any of
the Euler anglesq", (", 7V} change from their unstressed

values @0, 60, 70)

N—-1 1 1
= - () pin2y = (i) 3(i)y2
E ion[zKaw 60)2+ SK (= g1)

chains

1 L
+ K302 3

Thus, this model also includes as parametersstiffnesses

Ky, Ky, andK . Estimates for these stiffnesses are avail-

able from experimental values for the persistence length

(specifyingK, andK ,, from sedimentation, light scattering,

and cyclization experimentand torsional modulugspecify-

ing K., from fluorescence anisotropy and cyclizajiom-

plicit in Eq. (2.3) is the assumption tha¢,, K, andK are

the same for all base-pairs. This restriction is due to a lack of

appropriate experimental data to model nonuniform stiff-

nesses, at least at the time of the development of this wedge-

angle model. Given such experimental data, the continuum

model described in this paper could easily be extended to

FIG. 1. Discrete model for DNA. Each frame has its origin at the center ofinclude sequence-dependent stiffnesses. In addition, the en-

a page-pair, itsl; axis pointing to the next base-pair center, andlitsxis ergy (2.3 is assumed to be quadratic in the angles; if needed,

pointing to the center of the major groove. higher order terms could be included, e.g., to incorporate
asymmetric effects like DNA’s preference to undertwist
rather than overtwist/

The unstressed angles determine the shape of the There is some ambiguity in delimiting the ends of the
minimum-energy configuration of the DNA molecule, but DNA molecule. In many applications, it is reasonable to de-
we also need to know the energy penalty incurred by forcinglare that the molecule begins at the first base-pair and ends
the molecule into another shape. The wedge-angle modeit the last base-pair. However, in cyclizati¢he focus of

TABLE |. Trifonov (Ref. 9 and De SantigRef. 10 unstressed angles for the rotation from base-pag
base-paii +1. The direction from base-pairto base-paiti +1 will be the 5-to-3’ direction on one DNA

strand and the 3to-5’ direction on the other strand. By convention, the name of a base-pair gives the name of
the base on the '5to-3' strand followed by the name of its partner on thet8-5’ strand(e.g., GQ. Base-

pairing and symmetry implies that only 10 of these sets of angles are independent; for example, the relationship
between the GC/AT angles and the TA/CG angles is clear from the table.

Base-pair stack (Trif) H(Trif) T(Trif) 8(DeS #(Des 7(DeS
AT/AT -6.5 3.2 35.6 -54 -0.5 35.9
ATI/CG -0.9 -0.7 34.4 —-25 —2.7 34.6
AT/GC 8.4 -0.3 27.7 -1.0 —-1.6 35.6
AT/TA 2.6 0.0 315 -7.3 0.0 35.0
CG/AT 1.6 3.1 34.5 6.8 0.4 34.5
CG/CG 1.2 1.8 33.7 1.3 0.6 33.0
CG/GC 6.7 0.0 29.8 4.6 0.0 33.7
CGITA 8.4 0.3 27.7 —-1.0 1.6 35.6
GC/AT —-2.7 —-4.6 36.9 2.0 -1.7 35.8
GC/CG —-5.0 0.0 40.0 -3.7 0.0 33.3
GC/GC 1.2 -1.8 33.7 1.3 -0.6 33.0
GCI/TA -0.9 0.7 34.4 —-25 2.7 34.6
TA/AT 0.9 0.0 36.0 8.0 0.0 34.6
TAICG —2.7 4.6 36.9 2.0 1.7 35.8
TA/GC 1.6 -3.1 34.5 6.8 -04 34.5
TAITA —-6.5 -3.2 35.6 —-5.4 0.5 35.9

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996
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this papey, .the two endsl of a DNA molecule are joined Wlth uy(s)=—dj(s)-dy(s),
the usual inter-base-pair spacing between the last and first
base-pairs. Accordingly, to capture the geometry of the last  Uz2(S)=d3(s)-di(s), (3.9
junction, we append a fictitious base-pair, and declare it to be o
the same typéA, C, G, or T) as the first base-paisince the U3(S)=dy(8) - dz(S).
first base-pair will eventually follow the last in the cyclized Givenu;(s) and the initial frame ¢,(0),d,(0),d5(0)), one
DNA). This technicality is not a major change to the model,can solve the first-order differential equatiof®&2) for the
but is worth including for the short DNA molecules consid- frames at alk, and then recover the centerlings) using Eq.
ered in Section X. We adopt the convention that the mol{3.1).
ecule begins at the origin of the first frame<0) and ends Model parametersAs in the discrete model, one impor-
at the origin of the last framei € N). For cyclization, there tant input to the continuum model is a description of the
are N base-pairs in the DNA molecule, because the lastinstressed shape of the rod, given by three functigis),
frame is fictitious. U,(s), andug(s). By standard convention in rod theory, the
shape descriptong; are calledstraing even when they refer
to the unstressed shape. We will call the quantitiesin-
stressed strains
In addition to describing the unstressed shape of the rod,
The special Cosserat theory of elastic rods is a standardfe need to quantify the energy penalty in deviating from that
model in continuum mechani¢d.We restrict attention to unstressed shape. We assume that the energy is quadratic in
inextensible and unshearable rods, which are approximatiori§e strains
analogous to the assumption in the wedge-angle model that 11 1
each base-pair lies at the tip of thg axis of the previous E=f [—Kl(ul(s)—ﬂll(s))zvL =Ko(uy(s)—Uy(8))?
; . o . : 0l2 2
base-pair. Extensibility and shearability can easily be in-
cluded in the continuum model if need&d> However, we 1
note that the cyclized DNA configurations described in Sec- + §K3(u3(5)— U3(s))?
tion X involve forces of 0.5-3.0pN, which are much
smaller than the reported threshold of approximately 60wvhere the integrand, i.e., the Lagrangian, is denoted. by
pN*81° required to cause significant DNA extension. TheHence the stiffnessesk(,K,,K3) are parameters for the
configuration of an inextensible and unshearable rod is givenontinuum model. Note that as in the discrete case, we could
by a continuous family of frameémutually perpendicular extend this model to includs-dependence inK;,K,,K3)
unit vectors (dq(s),ds(s),ds(s)), with the origins of the or terms of higher order than quadratic if required.
frames lying on the rod’s centerline and(s) given by the In summary, the continuum model requires the param-
centerline’s unit tangent vector. It is convenient todebe  eters (1,(s),0,(S),U3(s)) and K;,K,,K3) as inputs. In
the arc-length parameter of the centerline and to choose &ections V and VI, we present a method for determining
length-scale so that€9s<1. Under these assumptions, the these parameters from the wedge-angle parameters
centerliner(s) can be recovered from the frames using the(b(i),&s(i),}(i)) and K,,K 4 .K,).

Ill. THE ELASTIC ROD MODEL

dSEJlL ds, (3.5
0

relation
dr IV. DISCRETE AND CONTINUOUS EQUILIBRIUM
g =da(s)- (3.1  CONDITIONS

The interpretations of the centerline and frames in mod- e outline the conditions for static equilibrium of the

eling a DNA molecule are just as in the discrete model. Thdliscrete and CO”“”UO‘,J_S r.nodels.. For the saKe of concrete-
centerliner (s) runs through the middle of the double helix, ness, we focus on equilibria of twisted closed rings, which is

passing throughor at least nearthe centers of the base- the context qf the cyclization application presented in Sec-
pairs. The normal vectat,(s) points from the centerline to tion X; see Figure 2. Other boundary value problems could

the center of the major groove, thus tracking the helix twist P& handled similarly.
It is easily verified that given a continuous family of A. The discrete rod
(orthonormal frames €(s),d,(s),ds(s)), there exists a

3-vector functionu(s) such that In the wedge-angle model for DNA described in Section

I, each base-pair is represented by a frame, and the rotation
, d ) from framei to framei+1 is given by three Euler angles
di(s)=ggdi(s)=u(s)xdi(s), 1=1.23. B2 (70, 40 9y, with unstressed values determined according
to the base-pairs in positiorisand i +1. Without loss of
By convention, we defing; to be the components ofinthe  generality, coordinates may be chosen so that frame 0 has

director frame: origin r=0, and directors ¢{”,d{,d{")) equal to the stan-
— dard coordinate axe®{,e,,e3).
=Uy(s)dy(S) +Up(S)dp(s) T Us()ds(s). (3.3
u(s)=uy(s)d(s) + Up(s)do(s) +us(s)ds(s) @3 Cyclization requires that the origin of the final frame
Inserting Eq.(3.3) into Eqg. (3.2 leads to also lie at the origin

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996
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d,(0) these comprise only Bidependentonstraints; e.g., it is an
easy exercise to show that the 3 constraints which we call
hy, h,, andh;

hy(69,$© 70 gN-1 4(N-1) (N-1))
—e]RORM...RN-Dg, =,
hy(6(9, (@ 70 gN-1) 4(N-1) 7(N-1))

= IR(O)R(l)...R(Nfl)eSzo, 4.5

ha(0©, @, 70 gN-1 gN-1) ~(N-1))

