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Calculation of the Stability Index in Parameter-Dependent Calculus of Variations
Problems: Buckling of a Twisted Elastic Strut∗

Kathleen A. Hoffman†, Robert S. Manning‡, and Randy C. Paffenroth§

Abstract. We consider the problem of minimizing the energy of an inextensible elastic strut with length 1
subject to an imposed twist angle and force. In a standard calculus of variations approach, one
first locates equilibria by solving the Euler–Lagrange ODE with boundary conditions at arclength
values 0 and 1. Then one classifies each equilibrium by counting conjugate points, with local minima
corresponding to equilibria with no conjugate points. These conjugate points are arclength values
σ ≤ 1 at which a second ODE (the Jacobi equation) has a solution vanishing at 0 and σ.
Finding conjugate points normally involves the numerical solution of a set of initial value problems

for the Jacobi equation. For problems involving a parameter λ, such as the force or twist angle in
the elastic strut, this computation must be repeated for every value of λ of interest.
Here we present an alternative approach that takes advantage of the presence of a parameter λ.

Rather than search for conjugate points σ ≤ 1 at a fixed value of λ, we search for a set of special
parameter values λm (with corresponding Jacobi solution ζm) for which σ = 1 is a conjugate point.
We show that, under appropriate assumptions, the index of an equilibrium at any λ equals the
number of these ζm for which 〈ζm,Sζm〉 < 0, where S is the Jacobi differential operator at λ. This
computation is particularly simple when λ appears linearly in S.
We apply this approach to the elastic strut, in which the force appears linearly in S, and, as a

result, we locate the conjugate points for any twisted unbuckled rod configuration without resorting
to numerical solution of differential equations. In addition, we numerically compute two-dimensional
sheets of buckled equilibria (as the two parameters of force and twist are varied) via a coordinated
family of one-dimensional parameter continuation computations. Conjugate points for these buckled
equilibria are determined by numerical solution of the Jacobi ODE.

Key words. elastic rods, anisotropy, stability index, conjugate points, buckling, parameter continuation, isoperi-
metric constraints

AMS subject classifications. 49K15, 34B08, 74K10, 74G60, 65P30, 65L10

PII. S1111111101396622

1. Introduction. The classification of equilibria is a familiar idea from finite-dimensional
optimization. Given an equilibrium (or critical point) of a function, one computes the eigen-
values of the Hessian matrix and determines the type of the equilibrium by computing the
index, the number of negative eigenvalues. Equilibria with index 0 are local minima, and those
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with index 1 are saddle points with one downward direction, etc. The goal is analogous in
infinite dimensions, when the quantity J to be optimized is itself a function of a function q(s),
say, with 0 ≤ s ≤ 1.1 Now the equilibria q0(s) are found by solving the Euler–Lagrange or-
dinary differential equation (ODE). The role of the Hessian is played by the second-variation
operator, and the notion of index, the number of negative eigenvalues in the spectrum of
this operator, remains, with local minima again characterized as having index 0. In many
applications, s is a spatial variable and J a potential energy,2 and we think of the index as
determining “stability,” with the idea that, when time-dependence and a kinetic energy are
added to this potential energy, the index-0 local minima will likely be dynamically stable. We
emphasize, however, that, in this paper, “stability” is purely a classification of the type of
equilibrium for an optimization problem.

In the calculus of variations, there is a powerful theory that allows a relatively simple
determination of the index (see, e.g., [9]). Given an equilibrium, one consider the associated
Jacobi equation, a linear second-order ODE. One then defines the notion of a conjugate point,
which is a number σ, such that the Jacobi equation has a nonzero solution that vanishes at
s = 0 and s = σ. Jacobi’s strengthened condition says that the equilibrium is a local minimum
if it has no conjugate point in (0, 1]. Morse [20] later generalized this theory to show that,
assuming 1 is not a conjugate point, the number of conjugate points in (0, 1) is the index of the
equilibrium. This Euler–Jacobi–Morse index theory thus achieves a remarkable simplification:
it reduces the problem of counting the number of negative eigenvalues of the second-variation
operator of J in infinite-dimensional space to the problem of solving a second-order ODE and
counting conjugate points. Thus the only numerical approximation arises in the discretization
of ODEs, namely, the Euler–Lagrange and Jacobi equations.

Here we present a further simplification applicable to parameter-dependent problems and
especially problems in which a parameter λ appears linearly in the second variation—for
example, in problems containing a Lagrange multiplier. In this case, the counting of conjugate
points at σ ≤ 1 for a fixed value of λ can be reduced to the problem of analyzing conjugate
points at the fixed value σ = 1 as λ is allowed to vary. Often, the determination of conjugate
points at σ = 1 is easier than the general analysis of conjugate points for σ ≤ 1, so this
reduction can be a significant simplification. Of course, in cases where the relevant differential
equations cannot be solved in closed form, this simplification is impractical, and one must
revert to computing conjugate points numerically.