FIG. 2. Ring boundary conditions for a rod. The rod’s centerline is indicated = e;R(O)R(l)' RN 1)e1: sSin a,

with a tube, and the normal vectds is indicated as a ribbon. AA=0, the

frame has origin (0,0,0) and is oriented along the standard axes=At  imply Eq. (4.4 given that we knowR(OR®)...R(N-1)
the frame has origin (0,0,0) and is rotated aboutzfeis by a prescribed e SO(3). [Actually, Eg. (4.5 plus the condition that
anglea. Thes=0 frame is drawn darker and at a larger scale in order to RORM...RIN-1) SO(3) impIies 38 possible values for
distinguish it from thes=1 frame. RORM...R(N-1) namely

[+cosa —sina O

r(N) =, 4.2 sine *cosa O],
We have seen in Section Il that each frame’s origin lies atthe 0 0 1
tip of the previous frame’sl; vector, so Eq.4.1) can be [ +cosa  sina 0
written as . _

sina  Fcosa O |,

A0+ dP+ .. +dN Y=o, 0 o -1
Using Eq.(2.2), this becomes 0 1 0

(I1+RO+RORD 4+ RORMD...RIN"2)g. =, sina 0 =*cosea|,

4.2 | *cosa 0 —sina
For convenience, we label this constraint functiongoy o _q 0
g(6@, $© 7(© gIN=D H(N-1) (N-1)) sin 0  Tcos
L 1 L | L L a -+ a
=(1+RO+RORD + +RORD...RN2))g, | xcose 0  sina

However, these 8 elements are isolatei(3), so in our
search for discrete rod equilibria, as long as we have an
Ccosa —sina 0 initial guess which nearly satisfies E@t.4), our computed
equilibrium using the constrairié.5) will in fact satisfy Eq.
(4.4 and not one of the other seven possibilifjes.

The discrete cyclization problem seeks critical points of
the energy(2.3

Further constraints prescribe the orientation of frase

o

N) _ i N) _ N) _
dV=|sina |, dM=| cosa |, d{V=
0 0

=

4.3

which requires that the initial and final tangent vectdss
line up and that there be an imposed angldetween the "1 () ~(in2 () (N2
— _ 1) __2(i _ 1) __ |
initial and final normal vectorsl;; see Figure 2. Note that E= izo [ZKT(T T 2K¢(¢ ¢)
only a=2n7, neZ gives continuity of the sugar—phosphate
backbone, but we consider a more general configuration for

. . . , +EK (61— g2
computational convenience. Using Eg.2), we can rewrite 2°¢

Eqg. (4.3 as i . ) . .
) subject to the position constrain$.2) and the orientation
cosa —sina 0 constraints(4.5). Thus, critical points of a function of N
RORM...RN-V—| sine cosa O, (4.4 variables ¢, 6%) subject to 6 constraints must be

found. Although the functiof is simple, the constraints are
quite complicated, since eadk() is a matrix with trigono-
which appears to entail 9 constraints. In fact, sincemetric entries depending on{, ¢, 6%)) (see Eq.(2.1)).
RORM...RIN"Y) s a priori a member ofSO(3) (the Incorporation of the constraints in the standard way with
three-dimensional group of proper orthogonal rotatfipns Lagrange multipliers and » leads to the nonlinear system

0 0 1

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996
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V(E+n-g+w-h)=0, (3.5 is a function of (s),q’'(s),s), so a classic calculus of
_ variations problem arises, namely to find critical points of

9=0, (4.8 the energy(3.5

h={0,0, sina),

1
=f0 L(q(s),q'(s),s)ds

which involves N+ 6 equations for the 9+6 unknowns
n, », and {8, M 7O} for i=0,... N—1. The symbol
V denotes the gradient with respect to the angle
{6M M 71 The only closed-form solution we know for
this system is the planar untwistédgon, e.g.,

subject to the pointwise constraints(s)=ds(q(s)) and
?q(s)l—l and boundary conditions om,f) at s=0 and
s=1 (to be specified later in this sectipriThe first-order
stationarity conditions for this constrained Lagrangian sys-

9=2xIN, ¢'=71=0, v;=27K,/N, tem can be transformed to an unconstrained Hamiltonian
system with Hamiltonian
V2:V3:n1:n2:n3:0, (47) .
i isfi _ 2= 50 wB® b o T
which satisfies Eq.(4.6) when a«=0 and 6'=¢ H(r,q,n, m)= 2 8k, T Z/qu +n'ds(Q).
i

= 7(0=0; other solutions must be determined numerically. =1

For realistic values ofq(", (" 7)) for DNA, we have been Here n (the force acting across a rod cross-sedtisnthe

unable to numerically determine solutions to E4)6) except  3-vector conjugate to, u is the 4-vector conjugate @ and
by using initial guesses derived from continuum solutionsithe B; are
Section IX discusses this issue in more detalil.

0 0 17 0O 0 -1 0
0 0O 1 0 0 O 0 1
Bl= , Bzz '
B. The continuous rod 0 -100 10 0 0
In this section, we outline a formulation of the equilib- -1 0 0, 0 -1 0 0
rium conditions of continuum rods, which leads to the ro 1 0 O
boundary value problerfor BVP) consisting of the differen-
tial equationg4.9) and boundary condition@.11). This sec- _| 1000
tion defines the notation in the BVP and outlines its deriva- 3 0 O 1
tion. However, none of these details are required to 0 0 -1 0

understand the remainder of the article; one can proceed di-
rectly to the summary paragraph at the end of this section ,petermlnlng €(s),q(s).n(s), u(s)) involves solving the
desired. On the other hand, a more complete explanation ¢f@ndard Hamiltonian differential equations

the equilibrium formulation can be found in Li and oH
Maddocks"? r'=—-=ds(a),
As described in Section Ill, a continuufmextensible,
unshearablerod is described by a continuous family of 8 TBJq
frames @4(s),d,(s),ds(s)). Each frame is an element of q'= 121( ) Ba,

SQ(3), butrather than represent it by 3 Euler angles is

done with the local rotations in the discrete modglwill be dH 4.9
convenient instead to represent it by a 4-vector of Euler pa- n'=- ar =0,
rametersq(s), which must obeylg|=1. The Euler param-
eters provide the frame through the relations L ﬁ (ad3 N i (ﬂTBJq 4 )lB
[(ai-d3—a5+a; m="%q " \ag) MTE ek Y 2R
d,=| 20:0,+20304 |, wheredds/dq is found from(4.8)
L 20103~ 20204 ad 203 20, 201 202
. 3
20102~ 20304 Tq | 2% 29 262 —20.
dp=| —ai+as—ai+ai|, T2 24, 24s 20
| 20,03+20:0, | So, to find the stationary points for the continuum energy
] functional (3.5), we solve the first-order system of differen-
20103120204 tial equations(4.9) subject to appropriate boundary condi-
ds=| 20203—20:05 |. (4.9 tions. The boundary conditions are the continuous analogue
2 o 2 o of those used in the discrete problem
[ —d1— 0>t d53+ 0,

r(0)=r(1)=0, d;(0)=e;, dy(0)=e,, d3(0)=¢e;,
The strainsu,(s), Uy(S), andus(s) can be expressed as (©)=r(1) 1(0)=e 20)=¢ (0)=¢
functions ofq(s) and q'(s). Thus, the Lagrangian in Eq. d,(1)={cosa,sin «,0),
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5632 Manning, Maddocks, and Kahn: Continuum rod model of DNA

dy(1)=(—sin a, cosa,0), ds(1)=(0,0,1), the conditionu,(0)= 0, which selects a single representative
of the family of possibleu values. Accordingly, the bound-

which can be translated, using Ed@.8), into variables ap- ary conditions used are

pearing in the Hamiltonian

r(0)=r(1)=0, ¢(0)=(0,0,0,, r(0)={0.0.0,

q(1)=(0,0,~ sin(a/2), — cog a/2)). (4.10 r(1)=(0,0,0,

Unfortunately, the BVP(4.9)+(4.10 has non-isolated 01(0)=0,(0)=q3(0)=0, (4.11
solutions, which prohibits numerical solution of the BVP via
continuation methods$A solution (r,g,n,u) is non-isolated if #4(0)=0,

for the same parameter values there are other solutions arbi- _ o _

trarily close] In particular, the BVP(4.9)+ (4.10 is invari- A(1)=(0,0,7sin(a/2), - cog al2)).

ant to the symmetryu— u+ eq. This symmetry is a conse- In summary, the continuum equilibrium condition for a
guence of using four Euler parameters to describe the locallywisted ring is the BVP consisting of the 14 differential
three-dimensional groupSQ(3). To remove this non- equationg4.9) and the 14 boundary conditio4.11), where
isolation, we replace the condition@.10 by equivalent « is the angle betweed;(0) andd;(1). In thespecial case
boundary conditions which factor out the symmetry: in par-that U,(s) = 0,(s) =U3(s)=0 andK;=K, (an intrinsically
ticular, the conditiong,(0)=1 (which is implied by the straight and untwisted rod with equal bending stiffnesses,
other seven boundary conditions gand the fact thalig|?is ~ which we call theperfect probleny there is a closed-form
an integral of the Hamiltonian systg¢rman be replaced by solution for this BVP

0 sin(7rs)cog as/2)
1 —sin(ws)sin( as/2)
r(s)= 2 CO;;Z;ST)S; L, as)= cog ms)sin( as/2)
cog 7s)coq as/2)
prk 47K, cod mS)cog asl2) — 2aK 5 sin(as)sin( as/2) 4.12
— 47K, cog ms)sin(as/2) —2aK; sin(as)coq as/2)
n(s)= 8 )= — 47K, sin(ws)sin(as/2) +2aK; cog as)cog as/2) |

— 47K, sin(ws)coq as/2) —2aK; cog as)sin( as/2)

The numerical determination of other solutions of this BVP In the continuous problem, if we label bg(s) the

is discussed in Section VII. clockwise angle the rod’'s tangent makes from vertical,
then we have d,=(0,—-1,0), dsz=({sina,0,cosa), and
d;=(cosa,0,—sina). An easy computation shows that for
this caseu;=u;=0 andu,(s)=da(s)/ds. So, our continu-
ous energy is

To motivate our conversion from angle-stiffnesses 11

(Kg.Kg,K;) to strain-stiffnessesK; ,K,,K3), we consider E:f (
planar untwisted deformations of an intrinsically straight rod

(cf., Weinberget®). Without loss of generality, let the planar we change variables in the integraltts Ns
deformations occur in th&—z plane. Then in the discrete

V. DETERMINING THE CONTINUUM STIFFNESSES

da

2
0§K2 E(S)) ds.

2
problem we use rotations about tigeaxis to get from one _ fNE (d_a(i)) ﬁ
frame to the next, sa)=¢)=0. The discrete energy is 02 2lds|N// N*
therefore Now define
N—1 1
_ - (i)y2 t
E= 2 5Ku(¢)2. ﬁ(t)Ea(N)
We now define8"==;_,¢1) and g~ =0 so that for 0<t<N, so that
N—-1
1 . . dg 1dat
E= D =K, BV-p171)2 5.1 —(t)=——|—
2, SKg(BV=p"Y) (5.0 5 (0=% 45| N
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Manning, Maddocks, and Kahn: Continuum rod model of DNA 5633

Then

N1 dg  \?2dt (N1 dg \?
E= fo EKZ(NE(U) szo ENKZ(H(U) dt.
(5.2

By inspection, it is clear that Ed5.1) is a discrete ap-
proximation of the integraf5.2) if we takeK,=K,/N. We
could repeat this process for a rod bent in yhez plane to
find thatK,=K,/N, or for a straight rod with twist to find
thatK;=K_/N.

Motivated by this argument, we adopt the conversion
rules

FIG. 3. The discrete model vectdf is better approximated by the con-
tinuum tangent vector at the midpoint(j+1/2) than by the continuum

tangent vector at the endpoint(j).
K1:K0/N, K2:K¢/N, KSZKT/N (53)

This should not be taken as a proof of these relationships, o ] ]

because in the full three-dimensional problem, the rotation§: Petermining a continuous centerline

Ry, R4, andR, do not commute, so the problem will not Fitting r(t) to r©®, ... r(N*1Y js a standard problem,

decouple into the 3 simple cases discussed above. In DNAsften solved by polynomial interpolation or a least-squares

two of the three angles are small, B9, Ry, andR, nearly  polynomial approximation. Complicating matters, however,

commute, and the scaling is at least plausible. In Section IXis the fact that for DNA models, the discrete set of points

we test Eq (5.3 by comparing discrete and continuous non-have irregular short-scale structure and generally smooth

planar ring equilibria, and we see that the conversion worksong-scale structurésee Figure ¥ We would like to filter

very well in that context. the small-scale structure, since it will prevent us from imple-
menting long-scale discretization in the continuum problem
(in addition, Figure 4 shows that it is plausible that this

VI. DETERMINING THE CONTINUUM UNSTRESSED short—sgale structure is not important fpr some long-scale

SHAPE propertie$. Thus, a least-squares approximation is preferable
to interpolation.

The wedge-angle model describes a DNA molecule as a We take the original interval O<t<N+1 and divide it

sequence of frames, with the origin of frane 1 at the end into k subintervalgof approximately equal sizeand require

of d; for framei. Equivalently, we can think of this data as thatr(t) be a degreen polynomial on each subinterval. We

a centerline(the uniond®u ... Ud{" ) and a sequence also require thatr(t) be C3 over the whole interval

of normal vectorgthe d, axes. We will consider first the 0<t<N+1, which imposes 4 continuity conditiorfsonti-

conversion of the discrete centerline to a continuum centeruity of r and of its first three derivativesat each point

line, and then the conversion of the discrete set of normalvhere the subintervals meet. Hence, we hiaima+ 1) poly-

vectors to a continuous family of normal vectors. nomial coefficients subject to 4 1) constraints. We then

A. Aligning the continuous and discrete centerlines minimize

Though the discrete centerline ends @&, it is useful to

considerr M *1), the endpoint otl{¥ . We want to fit a con- e

tinuous function r(t) through the sequence of points Z

r@, .. r(N*D 5o thatr(j) is a good approximation to

r() for j=0,---,N+1. In general, however, the direction of /

d{) will be better approximated by’ (j+2) than byr’(j);

see Figure 3. Accordingly, we declare that the continuous

rod begins at=3 and ends at=N+ 3, so that the discrete

and continuous directors match well at the ends of the rods

0)_ r'(1/2) (N)_ r'(N+1/2)

S rran)| P r'(N+1/2)]°

These end-point directors figure importantly in the boundary

conditions in Section IV. The exact procedure for fitting

r(t) to r©@, ... r(N*1 js the focus of Section VI B. Once FIG. 4. Long-scale and short-scale structures of a discrete DNA centerline

this fit is done, we scale and reparametrize by arclength t&AL0- The upper right shows a side-view of the entire 157 base-pair
. — e N - molecule with the first 47 base-pairs thickened, and the lower left shows an

obtainr(s), O=s=<1, wheres=0 corresponds to=1/2 and  ¢nq.view of these 47 base-pairs. Despite the irregularity in the short-scale

s=1 corresponds tb=N+1/2. structure, the long-scale structure appears quite regular.
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5634 Manning, Maddocks, and Kahn: Continuum rod model of DNA

N+1 100
> (r(j)—r1)?

i=o0
subject to these constraints. This objective function is qua-
dratic in the polynomial coefficients and the constraints are
linear in the coefficients, so this least-squares minimization
can be reduced to a system of linear equations. z

This is our basic strategy for obtaining a continuum cen-
terline. However, in practice we find that this method cannot
take DNA data and return a centerline capturing its long-
scale features without including its short-scale irregularities.

For k (the number of subintervalor m (the degree of the

fitting polynomialg small, the long-scale features are not
suitably approximated, and whdnand m are increased to

the point of capturing these long-scale features, the short-
scale irregularities are already present in the approximate
centerline. In short, the raw DNA data are sufficiently
“noisy” that the simple least-squares approximation de- 100
scribed above is not stable with respect to changds am

m.

To forcibly remove the small-scale structure, we apply a
filter to the raw data before computing the least-squares ap-
proximation. We replace!’) by a symmetric weighted aver-
age of its neighbors using tleLTFILT function from Mat-
lab’s signal processing toolb&x

) r(j_W+l) 2r(j_W+2) (W_l)r(l_l)
NI , ... .
W

W W

Wr(]) (W_ 1)r(J+1) 2r(j+W_2)

et
2 2 ! W2

w W

0
pi+w-1) y 80
Tz

w FIG. 5. Double-filtration(cf., Section VI B of the centerline improves the

fit. The top figure shows a data set and its once-filtered output. The bottom
Two more technical details are involved in implement- figure shows the same data set and its double-filtered output. Note that the
ing the filter: straightening effect of the filter is decreased by double filtration. The data
(1) Averaging filters naturally have difficulties at inter- shown here are the projection in tyez plane of the centerline of 08T15
. . . . DNA—see Section X.
val end pointgsince there are fewer neighbors over which to
average In fact, as the above definition is written, the filter

is not defined for thev—1 entries on each end of the inter- (2) An averaging filter tends to straighten out data, de-
val. TheFILTFILT function actually pads the data on each e”dcreasing long-scale centerline curvature. To remedy this, we
with 3(w—1) extra points using a reflection method to gpply the filter to compute an approximate averaged center-
match the values and slopes of the data at the end points, apde r,, and subtract it from the original data to get a repre-
then removes these extra points after filterisge pp. 1-17  gentation of the noise in the raw dateer —r,,. We then
of Matlab's Signal Processing mantiaJ apply the filter ton to getn,,, and then add back in the
For our study of closed loops of DNASection X,  gpproximate averaged centerling to get our final approxi-
we have a more suitable padding method available: Wenation to the centerline. Figure 5 illustrates how this modi-

end of the centerline, its eventual neighbor in the cyclized

molecule (we usually use a 50 bp pad on each Jerfebr
example, we extend the 150-base-pair DNA molecul
(50bp1(50bp,(50bp; to (50bp3(50bp1(50bp,(50bP3(50bP, After we filter the discrete centerline and make a least-
and build a padded discrete centerline using the unstresseadiuares approximation to find a continuous cententifté,
angles for the padded DNA sequence. We then apply- we reparametrize by arcleng#h let s; denote the arclength
FILT and the least-squares approximation, and then strip thparameter value corresponding to the valeg) +1/2. The
filtered and fitted centerline back down to its central 150tangent vectors ds(s) can be computed by the
base-pairs. inextensibility-unshearability conditio(8.1)

eC. Determining a continuous field of normal vectors
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Manning, Maddocks, and Kahn: Continuum rod model of DNA 5635