We further show that this entire theory can be carried through to the case of problems
with isoperimetric constraints, where the only required change is an update to the definition
of a conjugate point. This updated definition of a “constrained conjugate point” is the one
taken, e.g., by Bolza [2] and rephrased in functional analytic language in Manning, Rogers,

1To rigorously define optimization in infinite dimensions, a normed space must be specified for the input
functions q. Following standard practice, we use the C1([0, 1]) norm, in which case the resulting minima are
traditionally referred to as “weak minima” [9].

2We note in passing an interesting exception. When J is a Lagrangian action functional and s represents
time, the equilibria are classical mechanical trajectories, and the index plays a crucial role in the semiclassical
approximation of these trajectories as quantum mechanical limits are approached [13]. The example in this
paper involves a potential energy functional, but the general theory presented could equally well be applied to
the determination of the semiclassical index for classical trajectories dependent on some parameter.
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Figure 1.1. An elastic strut clamped at each end, with a relative twist angle α, and with one end allowed to
slide vertically in response to an imposed force λ. The cross-sections of the rod are elliptical, which we depict
by showing the curve through the centers of the cross-sections as a green tube and tracking the major axes of
the cross-sections with a blue ribbon.

and Maddocks [19].

We apply this method for direct index computation to the example of a thin elastic strut
with an elliptical (anisotropic) or circular (isotropic) cross-section, under the constraints shown
in Figure 1.1. One end of the rod is clamped at the origin, with the major axis of the ellipse
along the x-axis, the minor axis along the y-axis, and the tangent vector to the rod along the
z-axis. The other end is constrained to lie along the z-axis, with its tangent vector also along
the z-axis and its cross-section twisted by an angle α with respect to the x-y plane, but can
slide up and down the z-axis in response to an applied vertical force λ.

Such a rod buckling problem has fed the curiosity of scientists since the time of Euler
and Lagrange [17]. In 1883, Greenhill [11] considered the plane (over all values of α and λ)
of unbuckled configurations for an isotropic strut and derived the condition for the index to
be zero. More recently, Champneys and Thompson [3] and van der Heijden and Thompson
[27] performed bifurcation analyses of an anisotropic elastic rod but did not focus on the
question of stability. Goriely, Nizette, and Tabor [10] considered the dynamic stability of the
unbuckled configurations for both the isotropic and anisotropic cases, and van der Heijden et
al. [26] inferred stability for unbuckled and buckled configurations for the isotropic case from
the shape of solution branches in a particular “distinguished” coordinate system. Neukirch
and Henderson [21] performed an in-depth classification of buckled solutions for the isotropic
problem, including the computation of two-dimensional sheets of equilibria.

Here we present stability results for this problem that both complement the results cited
above and serve as an illustration for the general index theory we develop. Specifically, this
theory allows a semianalytic determination of the index on the plane of unbuckled configura-
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tions for both the isotropic and anisotropic strut. (The determination is semianalytic in that
it requires the numerical solution of an algebraic equation but no differential equations.) In
addition, we compute sheets of buckled solutions using a family of one-dimensional branches
generated by the parameter continuation package AUTO [5, 6]. We determine the index of
configurations on these sheets via a numerical implementation of the conjugate point test
developed in [19] since a closed-form solution of the differential equations is not feasible in
this case.

We begin in section 2 by reviewing conjugate point theory for unconstrained and con-
strained problems. Section 3 presents our direct method for computing the index for un-
constrained problems, which is then extended to problems with isoperimetric constraints in
section 4. In section 5, we summarize the standard Kirchhoff theory of inextensible and un-
shearable elastic struts. The index on the plane of unbuckled equilibria for both the isotropic
and anisotropic strut is determined in section 6, and the buckled configurations and their
stability are presented in section 7.

2. A review of conjugate point theory.

2.1. Unconstrained conjugate points. In this section, we summarize conjugate point
theory for unconstrained calculus of variations problems. This theory is an established part of
the classic unconstrained calculus of variations literature and can be found in many standard
texts, e.g., [7, 9, 14, 24]. However, index theory appears only in more modern treatments
[12, 20].

We consider a functional of the form

J [q] =

∫ 1

0
L(q,q′, s) ds, q(s) ∈ R

p,

subject to q(0) = h0, q(1) = h1.

(2.1)

Equilibria q0(s) are solutions to the standard Euler–Lagrange equations for the functional
J . Classification of these equilibria involves an analysis of the second variation of J at q0,
namely,

δ2J [ζ] =
1

2

∫ 1

0

[
(ζ′)TPζ′ + (ζ′)TCT ζ + ζTCζ′ + ζTQζ

]
ds(2.2)

for P ≡ L0
q′q′ , C ≡ L0

qq′ , and Q ≡ L0
qq, where, here and throughout, superscripting by T de-

notes the transpose, subscripting by q or q′ denotes partial differentiation, and superscripting
by 0 denotes evaluation at q0(s). We assume that Legendre’s strengthened condition holds,

P > 0;(2.3)

i.e., the symmetric matrix P is positive definite. Here ζ is a variation in q that, due to the
boundary conditions on q, must lie in the set of admissible variations:

Hd ≡ {ζ ∈ H2(Rp, (0, 1)) : ζ(0) = ζ(1) = 0
}
.
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Here we have chosen the Sobolev spaceH2 of functions with integrable weak second derivatives
because, after an integration by parts, the second variation will take the form

δ2J [ζ] =
1

2
〈ζ,Sζ〉,

where S is the self-adjoint second-order vector differential operator

Sζ ≡ − d

ds

[
Pζ′ +CT ζ

]
+Cζ′ +Qζ,(2.4)

and 〈·, ·〉 denotes the usual inner product in L2(Rp, (0, 1)):

〈f ,g〉 =
∫ 1

0
[f(s)]Tg(s) ds.