_dr(s) arclengths, we define the transformed directd?dg, D,, and
3(s)= ds ° D; as a rotation about thd; axis of the original directors
d;, d,, andds:
Due to the changes made by the filter and least-squares
approximation, the original discrete set of normal vectors DI(s) cogQ(s)) sinQ(s)) O dI(s)

d(lj) will no longer be exactly perpendicular to their corre-

sponding tangent vectords(s;), which were the best con- Dy(s) | =| —sin(Q(s)) codQ(s)) 0| d(s)
tinuum fit to the originaidy’ . Accordingly, we first project D3(s) 0 0 1][ di(s)
eachd(ll) onto the plane perpendicular ti(s;), and assign

the result to be, (s;). One might worry that this projection dI(S)

introduces significant errors into the model, but in practice, T

the filter and least-squares approximation change the tangent =M(s)| dx(s) |. 6.1
vectors very little, so the projection step has a minimal ef- dg(s)

fect.
s that he nomal vectars rotate rapidy about he coner!1CTS & SUPCISGII denotes a ranspose, so ttando]
line. makin full revolution rpxinz/ tely every 10.5 are three-dimensional row vectors. The functiefs) gives
€, maxing a 1ufl revolltion approximately every 19.5 4o angle of rotatior(aboutds(s)) to get the transformed
base-pairs. Hence, it is difficult to make an accurate interpo;

frame from the original framdat each arclengtts). The

lation or least-squares approximation of these normal VeC:y ation 6.1) is easily inverted

tors, since they change appreciably from base-pair to base-
pair. Furthermore, when the centerline is curved and

the normal vectorsd; spin rapidly, there will be rapid di(s) Di(s)

050|Ilat]ons m_ul and u,. C_onS|der, fqr example, a dg(s) —MT(s) Dg(s)

centerline r(s) =(Rcos@R), Rsin(R),0) with the corre- T T

sponding tangent vectorsly(s)=(—sin(R), cos§R),0), d3(s) Ds(s)

and choose normal vectorsl;(s)={(cos§R)cos@sR),

Si”(SIR)C(?S(VS/R),—Sin(?'S/R))- We can then compute We now determine how the strains transform, i.e., cor-
Uz(8) =dj(s) - dy(s) = —cos(s/R)/R, which oscillates rap-  responding to the new set of directdds, we have a strain
idly for large . vectorw which is defined by

Becausau,(s) andu,(s) vary rapidly ins, it is desirable
to avoid computing with the true DNA frames. Fortunately,
we can compute on a different set of frames which are not
rapidly rotating, and then recover the true DNA resaits-
lytically from the transformed results. For each value of theand we want to relater to u. We compute directly

D/=wxD;, (6.2

(D])’ —sinQ  cosQ O[d] cosQ sinQ 0] (d])’ —sinQ  cosQ O
(D))" |=Q'| —cosQ —sinQ 0| dj|+| —sinQ cosQ 0[] (d)'|=0Q’| —cosQ —sinQ 0
(DY)’ 0 0 0f[d] 0 0 1| (d}) 0 0 o0
cosQ —sinQ 0][D] cosQ} sinQ 0 0 us  —u,|[d]
x| sinQ cosQ Of|DJ|+| —-sinQ cosQ Of|-u; O u; ||d]
0 0 1/| D; 0 0 1f[ u; -u; 0 [[d]
o O 0 DI cos) sinQ O 0 U3 —Uy||cosQ) —sinQ O DI
= -Q" 0 O0||Dj|+|-sinQ cosQ O|| —-us O uy [[sinQ <cosQ 0f|D]
0 0 0] D} 0 0 1|l u, -u, O 0 0 1]| D}
[ 0 us+Q’ u; sin Q—u, cosQ ][ D]
= —uz—Q’ 0 u, cosQ+u, sinQ || DJ, (6.3
| —u;sinQ+u, cos) —uy cosQ—uj, sin 0 Dg

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded 29 Mar 2013 to 165.82.168.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



5636 Manning, Maddocks, and Kahn: Continuum rod model of DNA

Comparing to Eq(6.2), we see that * K¢,15 so that the experimentally determinig=K, in the

discrete model really are the effective isotropic stiffnesses of

the rapidly twisting DNA.

Wo=—uU; Sin Q+u, cos{), ws=uz+Q’, Since the Lagrangian has the same form for the trans-
formed directors as for the original directors, the Hamil-
tonian also maintains the same form, so our computations

w;=U; cosQ+u, sin Q,

or

[ wy ug will involve solving the same system of differential equa-
W, | =M Uy tions (4.9). The only change is in the boundary conditions.
' Specifically, the angle between the transformed directors
L W3 uz+Q’ D,(0) andD,(1), is not thesame as the angle between the
which implies original directorsd,(0) andd,(1). By Eq.(6.1), D;(0) is a
_ right-handed rotation ofd;(0) by an angle(2(0) about
Uz W1 ds(0)=e,. Similarly, D;(1) is a rotation ofd;(1) by an
U, [=MT|  w, ) angleQ (1) aboutd;(1)=e;. Also, the boundary conditions
Us Wa— Q' (4.1 imply thatD4(1) is a right-handed rotation d@;(0)
) by an anglex aboute;. Together, these imply that the angle
Similarly, the unstressed strains transform as betweend,(0) andd,(1) is a—(Q(1)—Q(0)). If we want
Wy 0, 0, W, the original frame to be closed, i.el;(0)=d;(1), weneed
- N - R a=Q(1)—Q(0) (mod 27).
Wy | =M U, s U | = MT W»
W, Y 0, Wy D. The natural frame

. . . We choose the transformed directors to be those of the
In the case thaK,=K, this transformation of directors

preserves the form of the Lagrangian, which is critical for thenatural frame* Given a centerline(s), the natural frame is
computations described in Section IV an untwisted frame §,,D,,D;) defined by a choice of

D,(0) and the condition

Ky . Ky . Ks . s
L=~ (U3 = 0%+ S (U= 0p) %+ 7 (Ug— 03)? W5=0. ©9
A A Equation(6.5), combined with Egs(3.2), (3.3), and (3.4),
u;—ug u;—ug implies that
1 A A Ks—Kj A D - . .
i N T (uz—Us) D} =(W;D;+W,D,) X D;= —W,D3=— (Dj-D;) D5
uz—U uz—U
o = —{D4[ D3]"}D;. 6.6
L Wi W Wim W1 This is a first-order linear differential equation for the
=5 MT| Wo=Wa | | [ MT| Wa—W; 3-vectorD;; given the centerling(s), the tangent vectors
W3—Ws W3~ Ws D;(s)=dj(s) are determined by conditiof8.1), so once an
KoK initial normal vector D;(0) is chosen, Eq(6.6) can be
37Ky ;o , solved numerically with an initial value problem solver to
+ (W= Q' = (W;— Q")) ) 2

find D4(s). [In practice, we solve Eq6.6) with a sixth order

~ « hybrid Gear routin® and monitor the normalization db,
W= Wy W= Wy

K and its perpendicularity t®; to check the accuracy of the
1 ~ ~ .
== Wo—W, | - | Wo—W, solutior.
W3—Ws W3—Ws
K;—K -
n 32 1(W3_W3)2 (sinceMM T=1) VII. CONTINUUM ROD COMPUTATIONS
For the remainder of this paper, we focus on the problem
Ky of computing the lowest-energy equilibrium configuration of

N Ky R K .
= 5 (W =Wy)?+ 7(W2_W2)2+ 73(W3_W3)2- a continuum rod. We first summarize the implementation of
the procedure described in Sections V and VI to compute

(6.4 Ki, w;, andQ(s) given wedge-angle model parametées-
For the discrete data we are using,=K,, which implies E:all from Section VI C thatv; and)(s) together determine
thatK,=K,. Even ifK, # Ky, it is possible that the rapid u;).
twist of the normal vectors will average the bend stiffnesses  Given a DNA base-pair sequence, we pad the sequence
and give an effective isotropic rod, withKg).s=(Kyer.  ON both ends and then use the chosen set of unstressed angles
Rigorous justification of this claim is still an open question, (e.g., Trifonov or De Santjsto build a discrete unstressed
although numerical evidence suggests it to be trueshape with centerlinel) and normal vectorsl(lj). The cen-
(see the Web site http://www.lcvm.umd.egiehrbaum/ terline is double-filtered and a least-squares approximation

research.html In fact, it is likely in real DNA thatK, then givesr(t) as described in Section VI B; to distinguish

2
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Manning, Maddocks, and Kahn: Continuum rod model of DNA 5637
r(t) from the scaled and arclength-parametrized centerline 250
that is our ultimate goal, we relabel it a§). The arclength
function ¢ is defined as usual by 2001
(=] & o)
o(7)= - )
o dt In_: 1501
whose inverse function we denote bfo); it is straightfor- |
ward to determine bothr(7) and (o) numerically. We de- 100}
note the total arclength af by /. Also, let oy and o
denote the values of at the ends of the true molecule
(within the padded centerline and definesy,j=oinii/¢, 50,
Sfina™= Tfinal! -
The scaled and arclength-parametrized centerline is then 0 - .
defined by -3 -2 -1 0 1 2 3
m3(0)

1_
r(s)= 7r(7(/5)) FIG. 6. Section of the perfect bifurcation diagram. Each point represents an
’ equilibrium twisted ring for an intrinsically straight and untwisted rod with
equal bending stiffnesses. As the imposed twist is varied, we get the intri-
cate pattern of equilibrium solutions shown here; the energy and twist
m3(0) of each equilibrium are plotted(for the particular case
K;=K,=RT/((158)(0.00734))K;=1.5K, corresponding to the 158-base-

pair DNA molecule 11T15 described in Section. X

Using the fact that

dr Jo)= 1
G (7(/9))
it then follows from the chain rule that
dr
s dr dt
3(8)= d_s(s)_ TarT’
dt

dr[2d%  (dr d?\dr

HEREH

)= dr[* ’
H

where all derivatives of are evaluated at(/’s). Having
computedd; and d3, it is then possible to compute the
natural-frame normal vector®; from Eq. (6.6) using the
fact thatD;=d3. FromD,(s) we then compute the function
Q) (s) which records the angle of rotation betwdenpand the

Thesew; are inserted fof; into the right-hand side of
Eq. (4.9 along with K;=K,/N, K;=K4/N, and
Ks;=K_/N, and we then seek the lowest-energy solution of
the BVP [Eq. (4.9+(4.17)] with a=Q(1)—Q(0) (mod
27) (as discussed in Section V)CAn efficient computa-
tional approach to this problem is parameter-continuation.
Specifically, we use the packageTo;?* given a known so-
lution of a parameter-dependent BVRyYTO computes a
family of solutions as a parametégither in the differential
equations or in the boundary conditigris varied. For ex-
ample, starting from the closed-form soluti¢h.12 to the
perfect problem K, =K,, w;=0), one can vary the imposed
twist anglea to sweep out an intricately connected family of
solutions'?!2 For another recent use of numerical continua-
tion in rod computations based upon a collocation discreti-
zation (as in AUTO), see Mahadevan and Kell&,where
) - Mobius-band equilibria for intrinsically straight rods with
true DNA pormal vec}orsil ;By the definition of thg natg- rectangular cross-sections are computed beginning with a
ral frame,w3=0, andw, andw,, the unstressed stralng with known solution for the circular cross-section case.
respect to the AnaturaIA frame, can be cqmputed using Eq. 5 piece of the set of solutions to the perfect problem is
(3.4). Althoughw,; andw, are thus determined for the pad- shown in Figure 6, in which the energy and local twist

ded mole.cule, it is routine to obtgm their values for the truems(o) are plotted for each solution; we call this set -
molecule: the unpadded centerline and normal vectors arg + pifurcation diagram Our focus here, however, is on

) d?r
di(s)= @(S

given by computing equilibria for intrinsically curved rods, with
I padded Sinit + S(Sfina ™ Sinit)) Wy, W, # 0 (animperfect problem There are some intrica- ,
I unpaddebiS) = , cies associated with numerically breaking the perfect rod’s

Sfinal™™ Sinit symmetry, and we follow the procedure described in detail
by Li and Maddocks? Section VI. We introduce a homo-
topy paramete into the differential equation&l.9), replac-

ing every instance ofw;(s) with yw;(s). Accordingly,
v=0 corresponds to the perfect problem, for which Eq.
(4.12 is known to be a solution, ang=1 corresponds to the
imperfect problem of interest. Starting from E@.12 for
some value ofx= ag, we useAauToO to increasey from 0 to

dl,unpadde(is) = dl,paddeglsinit"_ S( Stinal— Sinit))

(r must be rescaled in order for'|=1), and it is easy to
verify that

Wl,unpadde(is) = (Sﬁnal_ Sinit)Wl,paddeﬁs)l
W2,unpaddeGS) = (Sfina— Sinit)WZ,paddeélS)-
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FIG. 7. Component of the bifurcation diagram for an imperfect rod model-
ing the DNA molecule 11T15. This component is a perturbation of the
lowest-energy cycle in the perfect diagram. The large intrinsic bend of th
unstressed rodabout 110°) allows the energies in this component of the
imperfect diagram to be lower than those of the perfect rod, since less

bending in addition to the unstressed curvature needs to occur in order tthe solutions on the imperfect diagram, only those with

form a cycle. The solutions whose normal-vector fields close on themselvea:Q(l)_Q(o) (mod 277.) have the normal-vector field
are marked with circles. As in Figure 6, we takg =K,=RT/((158) dl(s) close up on itself and thus represent cyclized DNA
%(0.00734)) andK3=1.5;. . . . "
: ' One component of an imperfect diagram is shown in
Figure 7; the two solutions for whick=Q(1)—Q(0) (mod

1 (while holding & fixed) and then switch parameters to 27r) are marked by circles, and the corresponding rod con-
sweep out the imperfect diagram by varyiagwhile hold- figurations are shown in Figures 8 and 9. This component
ing y fixed). In contrast to the connected perfect diagramWas computed using~0 (ap=0 is a degenerate point
(Figure 8, the imperfect diagram contains mafapparently ~ from which numerical continuation is not possiblé is a
infinitely many components; the component traced out byclear descendant of the lowest-energy cycle in the perfect

AUTO depends on the value af, chosen. Also, recall that of diagram shown in Figure 6. This lowest-energy cycle in the
perfect diagram actually splits into two components in the

imperfect problent? but we find in our applications that the
other descendant lies at a higher energy than the component
shown in Figure 7. With an apparent infinity of connected
components to the imperfect diagram, we cannot be com-
pletely assured of finding the lowest-energy branch, but we
take the ancestry from the perfect diagram, and experimen-
tation with variouseg, as evidence that the,~0 compo-

nent shown in Figure 7 contains the lowest-energy equilib-
rium configuration.

Having found a minimum-energy equilibrium for one
value of K5/K4, one can easily generate minimum-energy
equilibria for otherK;/K,; by freezing @ and declaring
K3 /K, to be the active continuation parametenivmo. This
fact is a significant benefit of the computational technique of
parameter continuation.

FIG. 9. Configuration of the rod equilibrium corresponding to the higher-
energy circle in the bifurcation diagram of Figure 7. Interpretations are as in
igure 8.

VIIl. NUMERICAL ROBUSTNESS OF CONTINUUM
COMPUTATIONS

Section VI describes a procedure for determining con-
tinuum rod parameters from given discrete rod parameters,
but within this procedure there are still several choices: the

FIG. 8. Configuration of the rod equilibrium corresponding to the lower- filter window-width w used in smoothing the discrete data,
energy circle in the bifurcation diagram of Figure 7. The rod centerline isgnd the number of subintervatsand polynomial degrem

indicated by a tube and the normal-vectors by a ribbon. The top figureused in the Ieast—squares approximation to the resulting
shows the original normal vectors, which track the sugar—phosphate chains.

The bottom figure shows the natural-frame normal vectors used in the conﬁh?-pe- In this section, we diSCUS_S how sensitive the compu-
putations(which are not periodic for this configuratipn tational results are to these choices. The goal, of course, is
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that the final computations not depend significantly on the
choices made, and within fairly wide limits this is indeed the 10.8¢
case. A subtle aspect of this problem, at least for the DNA
discrete data we have used, is that visually assessing the 4 gl
quality of the long-scale structure of the centerline is not a
sufficient check of the stability of a model. Most procedures E
we investigated, even those which used interpolation instead m10.4
of least-squares approximation, or did not include the en-
hancements described in Section VI B, produced continuous  10.2|
centerlines which appeared to be reasonable fits to the dis-
crete centerline. The crucial point is the stability of the-

vaturesof the centerline, since the boundary-value problem 101 -
for the continuous rod involves the parametéfs which 0.5 1 15
depend on the centerline curvatuf@sd the rotation of the K3/K1
normal vectors

We took a 155-base-pair DNA molecu@8T15 as de- (k,m) (10,4) (10,6) (20,4) (20,6)
scribed in Section Xand variedw from 5 to 25,k from 10 Symbol o + ——

to 20, andm from 4 to 6. For each triplevf,k,m), we pro-
duced a plot of the energy of the lowest-energy cyclized rod
versus the ratid ;/K; (as described in Section X, this is the
central computation for comparison with experimerfs
shown in Figure 10, when we vamny, k, and m over the
ranges described above, the computed energies change by at  10.6}
most 0.RT, which is approximately a 1% variation and is |
well within the experimental error in energy determination, Em 4l
which is estimated at OR'T (see Crotheret al?® and Sec- w
tion X). We also remark that this energy variation is mark-
edly smaller than that which we observed for other discrete- ~ 10.2}
to-continuous procedures, e.g., if interpolation is used

instead of a least-squares approximation, or if a least-squares 10
approximation is used without a filter.

10.8;

In addition to model parameters, one must choose pa- 0.5 1 1.5
rameters for the numerical discretizatioxuto implements K3/K1
collocation, which subdivides the arclength irkosubinter-
vals and approximates solutions by continuous piecewise- w 5 10 15 20 25
polynomials of degreé on this mesh of subintervals. For Symbol  * o + - —

most computations we uséd=30 andM =6 but have veri-
fied that computed energies vary by at most RU1 or FIG. 10.t Varfiation of ctqmpfuted Shne(rjgies vtvitrt'l ctr;]angest_in filtering and fittti?g
. . parameters for converting from the discrete to the continuum representation.