A sufficient condition for q0 to be a local minimum of J is a combination of Legendre’s
strengthened condition (2.3) with Jacobi’s strengthened condition that q0 has no conjugate
point in (0, 1], where a conjugate point is defined to be a value σ for which there is a nontrivial
solution to

Sζ = 0, 0 < s < σ, ζ(0) = ζ(σ) = 0.(2.5)

Morse [20] extended Jacobi’s condition to equate the number of conjugate points with the
index that quantifies the dimension of the set on which δ2J is negative.

In some cases, (2.5) can be solved analytically, but generically a numerical procedure for
computing conjugate points is required. For completeness, we briefly summarize a standard
algorithm for computing unconstrained conjugate points [24, p. 152]. We numerically compute
a basis of solutions {ζ1, . . . , ζp} to the homogeneous second-order initial value problem

Sζ = 0, ζ(0) = 0.(2.6)

A conjugate point occurs when a nontrivial linear combination of {ζ1, . . . , ζp} vanishes, i.e.,
when there is a nontrivial solution to the p× p linear system

[
ζ1 . . . ζp

]


c1
...
cp


 = 0.(2.7)

Therefore, as we build up solutions ζj(σ) to (2.6) as σ grows from 0 to 1, we track the

determinant of the p × p matrix
[
ζ1(σ) . . . ζp(σ)

]
and count as a conjugate point every

time this determinant crosses zero.

2.2. Constrained conjugate points. In this section, we review a definition of a conjugate
point appropriate for calculus of variations problems with isoperimetric constraints:

W [q] =

∫ 1

0
L(q,q′, s) ds, q(s) ∈ R

p,

subject to

∫ 1

0
gi(q) ds = 0, i = 1, . . . , n,

q(0) = h0, q(1) = h1.
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According to the usual multiplier rule, an associated functional

J [q] =

∫ 1

0

(
L+ gTν

)
ds

is constructed, and constrained equilibria (q0(s),ν0) of W are solutions of the standard un-
constrained Euler–Lagrange equations for the functional J , with the multiplier ν0 determined
by the integral constraints. The second variation δ2J and its associated operator S take the
unconstrained forms (2.2) and (2.4) but now with Q = [g0

qq]
Tν0+L0

qq. Admissible variations
ζ must satisfy the linearized constraints

〈ζ,Ti〉 = 0, i = 1, . . . , n,

where

Ti ≡ (gi)
0
q.

We assume that the Ti(s) are linearly independent on (0, σ) for each σ ∈ (0, 1]. So the
admissible set of constrained variations is

Hcons
d ≡ {ζ ∈ Hd : 〈ζ,Ti〉 = 0, i = 1, . . . , n} .

Bolza [2], citing the work of Weierstrass and Kneser, defined the relevant notion of con-
jugate point for an isoperimetric problem, namely, that σ is called a conjugate point if the
following system has a nontrivial solution:

Sζ =

n∑
i=1

c̆iTi, 0 < s < σ, for some constants c̆i,

ζ(0) = ζ(σ) = 0,

∫ σ

0
ζTTi ds = 0, i = 1, . . . , n.

(2.8)

In [19], we introduced an orthogonal projection operatorQ onto the L2-orthogonal complement
of span(T1, . . . ,Tn) to rewrite Bolza’s conjugate point condition (2.8) in the equivalent form

(QSQ)ζ = 0, 0 < s < σ,

ζ(0) = ζ(σ) = 0,

∫ σ

0
ζTTi ds = 0, i = 1, . . . , n.

(2.9)

Further, the arguments in [19], involving a proof of the monotonicity of the eigenvalues of
QSQ as a function of σ, demonstrate the analogue to Jacobi’s strengthened condition: the
lack of an isoperimetric conjugate point implies the existence of a local minimum. In addition,
similar to Morse’s theory in the unconstrained case, the number of isoperimetric conjugate
points equals the maximal dimension of a subspace of Hcons

d on which the second variation is
negative.

There is also a technique for the numerical determination of these conjugate points similar
to the procedure described in section 2.1 for the unconstrained case. We summarize this
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technique here and refer the interested reader to [19] for complete details. In addition to
numerically determining a basis of solutions to (2.6), we also compute solutions ζ̆i to each of
the n nonhomogeneous initial value problems

Sζ = Ti, ζ(0) = 0.