0.1%, in the range 1<5K.<60 and 4&M<6. In ParthUIar’ In the top plot, the filter width is held fixed at= 15 and the fitting param-

the model errors described abofand the experimental er- gers &,m) are varied. Except fork(m) = (10,4), which is probably too few

rors mentioned in Section )Xdominate these discretization polynomials of too low a degree, the energy variation is less tharRI08r

errors by an order of magnitude. 0.5%. In the bottom plot, the fitting parameters are held fixed at
(k,m)=(20,6) and the filter widthv is varied. Herew=5 appears to be too
narrow a filter window, but the other choices again yield an energy variation
of approximately 0.0BT.

IX. COMPARISON OF CONTINUUM AND DISCRETE

EQUILIBRIA discrete configuration is essentially an inversion of the deri-

. vation described in Section VI of the continuum shape from
As one test of the accuracy of the continuum computa-

tions described in Section VII, we compare the compute&he d|_screte shape.l

. i . : o Given the continuum rod(s) andd,(s), 0<s<1, we
continuous configurations and energies to the equilibrium " . .

. . . - . recover the positions of the base-pair centers by sampling
configurations and energies of the original discrete prOblen(]avenl alongr(s)
which provided input parameters to the continuum rod y 9
model. As shown in Section IV A, determining discrete equi-
libria requires solution of the large nonlinear systéfg),
which necessitates a numerical iteration. Fortunately, a good .
initial guess for the discrete iteration can be extracted from (i _ 2i—1 .

) ) ) L =r\——1, i=1,
the associated continuum solution. The determination of a

2N-1
r<°>:r<N)=r( )

2N

2N
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5640 Manning, Maddocks, and Kahn: Continuum rod model of DNA

Notice the shift by arclengti= —1/(2N) in accord with the  TABLE Il. Discrete and continuum energies for lowest-energy equilibrium
alignment issues discussed in Section VI A. Thevectors  fings. with Trifonov Il angles(see Section X and K,=K,=1, and

. by th . t that th tend f K,=1.5. The rms deviation between base-pair centers in the continuous and
are now given by the requiremen at they extend from On%iscrete equilibrium configurations is also given.

base-pair center to the next

rms configuration

() p(i+1)_ (i H— _

dy/=r*V—r® j=01,...N-1, No. Name  Egc Ecox % Difference  differencéA)
dV=d. 9 12A09 0.10746 0.10740 0.05 0.59

_ _ 10 09T09 0.11701 0.11714 0.11 0.64
Finally, the d; vectors are recovered by sampling evenly 8 13A09 0.09469 0.09457 0.13 0.58
alongd,(s), but now without the shift in arclength, againin 11 17A11 0.09682 0.09654 0.29 0.63
accord with the alignment issues discussed in Section VIA 1 11A17 0.09860 0.09817 0.43 0.58
7 15A09 0.08305 0.08280 0.30 0.58

i 4 11T15 0.07732 0.07730 0.03 0.61

d’=d,| =|, i=01,...N 2 09A17 007976 0.07947 0.36 0.58

N 3 08A17 0.07414 0.07390 0.32 0.59

0 : 6 08T15 0.07501 0.07487 0.22 0.61

The vectorsd;’ should be approximately of lengthN/ and 5 09T15 007292 007284 011 0.60

we should have approximate orthogonality betwe§hand
d(li). We next projectd(li) onto the plane perpendicular to
dy (to obtain exact orthogonalityand then rescald{’ and
dg) to have length one to complete the reconstruction of the

discrete configuratiofiprojectingd{” will change its length, s difficult. If the initial guess is chosen to be the planar
so we restore its normalization at this pgirfiote that nor-  untwisted solutior(4.7) or the unstressed shape, theNsTR
malizingd§’ will change ther (), but that is immaterial since function fails to converge. Indeed, the convergence of the
solution of the discrete problem only involves relative rota-discrete iteration appears to be directly attributable to the

tion angles. accuracy of the initial guess derived from the continuum
From the discrete frames, the relative rotation matricesolution.
are determined from Ed2.2) In addition, we have tried to solve E@.6) with param-
(d“))T etgr continuatior(us_ing AUTO) sta_rting with the known un-
1 twisted planar solutioi4.7) and with a homotopy parameter
RO=| (d)T{[di*D iV g+ y in the unstressed angles. However, this numerical continu-
(dg>)T ation was not successful, perhaps because the rapid twist of
the unstressed DNA is too different from the untwisted start-
and then angles can be determined using (Bd) ing point. It is possible that if one could find a known solu-

tion with comparable twist, one could compute nearby dis-

crete equilibria by parameter continuation, but our

V= —arcsir( REis)l)/COS 01y, experience has beer_l t_hat parfameter continuation within the
' wedge-angle model is impracticable.

0= —arcsinR(Y ),

7 = — arcsir REil)’z)/cos 61y,

These angles are then used as an initial guess in the solution
of Eqg. (4.6) using the constrained minimization function
CONSTRIN Matlab’s Optimization Toolbox’

We made this comparison for the 11 DNA molecules
studied in Section X with Trifonov Il unstressed anglese
Section ¥ and stiffnesse& ;=K =1 andK,=1.5 (the ab-
solute energy scaling is immaterial to the computations, so
Ky=1 is chosen purely for conveniencé&he lowest-energy
continuum configurations are computed as described in Sec-
tion VII. Then, starting with the initial guess supplied by the
continuum solution, each discrete constrained minimum was
found in approximately 15 to 90 min on a Dec Alpha 3000
(the variation in run times is perhaps an indication of the
sensitivity of the constrained minimization computation to
the initial guess The discrete and continuous energies agree
to within 0.5%; see Table Il. The discrete and continuumFIG. 11. Discrete and continuous equilibrium configurations for the 12A09

configurations for the molecule 12A09 are superimposed ifPNA molecule using Trifonov Il anglessee Section X The sugar-
Figure 11 phosphate helices are. reconstrgcted' from the computed. centerllaaq

’ . . . frames @,,d,,d;) using the idealized B-DNA coordinates: helixl
In our experience, solution of the discrete probleh®)  _,\5 5214, 0.769,, helix>=r—2.521d,~0.76%d,. The discrete

without the initial guess provided by the continuum solutionhelices are shown with spheres and the continuous helices with tubes.
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X. APPLICATION: DNA CYCLIZATION at the same rate as the corresponding cyclization reactin.”

) . Standard statistical mechanical expressions for the equilib-
We modeled 11 DNA molecules with lengths ranging (j,;m constants, andK give®

from 150 to 160 base-pairs, whose experimental cyclization
probabilities span three orders of magnitddidll the mol- AGY—AG)
ecules contain, in sequence, the following segments: J=exp - RT '

(1) a PCR segmerfessentially straight; a vestige of a poly- |,
merase chain reactiof’CR prime),

(2) a CAP-binding sitgbent by~10°; a site where catabo-
lite activator proteinlCAP) can bind,

(3) adaptor Il(essentially straight AGe=AGl-AGi=AH?-TAS}— (AHJ-TAS)

(4) a sequence of 6 A-tractsotal bend~108°), (10.2

(5 adaptor I(essentially straight can be experimentally determined. We focus first on the en-

Although the DNA contains a CAP-binding site, no protein- thalpy contribution. The term\Hg is the enthalpy for the

binding is involved in this article. The effect of CAP binding new chemical bonds at the’ 53’ connection. The term

on these molecules is investigated with experiments an(AHS contains the same enthalpy of thé-8’ connection,

Monte Carlo computations in Kahn and Croth&ts con-  and also the enthalpy change due to the rearranged molecular

tinuum model incorporating protein-binding is a subject ofshape in cyclization. The enthalpy from the new bonds will

future study. cancel in the differencAHexpEAHg—AHg to leave only the
Some molecules have the A-tract adenines on the oppanthalpy change due to the rearranged cyclized shape; it is

site strand from the others; these two types are distinguishegkactly this enthalpy chang&H.,, which should be well-

by labeling the molecules as “A” or “T.” The molecules approximated by the strain energies in the rod model.

are also distinguished by different lengths of adaptor | and  Accordingly, we can compare the experimentally deter-

adaptor Il. Following the notation in Kahn and Croth&s, minedJ factors with strain energies computed in our con-

the principal 5 DNA molecules are labeled by their adaptortinuum rod model. There are two important points to con-

lengths and their A-tract orientation: 11A17, 11715, 15A09,sider in making this comparison. First, the experimentally

09T09, and 17A11; the first number is the length of adaptodetermined] factors, since they involvéree energies, will

| and the second that of adaptor Il. In addition, to study thecontain entropy contributions not computed in the continuum

effects of overall sequence length, shorter versions of sommodel. Second, experimental difficulties imply thatative

of these molecules were made by removing 2 or 3 base-paits factors among a set of molecules are generally more reli-

from the PCR segment to form what we call 09A17, 08A17able than the absolutk factors?®

(from 11A17, 09T15, 08T15(from 11T15, and 13A09, The discrete bending stiffnesses were taken to be

12A09 (from 15A09. Note that these names are somewhat

misleading in that it is not the adaptor segment but rather the _ :EI'