A conjugate point occurs when there exists a nontrivial linear combination of {ζ1, . . . , ζp,

ζ̆1, . . . ζ̆n} that vanishes and also obeys the linearized constraints
∫ σ
0 ζTTids = 0. This con-

dition has a (p + n)-by-(p + n) matrix form analogous to the p-by-p unconstrained matrix
equation (2.7). As in the unconstrained case, the matrix entries are built up by solving initial
value problems as σ grows from 0 to 1, and the conjugate points are found by zero-crossings
of the (p+ n)-by-(p+ n) determinant.

3. Analytic determination of the index for unconstrained parameter-dependent prob-
lems. In this section, we describe an alternative approach to determining the index for equi-
libria of (2.1) when L, and hence the second-variation operator S, depends on a parameter λ.
This approach allows, in some cases, an analytic determination of the index. The key idea is
to relate the index at a specific value of the parameter λ to the set of all parameter values λ
that yield conjugate points at σ = 1, i.e., solutions of

S(λ)ζ = 0, ζ(0) = ζ(1) = 0.(3.1)

We will denote solutions to (3.1) by (λm, ζ
m) and refer to λm as branch points. This name

is appropriate since, in all cases we consider, new branches of equilibria will arise at λm. In
many applications, the analytic determination of (λm, ζ

m) is possible even when the general
conjugate point equation (2.5) cannot be solved in closed form.

We will assume that {ζm} form a basis for Hd and that they are S-orthogonal, i.e., that
〈ζm,Sζn〉 = 0 for allm �= n. These assumptions hold for many physically motivated problems,
including cases in which (3.1) is a standard Sturm–Liouville eigenvalue problem (see, e.g., [23,
p. 273]). This basis of solutions can then be used to diagonalize S and determine the index
directly, as shown by the following lemma.

Lemma 3.1. Assume that {ζm} form an S-orthogonal basis of Hd. Then the index equals
the number of ζm for which 〈ζm,Sζm〉 < 0.

Proof. Let N be the subspace of Hd spanned by those ζm for which 〈ζm,Sζm〉 < 0. Any
χ ∈ Hd that is L2-orthogonal to N can be written as

χ =
∑

ζm /∈N
cmζm,

where the notation
∑

ζm /∈N denotes a sum over all m for which ζm /∈ N . Then, by S-
orthogonality,

〈χ,Sχ〉 =
∑

ζm /∈N
(cm)

2〈ζm,Sζm〉.

By definition, 〈ζm,Sζm〉 ≥ 0 for all terms in the sum, so 〈χ,Sχ〉 ≥ 0.
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Table 3.1
Index for the planar Euler buckling problem.

Range of λ Functions ζm for which 〈ζm,S(λ)ζm〉 < 0 Index

0 < λ < π2 none 0

π2 < λ < 4π2 ζ1 1

4π2 < λ < 9π2 ζ1, ζ2 2

9π2 < λ < 16π2 ζ1, ζ2, ζ3 3

Thus N is a maximal subspace in Hd on which the second variation is negative. The
index is defined to be the dimension of N , which, by definition of N , is the number of basis
functions ζm for which 〈ζm,Sζm〉 < 0.

The above diagonalization is particularly useful when the parameter λ appears linearly in
S,

Sζ = S1ζ + λS2ζ,(3.2)

because it is then routine to determine those basis functions ζm for which 〈ζm,Sζm〉 < 0. In
fact, the quantity 〈ζm,Sζm〉 is simply related to the λ-independent quantity 〈ζm,S2ζ

m〉 by
the following lemma.

Lemma 3.2. Suppose S takes the form (3.2). Then, for any solution (λm, ζ
m) of (3.1),

〈ζm,Sζm〉 = (λ− λm)〈ζm,S2ζ
m〉.

Proof. The key idea is to exploit the fact that (S1 + λmS2)ζ
m = 0:

〈ζm,Sζm〉 = 〈ζm, (S1 + λS2)ζ
m〉

= 〈ζm, (S1 + λmS2 − λmS2 + λS2)ζ
m〉 = (λ− λm)〈ζm,S2ζ

m〉.
Lemmas 3.1 and 3.2 lead immediately to the following corollary, the central result of this

article.
Corollary 3.3. If the solutions of (3.1) form an S-orthogonal basis for Hd and if S has the

form (3.2), then the index of an equilibrium at parameter value λ equals the number of branch
points λm such that λ > λm and 〈ζm,S2ζ

m〉 < 0, plus the number of branch points λm such
that λ < λm and 〈ζm,S2ζ

m〉 > 0.
Example (planar buckling of a strut). We parametrize the strut by arclength s and choose

a length scale so that 0 ≤ s ≤ 1. We let θ(s) denote the angle that the strut makes with
vertical at position s. We impose the boundary conditions that the strut be vertical at s = 0
and s = 1 and impose a vertical force λ. We then have the calculus of variations problem to
minimize the total energy∫ 1

0

[
1

2
K(θ′(s))2 + λ cos(θ(s))

]
ds, θ(0) = θ(1) = 0,
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where K > 0 is a stiffness parameter.

Consider the unbuckled equilibrium θ(s) = 0. The second-variation operator is Sζ =
−Kζ ′′ − λζ, which is of the form (3.2), with S2 = −1. The nontrivial solutions to (3.1) are
ζm(s) = A sin(mπs), m = 1, 2, 3, . . . , with λm = m2π2. These solutions are an S-orthogonal
basis for Hd since S is a Sturm–Liouville operator. We observe that 〈ζm,S2ζ

m〉 < 0 for all m
and then use Lemma 3.2 to conclude that the sign of 〈ζm,S(λ)ζm〉 is the same as the sign of
m2π2 − λ. Hence we conclude that the index for arbitrary λ is as given in Table 3.1.

4. Analytic determination of the index for isoperimetrically constrained parameter-
dependent problems. Next we combine the ideas of the previous two sections to produce a
method for directly computing the index in a calculus of variations problem with isoperimetric
constraints, when the second-variation operator S depends on a parameter λ. As in section
3, we assume that solutions ζm of

S(λ)ζ =

n∑
i=1

c̆iTi, 0 < s < 1, for some constants c̆i,

ζ(0) = ζ(1) = 0,

∫ 1

0
ζTTi ds = 0, i = 1, . . . , n,

(4.1)

form an S-orthogonal basis for the relevant function space Hcons
d . Although (4.1) reflects

Bolza’s definition of conjugate point at σ = 1, we will exploit the equivalence of (2.8) and
(2.9) to rewrite the differential equation S(λ)ζ =

∑n
i=1 c̆iTi as (QS(λ)Q)ζ = 0. As before,

the basis {ζm} will be used to diagonalize the projected operator QSQ on Hcons
d . In fact,

Lemma 3.1 holds for the constrained case, provided Hd is replaced with the space Hcons
d ,

noting that, since Q is self-adjoint, 〈ζ, (QSQ)ζ〉 = 〈ζ,Sζ〉 for ζ ∈ Hcons
d .

If, in addition, S takes the form (3.2), then Lemma 3.2 can be extended to problems with
isoperimetric constraints as follows.

Lemma 4.1. Suppose S takes the form (3.2). Then, for any solution ζm of (4.1),

〈ζm, (QSQ)ζm〉 = (λ− λm)〈ζm,S2ζ
m〉.

Proof. As in Lemma 3.2, the key idea is to exploit the fact that (Q(S1 +λmS2)Q)ζm = 0,
combined with the fact that Qζm = ζm for ζm ∈ Hcons

d :

〈ζm, (QSQ)ζm〉 = 〈ζm, (Q(S1 + λS2)Q)ζm〉
= 〈ζm, (Q(S1 + λmS2 − λmS2 + λS2)Q)ζm〉
= 〈Qζm, (−λmS2 + λS2)Qζm〉
= (λ− λm)〈ζm,S2ζ

m〉.

Thus the strategy for analytically determining the index in problems with isoperimetric
constraints is the same as for unconstrained problems. This strategy will be illustrated in
section 6 for the example of the buckling of an elastic strut under imposed force and twist. In
preparation for this example, we next summarize the basic elastic strut equations.
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5. The elastic strut.

5.1. Equilibrium equations. In the Kirchhoff theory of inextensible and unshearable elas-
tic struts [1, 4, 16, 17], the configuration of a strut is described by a centerline r(s) (written as
a function of arclength s) and a set of directors {d1(s),d2(s),d3(s)} that form an orthonormal
frame giving the orientation of the cross-section of the strut. For convenience, we choose a
length scale so that 0 ≤ s ≤ 1. Let the superscript ′ denote a derivative with respect to
s. The assumptions of inextensibility and unshearability of the strut are incorporated in the
requirement that d3(s), the director orthogonal to the strut cross-section, equals r′(s), the
tangent vector to the centerline.

Orthonormality of the directors implies the existence of a (Darboux) vector u(s) defined
by the kinematic relations

d′
i(s) = u(s)× di(s), i = 1, 2, 3.

The components of u in the strut frame are denoted by ui(s) = u(s) ·di(s) and are called the
strains.

It will be convenient to describe the directors via Euler parameters or quaternions q ∈
R

4. Quaternions provide an alternate formulation to Euler angles for parametrizing rotation
matrices in SO(3) (see, e.g., [25, p. 462]). The directors di are the columns of a rotation
matrix and can be expressed by rational functions of the quaternions,

d1 =
1

|q|2


q2

1 − q2
2 − q2

3 + q2
4

2q1q2 + 2q3q4
2q1q3 − 2q2q4


 , d2 =

1

|q|2


 2q1q2 − 2q3q4
−q2

1 + q2
2 − q2

3 + q2
4

2q2q3 + 2q1q4


 ,

d3 =
1

|q|2


 2q1q3 + 2q2q4

2q2q3 − 2q1q4
−q2

1 − q2
2 + q2

3 + q2
4


 ,

and therefore the strains can be expressed as

u1 =
2

|q|2
(
q′1q4 + q′2q3 − q′3q2 − q′4q1

)
, u2 =

2

|q|2
(−q′1q3 + q′2q4 + q′3q1 − q′4q2

)
,

u3 =
2

|q|2
(
q′1q2 − q′2q1 + q′3q4 − q′4q3

)
.