PCR segment that has been shortened, via synthesis using T

PCR primers bearing 2 or 3 nucleotide deletions relative to . o g .
the principal molecules. Due to a mutation, the 17A11Wlth a helix-rise-per-base-pair=3.4x 10°° cm and persis

sample used in the experiment was actually missing a baséqnce lengttP=463x 10"° cm, to match the values used in
mp . P o yn ga associated Monte Carlo studi®sThe Monte Carlo study
pair from one of its A-tracts; this change was included in all

computations. Detailed structures and experimental informa%wk K~1.5,, but we investigated the entire range
tion can be found in Kahn and Crothé&r& 5<K,./Ky~K3/K;<1.5 since various values in this range

Experimental studies using T4 DNA Iigase-mediated,?;shrr]?plj)étsesvéne::el()Iltel;a;lliie;[hzrgiﬁgletzzgoqgnggxloTjte
trapping of apposed DNA entfs?®3%o not directly measure q ploy P y easy P

i . the entire range of these solutions. For those more
the probabilities of cyclization, but rather the rate ConStam%miliar with the notation used in Schlidk the
(k¢ ,kq) for cyclization and dimerizatiofthe bonding of one range 0.5K4/K,<1.5 corresponds to a range c;f “tor-
molecule’s 8 end to another molecule’s’3end to form a sional r'nodljli” 1C .of 0.9-2.8<10 Yerg cm (where
DNA dimer). These in turn can be related to the equilibrium ) : g

L . o C=K_ /Ny, with Ns,= Avogadro’s number
constants K.,Ky) for cyclization and dimerizatioft™ by The LfgstressedAVshape %f each discrete molecule was

Ko Tka=K. /K computed for each of three different sets of equilibrium
cihdT el d: wedge angles, namely TrifondvDe Santis® and a set of

This quantity is defined to be the Jacobsen—Stockmayer fa@dapted Trifonov angles we call Trifonov Il. Trifonov I

ere AG? and AG) are the standard molar free energy
changes in the cyclization and dimerization reactions. Hence,
the quantity

tor J:3* angles were determined in the Monte Carlo stidy better
match recent experimental data. The modifications are: first,
J=K_ /Kyq. the 7 values for different base-pair stacks are replaced with a

single value of 34.45°, to match the helical repeat of 10.45
A useful interpretation is to think of as “the molar DNA  seen in studies of the periodicity of cyclization probability
concentration required to cause bimolecular joining to occuwith varying DNA sequence lengtff;second,7=34.85° is
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FIG. 12. Continuum model strain energies of the 11 DNA molecules inFIG. 13. Continuum model strain energies, using De Santis angles for the
Table Il for various values oK /K (ratio of twist to bend stifinegsusing ~ unstressed shape. Notation and curve labeling are as in Figure 12.
Trifonov angles for the unstressed shape. When two or more strands are

listed on one line at the right edge of the graph, the one with the higher

energy atk; /K, =1.5 is listed first.

their bends ofb) bend against their intrinsic curvature. Fig-
ure 15 plots the bending contribution
used in the A-tracts to match the helical repeat of 10.33 1
found in Crotherset al;? finally, the Trifonov angle® and f =K (ug(s)—04(8))2+ = Ky(uy(s)— U,(8))?|ds
(Aj> are scaled by 0.61 to account for recent cyclization kinetic 0l2 2
studies® indicating that the bending angle in the particularg the continuum energgB.5); the higher bending energies
A-tract sequence used is approximately 18° rather than thgf the A09, T09, and A11 molecules suggest that mechanism
30° predicted by Trifonov angles. (b) dominates in their cyclization. For molecules with two

From these discrete parameters, continuum computationgrge bends, such as CAP-bound S-shaped molecules,
of the lowest-energy equilibria were made for each of thenechanisna) seems more likely.

three sets of unstressed angles. For each molecule, starting another important effect is the additional twisting en-

on a Dec Alpha 3000 to generate equilibrium energies andenterline is closed. Figure 16 plots the twist contribution
configurations for 16 different values &;/K;: 5 min to

determine continuum parameters from the base-pair se-
guence, 5 min to determine an equilibrium solution for an
initial value of K3/K4, and about 15 s for each subsequent

value ofK3/Kj;. Figures 12, 13, and 14 show our computed 16 " L 10

cyclization strain energieSE o4, i =1, . ..,11 for each of o

the 11 DNA strands plotted againist /K. In addition, by o -9

computing an appropriate Hessian, we have verified that 141 . _+__f_———-"""

these equilibria generate local minima of the discrete prob- |- _‘___——;—*"“ e

lem, and thus are likely to be the configurations realized in OEI: S X ;_330511,8

experiments. Interestingly, for some molecules and some — _*___,____--—----—;"'o‘;‘O'*"'&_

values of K5/K;, both continuum solutions on the low- >1 o o ° 0= " ‘

energy branch of the imperfect diagram generate discrete 2 ° « 5

configurations which are local minima; investigation of this :g T TTTTTTTTTTTTTTTTT T ;' . % xmé

phenomenon is ongoing. l—10 I . x % — m.g
We can offer a heuristic explanation for the different e —— S

cyclization probabilities of these molecules and the effect of .

varying K3 /K. According to the bend phasing described in 0.5 1 1.5

Table Ill, the A17 and T15 molecules are approximately A — 4(11T15)K3/_}§17(15A09) +10(09T09)

C-shaped, while A09, T09, and A1l molecules are approxi- « 2(00A17)  — 5(09T15) - - B(13A09)

mately S-shaped. The C-shaped molecules tend to cyclize = 3(08a17)  — 6(08T15)  --9(12a09) o T1(17A1Y)

readily; hpwever, 'in order for the 'S-shap.ed molecules Q. 14. Continuum model strain energies, using Trifonov 11 angles for the
close their centerlines, they must eith@) twist to rephase unstressed shape. Notation and curve labeling are as in Figure 12.
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TABLE lll. The DNA molecules: numbered as in Figures 12—19 and ranked according to their experimental free ¢Refgi28. The torsional phasing

gives the total number of turns of the sugar—phosphate chain, assuming 10.33 bp/turn in the A-tracts and 10.45 bp/turn(&sév28eréhe bend phasing

gives the total number of turns between the center of the CAP site bend to the center of the first A-tract; when this phase is an integer, thé@&® bends

site and A-tractsare in phase, so they form a C-shaped molecule. Also shown are the discrepancies of various computed free energies from the experimental
results; all computations are fét; /K;=K,/K,=1.5. The three continuum computations use parameters derived from different sets of unstressed wedge-
angles, as described in Section X. These continuum computations also include fitting with a pafaheterbest-fit value is given in the last lite include

a constant free-energy-shift due to entropy.

(AGexp_AGmodeD/RT

Torsional Bend Monte Continuum Continuum Continuum
No. Name phasing phasing AGey,/RT Carlo Trifonov Il Trifonov De Santis
9 12A09 14.7 43 21.0 0.4 0.6 -3.0 0.1
10 09T09 14.4 43 21.0 1.0 -05 14 -0.2
8 13A09 14.8 43 20.1 1.0 1.8 0.0 0.2
11 17A11 15.4 45 19.1 0.1 0.7 1.9 -3.0
1 11A17 15.4 51 17.9 0.4 -0.9 0.9 -0.6
7 15A09 15.0 43 17.2 -0.3 0.5 -0.6 -04
4 11T15 15.2 4.9 16.2 0.8 0.3 14 0.6
2 09A17 15.2 5.1 15.7 -0.2 -0.5 04 0.4
3 08A17 15.1 5.1 15.0 -0.38 -05 0.2 0.4
6 08T15 14.9 4.9 14.8 -0.8 -0.8 -1.7 14
5 09T15 15.0 4.9 14.7 -04 -0.6 -0.8 11
AS determined in least-squares fit N/A R2 5.8R 6.1R

1 R tion between twisting and bending, whose balance depends
fo [5 K3(us(s)—Us(s))?|ds on the detailed unstressed shape and stiffnesses, as shown by
the variation of the energies witk;/K;.

Table Ill reports the experimental cyclization free ener-
to the continuum energ.5), which correlates well with the  gies AGgyp;, i=1,...,11 (with experimental error of ap-
torsional phasings from Table Ill. The cycles which containproximately =0.7RT). A few conclusions are immediately
significant twist energy are generally more sensitive to theapparent. First, for all three sets of angles, the ordering of the
value of K3/Ky, as shown by Figure 16. In summary, the AE,,q; Mmatches the ordering of th&G,,,;, taking into
ordering of the 11 cyclization rates can be explained to a firshccount the experimental error in theG,,,; . Even though
approximation by considering bend phasing and torsionathe Trifonov and De Santis angles are quite differésge
phasing; however, in reality, cyclization involves a competi-Table ), their computed energies are qualitatively similar,

13 | 5 . +++'10
-------------------- 9 -
12 S R b 4 + j)
——————————————— + + « * *
5 =
o 7 . |
| ARV S | )
8 —+—o+ ot & 3 'b *o o o [e] o o ooonz11 82 -
: 7]
: 2
m 10} |, :
3 * E3 * * x * . % ox * o X x *****”2,3
o * ,* 1 X X X 'S * — R ;
9 ‘ n
0.5 1 1.5 0.5 ] =1
K3/K1 T
* 1(1MA17) — 4(11T15) - - 7(15A09) + 10 (09709) * 1(11A17)  — 4(11T15) - - 7(15A09) + 10(09T09)
: Zlooat)  — BloaTis) -~ B(13A09) * 2(09A17)  — 5(09T15)  -- B(13A09)
P 8oomn = Gloemie) - Shzwe o TTazAT * 3(08A17)  — B(08Ti5)  -- 9(12a09) 0 11(17A11)