For convenience, we define d3i(s) to be the ith component of the vector d3. We impose
the following constraints on the elastic strut:

∫ 1

0
d31(q(s)) ds =

∫ 1

0
d32(q(s))ds = 0, q(0) = (0, 0, 0, 1), q(1) = (0, 0, sin(α/2), cos(α/2)).

(5.1)

The boundary condition on q(0) forces the s = 0 end of the strut to be tangent to the z-
axis. The pair of integral constraints imply, due to the inextensibility-unshearability condition
r′(s) = d3(s), that x(0) = x(1) and y(0) = y(1), i.e., that the s = 1 end of the strut lies directly
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above the s = 0 end. Finally, the boundary condition on q(1) implies that the s = 1 end of
the strut is tangent to the z-axis and is twisted by an angle α with respect to the s = 0 end.
Figure 1.1 depicts a solution that satisfies (5.1).

The elastic energy of the strut is expressed in terms of the strains, and we assume here a
commonly used quadratic energy

E[q] ≡
∫ 1

0

[
3∑

i=1

1

2
Ki

[
ui(q(s),q

′(s))
]2

+ λd33

]
ds,

where Ki are the bending (i = 1, 2) and twisting (i = 3) stiffnesses of the strut, and λ is a
force pushing downward on the strut. Unbuckled twisted equilibria are described by

q0(s) =




0
0

sin(αs2 )
cos(αs2 )


 ,

which correspond to directors

d1 =


cos(αs)sin(αs)

0


 , d2 =


− sin(αs)

cos(αs)
0


 , d3 =


00
1


 .

These are readily verified to be solutions to the Euler–Lagrange equations of the functional
E. The goal of section 6 is to use the theory of section 4 to assign to these configurations a
stability index.

5.2. The second variation. In this section, we show a routine but technical computation
of the second variation of E, finding in the end that it takes the form S = S1+λS2 required for
our results. The computation is somewhat involved due to our choice to parametrize SO(3)
by four-dimensional quaternions.

As outlined in section 2.2, for each equilibrium q0, we define an allowed variation to be
any δq so that δq(0) = δq(1) = 0 and 〈δq, (d3i)

0
q〉 = 0 for i = 1, 2. The second variation of E

is

δ2E[δq] =

∫ 1

0

[
(δq′)TL0

q′q′δq′ + (δq′)TL0
q′qδq+ (δq)TL0

qq′δq′ + (δq)TL0
qqδq

]
ds,(5.2)

where L is the integrand of E with the appropriate Lagrange multiplier terms added to it.
We note first a property of δ2E peculiar to the example at hand. The integrand L is

invariant to a scaling of q, i.e.,

L(cq, cq′) = L(q,q′)

for any c ∈ R. This degeneracy arises from our use of four-dimensional quaternions to repre-
sent the three-dimensional space SO(3) of directors. If we write δq(s) as β(s)q0(s) + w(s),
where, at each s, w(s) is perpendicular to q0(s), then

E[q0 + εδq] = E[(1 + εβ)q0 + εw] = E

[
q0 +

ε

1 + εβ
w

]
.
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Therefore, E[q0 + εδq] < E[q0] for ε sufficiently small if and only if E[q0 + εw] < E[q0] for
ε sufficiently small. Thus it is sufficient to consider only those allowed variations δq that are
orthogonal to q0 at each s. For example, if we define a projection matrix Π(s) ∈ R

4×3 whose
columns span the orthogonal complement of q0(s), then an arbitrary δq(s) can be written
as Π(s)ζ(s) + β(s)q0(s) for some ζ(s) ∈ R

3 and β(s) ∈ R, and the second variation we will
need to consider is δ2E[Πζ]. Thus we seek the maximal dimension of a subspace of functions
ζ(s) ∈ R

3 obeying δ2E[Πζ] < 0, ζ(0) = ζ(1) = 0, and 〈Πζ, (d3i)
0
q〉 = 0 for i = 1, 2. For

convenience, we observe that the constraints 〈Πζ, (d3i)
0
q〉 = 0 may be rewritten as 〈ζ,Ti〉 = 0

if we define Ti ≡ ΠT (d3i)
0
q. The matrix Π will be defined differently for the anisotropic and

the isotropic cases in sections 6.1 and 6.2, respectively.
Inserting δq = Πζ into (5.2) and integrating by parts terms starting with (ζ′)T , we find

δ2J [Πζ] = 〈ζ,Sζ〉,
where S is the operator

Sζ = −P̄ζ′′ + C̄ζ′ + Q̄ζ

with coefficient matrices

P̄ = ΠTL0
q′q′Π,

C̄ = (Π′)TL0
q′q′Π+ΠTL0

qq′Π − (ΠTL0
q′q′Π′ +ΠTL0

q′qΠ
)− (ΠTL0

q′q′Π
)′
,

Q̄ = (Π′)TL0
q′q′Π′ +ΠTL0

qqΠ+ΠTL0
qq′Π′ + (Π′)TL0

q′qΠ − (ΠTL0
q′q′Π′ +ΠTL0

q′qΠ
)′
.

Our choices of Π will cause the last term in each of C̄ and Q̄ to vanish and will yield simple
s-independent expressions for P̄, C̄, and Q̄. The resulting expression for S will take the form
required by Lemma 3.2:

S = S1 + λS2.

Explicit forms for S1 and S2 depend on the choice of Π and so will be shown individually in
sections 6.1 and 6.2.

6. Stability of unbuckled configurations.

6.1. The anisotropic strut. For the anisotropic strut, we choose

Π(s) ≡



cos(αs2 ) − sin(αs2 ) 0
sin(αs2 ) cos(αs2 ) 0

0 0 cos(αs2 )
0 0 − sin(αs2 )


 ,

which gives a second-variation operator S = S1 + λS2 with

S1ζ ≡

−4K1 0 0

0 −4K2 0
0 0 −4K3


 ζ′′+


 0 4α(K1 +K2 −K3) 0
−4α(K1 +K2 −K3) 0 0

0 0 0


 ζ′

+


4α2(K2 −K3) 0 0

0 4α2(K1 −K3) 0
0 0 0


 ζ(6.1)
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and

S2ζ ≡

−4 0 0
0 −4 0
0 0 0


 ζ.(6.2)

For this choice of Π, the projected constraints take the explicit form

T1(s) =


2 sin(αs)2 cos(αs)

0


 , T2(s) =


−2 cos(αs)2 sin(αs)

0


 .

6.1.1. Verification of hypotheses from section 4. Before applying the results of section
4, we remove the third component of ζ, which plays a trivial role. Any variation ζ can be
written as ζ = ζ̄ + ζ∗, where ζ̄ contains zeros in the first two slots, and ζ∗ contains a zero in
the third slot. Using the explicit form for S, and integrating by parts,

〈ζ̄,Sζ̄〉 = 4K3〈ζ̄′, ζ̄′〉 ≥ 0.(6.3)

By (6.1) and (6.2), Sζ̄ contains zeros in the first two slots, and Sζ∗ contains a zero in the
third slot, and, therefore,

〈ζ,Sζ〉 = 〈ζ̄ + ζ∗,S(ζ̄ + ζ∗)〉 = 〈ζ̄,Sζ̄〉+ 〈ζ∗,Sζ∗〉 ≥ 〈ζ∗,Sζ∗〉.(6.4)

So, given any basis ζ1, . . . , ζn for a maximal subspace on which 〈ζ,Sζ〉 < 0, the vectors
ζ∗1, . . . , ζ

∗
n must be linearly independent as functions of s since otherwise some linear combi-

nation of ζ1, . . . , ζn would have zeros in the first two slots and hence a nonnegative second
variation by (6.3). Then, by (6.4), the span of ζ∗1, . . . , ζ

∗
n is also an n-dimensional (hence

maximal) subspace on which 〈ζ,Sζ〉 < 0. Thus we may restrict our attention to variations ζ
with a zero in the third slot.

Thus we define

ζ∗ =
[
ζ1
ζ2

]
, T∗

1 =

[
2 sin(αs)
2 cos(αs)

]
, T∗

2 =

[−2 cos(αs)
2 sin(αs)

]
,

and

Hcons,∗
d = {ζ∗ ∈ H2(R2, (0, 1)) : ζ∗(0) = ζ∗(1) = 0, 〈ζ∗,T∗

1〉 = 〈ζ∗,T∗
2〉 = 0}.

Plugging ζ∗ into (4.1), we find

(S3 + λS4)ζ
∗ = c̆1T

∗
1 + c̆2T

∗
2, ζ∗ ∈ Hcons,∗

d ,(6.5)

where

S3ζ
∗ ≡

[−4K1 0
0 −4K2

]
(ζ∗)′′ +

[
0 4α(K1 +K2 −K3)

−4α(K1 +K2 −K3) 0

]
(ζ∗)′

+

[
4α2(K2 −K3) 0

0 4α2(K1 −K3)

]
ζ∗,

S4ζ
∗ ≡

[−4 0
0 −4

]
ζ∗.
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If we let Q denote the projection onto the space of functions L2-orthogonal to both T∗
1

and T∗
2, then (6.5) may be rewritten as (QS3Q)ζ∗ = 4λζ∗ for ζ∗ ∈ Hcons,∗

d . We thus have an
eigenvalue problem for the operator QS3Q on the space Hcons,∗

d . Relying on the fact that the
spectrum of S in Hd consists purely of isolated eigenvalues, each with finite multiplicity, one
can show that S3 has the same type of spectrum (see the argument on p. 3067 of [19]). It
then follows from the spectral theorem for self-adjoint operators [8, p. 233] that the solutions
of this equation form an orthogonal basis for Hcons,∗

d . Using the eigenvalue equation, we can
see that this basis is also (S3 + λS4)-orthogonal, as we need to apply Lemma 3.1.