FIG. 15. Bending contribution to the continuum model strain energies, us+IG. 16. Twisting contribution to the continuum model strain energies,
ing Trifonov Il angles for the unstressed shape. Notation and curve labelingising Trifonov Il angles for the unstressed shape. Notation and curve label-
are as in Figure 12. ing are as in Figure 12.
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FI_G' 1r. Differenc_e between e)_(perimental and rod m(_)del_ fre_e energies fof 5 18 pifference between experimental and rod model free energies for
Trifonov angles, with energy shift due to entropy contribution included as apg gapyi angles, with energy shift due to entropy contribution included as

free paramete(the best—fit_AS yaries_ from 7.R atK3/K,=0.5t0 S.R at a free parametgthe best-fitAS varies from 8. atK;/K,;=0.5to 6.R at
K3/K;=1.5). Curve labeling is as in Figure 12. K4/K,=1.5). Curve labeling is as in Figure 12.

perhaps because A-tracts figured importantly in their traininghetween continuum predictions and experiment in Figures
sets. 17, 18, and 19 must instead be due to experimental error,
In addition, the computed energies are uniformly lowerinaccuracies in the wedge-angle model, or the incorrectness
than the experimental energies. Given the accurate ener%f our assumption of a constant free_energy shift due to en-
computations in Section IX, this systematic inaccuracy isyopy.
Unlikely to be an error in the continuum Computations, but is Fina”y, we compare our continuum equi"brium energies
more likely due to the absence of entropic contributions intg Monte Carlo computations on the same DNA molecules.
the elastic model. From E@10.1), the entropic contribution \Monte Carlo simulations, which build DNA configurations
t0 AGeypis TAS{—TAS? We can estimate this contribution ith probabilities weighted by the discrete energies of those
with the following heuristic argument: each linear moleculeconfigurations, can simulate the actual fluctuations of the
has significant entropy, but for the short molecules considpNA molecule, and counting the resulting configurations

ered here, the cyclized configuration has essentially zerghich satisfy the ring-closure constraittb within a toler-
configurational entropy; hence,TASS~TSinear. Further-

more, dimerization leads to a decrease in translational and
rotational entropy. In any event, detailed entropy computa-
tions are outside the scope of this article, so we merely as- -
sume that the entropy contribution to free energy is the same E\

for all 11 molecules(since they are of similar length and 2 18
shape. Accordingly, we assume a uniform shift to compute g

free energies from the continuum strain energies: Cg o 411,97
AGodelj = AEmogerj + TAS, for TAS independent of. We i 4
treatTAS as a free parameter, whose value is determined to %O : ] 023
give the best least-squares (@t each value oK;/K;) be- C<'51 é{ '
tween the 11 computedAGq4; and experimental - '

AGeypj- The results of this best fit are shown in Figures 17,

18, and 19. The entropy shifts used varied fromR512 §_2'

8.6R, depending on the value ¢f;/K; and the angle set, Lo

with the values further described in the figure captions. F 05 1 1.5
Of course, this cannot be taken as a true computation of K3/K1

TAS or as a true quantitative comparison of the rod compu- jgamn —deme oo f0ss 10w

tations to experiment; we merely assert that it is plausible * 3(08a17)  — 6(08T15)  --9(12409) 0 11(17A11)

that the elastic rod computations model the experiment accu-

. FIG. 19. Difference between experimental and rod model free energies for
rately' Moreover, Table Il shows that the continuum compu Trifonov Il angles, with energy shift due to entropy contribution included as

tations ComPUt'e the exact equilibrium wedgg-angle int?rnaél free parametethe best fitAS varies from 6.R atK;/K,;=0.5to0 6.R at
energy to within 0.0RT (0.5% erroj, so the discrepancies K,/K;=5.2). Curve labeling is as in Figure 12.
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ance can be used to determine the ring-closureXl. DISCUSSION
probability 26283234This approach has been successful in re-
producing cyclization free energigicluding the entropic We have presented a procedure for taking the parameters
contribution determined by experimeff.However, it is a of a discrete base-pair model for DNA and producing
computationally intensive procedure, which samples apsmoothed parameters for a continuum rod model. This idea
proximately 18° configurations to get stable cyclization attempts to reconcile the desire for large-scale, numerically
probabilities for some moleculgghose which cyclize with  efficient discretization in computations with the experimental
low, but experimentally accessible, probabilignd requires fact that the sequence of a DNA molecule does have an
about 12 h on a Dec Alpha. For exploring highly strainedeffect on some of its large-scale physical properties. Some
molecules such as supercoils or for scanning through paran®NA properties do not depend significantly on the base-pair
eter spacéespecially for more complicated DNA geometries sequence, and the sequence-dependent techniques described
like those including multiple protein-induced bepdshe  here would not be necessary for those applications, although
Monte Carlo method may become prohibitively time-the continuum rod model can still provide an excellent com-
consuming. putational tool. Similarly, some DNA properties are so inher-
Ring-closure probabilities, including entropic effects, ently local that they could not be captured by a computation
have also been studied with statistical mechanical theories a¥hose discretization length covers several base-pairs, and of
“wormlike chains.” For example, Shimada and course the smoothing algorithm proposed here would be un-
Yamakawa® compute DNA ring-closure probabilities using suitable for those applications. For properties between these
a wormlike chain theory with twisted but straight unstressedwo extremes, such as the DNA bending results in Section X
shape; Hagerman and Ramadéwshow that Monte Carlo or the consequences of protein binding on DNA structtoe
results match the Shimada and Yamakawa computations fdre investigated in a future stugythe continuum rod model
short(less than 500 hpDNA molecules. coupled with the smoothed sequence-dependence outlined in
We compare in Table Ill the differences between com-this paper provide an accurate and efficient means to com-
puted and experimental free energies for all the methods dgpute sequence-dependent DNA deformations.

scribed here: Monte Carlo using Trifonov Il angf®and the Even though the computation of continuum rod param-
continuum rod computations using Trifonov, De Santis, anceters involves significant smoothing and filtering, a surpris-
Trifonov Il angles. All computations are for ingly detailed level of base-pair information is retained in the

K;/K~K,/Ky=1.5, since that is the value used in the averaged model. As shown in Table II, the continuum ener-
Monte Carlo simulations, and parameter continuation ofgies match the discrete energies to within 0.5%. Accord-
Monte Carlo results is not possible. The improvement of thaéngly, even if computation of discrete equilibria is the stated
Trifonov Il angles over the original Trifonov angles is clear, objective, we believe that the introduction of the continuum
and the De Santis results are quite close to experiment witmodel described here, taken with a discretization chosen for
the exception of the outlying 17A11 molecule. efficient numerics, and followed by reconstruction of the
A comparison of the Monte Carlo and the continuumbase-pair configuration, is an overall efficient computational
Trifonov Il results shows that, especially for the best cycliz-approach.
ers, which have the smallest Monte Carlo and experimental The sequences studied in Section X differ very little, and
errors, the deviations from experiment are generally wellyet the rod model is able to separate their cyclization ener-
correlated, of similar magnitude and in the same directiongies in a way that is consistent with experiment. Certainly
This suggests again that these errors are more likely attritthere are limitations to the continuum model. It relies on
utable to shortcomings of the discrete model and its paramaccurate knowledge of the discrete model parameters de-
eters than to inaccuracies in the continuum and Monte Carlscribing how base-pairs stack on each other and their resis-
computations. Our experience has been that the continuutance to bending and twisting. In some settings, the discrete-
and Monte Carlo computations are in good agreement evemodel nearest-neighbor assumption in stacking of base-pairs
for small changes in base-pair sequence. For example, in theay be incorrect; longer range effects may also be important.
course of our research, we computed continuum energies f&hat does seem to be true is that if the discrete model and its
two 158-base-pair moleculé$1A17 with two base-pairs re- parameters are accurate, then the continuum model success-
moved from the PCR segment and 11A17 with two basefully captures many of its long-range behaviors and allows
pairs removed from adaptoy &nd predicted an energy dif- for more rapid computations for those long-range behaviors.
ference of O0.RTx0.1RT. Subsequent Monte Carlo In addition, the generality of the rod model could allow con-
computations found an energy difference in the same diredinuum descriptions of more intricate discrete base-pair mod-
tion of 0.6 RT=0.3RT, in agreement with the continuum els as they are developed.
predictions. These two molecules are very similar—one ex- Note added in proofAfter acceptance of this article, we
pects cyclization rates to depend primarily on the DNAlearned of the study by P. De Santis, M. Fua, M. Savino, C.
length and on the adaptor Il sequence which phases the twnselmi, and G. BocchinfusdJ. Phys. Chem100, 9968
DNA bends, not on the PCR segment or adaptor | at th€1996], which also considers DNA cyclizatiofincluding
DNA ends—and yet the continuum model was able to detecsome of the sequences considered hérbat work uses an
their differences, even with the filtering and smoothing in-extension of the statistical mechanical twisted-wormlike-
volved in the model. chain theory(cf. Section X that includes an approximation
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