6.1.2. Determination of the index. We observe that, for any continuous ζ∗ = (ζ1, ζ2)
with ζ1 and ζ2 not both identically zero,

〈ζ∗,S4ζ
∗〉 = −4

∫ 1

0
(ζ1(s)

2 + ζ2(s)
2)ds < 0.

Therefore, by Lemma 4.1, the index of the unbuckled equilibrium at (α, λ) is equal to the
number of branch points λn below λ at that particular angle α. Thus, once we have determined
the branch points, we will have determined the index at any (α, λ).

The differential equation appearing in (6.5) can be written out explicitly (after dividing
through by −4K1) as

ζ ′′1 −Aζ ′2 +Bζ1 = −sin(αs)c̆1
2K1

+
cos(αs)c̆2

2K1
,

ρζ ′′2 +Aζ ′1 + Cζ2 = −cos(αs)c̆1
2K1

− sin(αs)c̆2
2K1

,

where γ = K3/K1, ρ = K2/K1, A = α(1+ρ−γ), B = α2(γ−ρ)+ λ
K1

, and C = α2(γ−1)+ λ
K1

.
The general solution can be found in closed form, and, applying the four boundary conditions
ζ1,2(0) = ζ1,2(1) = 0 and two linearized constraints, we see that branch points occur when

det


 M1(0) M2(0) M3(0)

M1(1) M2(1) M3(1)∫ 1
0 T(s)TM1(s)ds

∫ 1
0 T(s)TM2(s)ds

∫ 1
0 T(s)TM3(s)ds


 = 0,(6.6)

where T(s) ≡ [T∗
1(s) T∗

2(s)
]
,

M1,2(s) =

[
σ1,2 cos(

√
ω1,2s) −σ1,2 sin(

√
ω1,2s)

sin(
√
ω1,2s) cos(

√
ω1,2s)

]
, M3(s) = − 1

2λ

[
sin(αs) − cos(αs)
cos(αs) sin(αs)

]

for ω1, ω2, the (possibly complex) quantities

ω1,2 =
A2 +Bρ+ C ±√(A2 +Bρ+ C)2 − 4BCρ

2ρ
,

and

σ1,2 = − A
√
ω1,2

ω1,2 −B
.



BUCKLING OF A TWISTED ELASTIC STRUT 129

(We note that, for a few isolated parameter values, the characteristic equation of (6.5) has
repeated roots, so the branch point equation does not take the above form.)

Further simplification of the determinant of this 6-by-6 matrix is difficult, so we instead
determine its zeros numerically in the results in section 6.3 (taking care to handle separately
the special cases where the characteristic equation has repeated roots). However, in the case
whenK1 = K2, this numerical search for zeros is difficult to implement since, due to symmetry,
the above determinant does not cross zero transversely but rather intersects it tangentially.
Thus we present in the next section a separate derivation of the index for an isotropic strut
K1 = K2.

6.2. The isotropic strut. WhenK1 = K2, we choose a slightly different projection matrix:

Π(s) ≡




cos(αs2 ) sin(αs2 ) 0
− sin(αs2 ) cos(αs2 ) 0

0 0 cos(αs2 )
0 0 − sin(αs2 )


 .

Then the second-variation operator is S = S1 + λS2, where

S1ζ ≡

−4K1 0 0

0 −4K1 0
0 0 −4K3


 ζ′′ +


 0 −4αK3 0
4αK3 0 0
0 0 0


 ζ′

and

S2ζ ≡

−4 0 0
0 −4 0
0 0 0


 ζ.

The projected constraints take the explicit form

T1(s) =


02
0


 , T2(s) =


−20
0


 .

We may follow the same procedure as in section 6.1.1 to show that the set of solutions to
(6.5) forms a basis for Hcons,∗

d , with the operator S3 now taking the form

S3ζ
∗ ≡

[−4K1 0
0 −4K1

]
(ζ∗)′′ +

[
0 −4αK3

4αK3 0

]
(ζ∗)′.

For any continuous ζ∗ = (ζ1, ζ2) with ζ1 and ζ2 not both identically zero,

〈ζ∗,S4ζ
∗〉 = −4

∫ 1

0
(ζ1(s)

2 + ζ2(s)
2)ds < 0,

and thus, by the theory of section 4, the index of the unbuckled equilibrium at (α, λ) is equal
to the number of branch points λn below λ at that particular angle α.
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The differential equation appearing in (6.5) can be written out explicitly (after dividing
through by −4K1) as

ζ ′′1 +Aζ ′2 +Bζ1 =
c̆2
2K1

,

ζ ′′2 −Aζ ′1 +Bζ2 = − c̆1
2K1

,

where γ = K3/K1, A = γα, and B = λ
K1

. The general solution can again be found in closed
form, and, applying the boundary conditions and constraints, we see that (apart from the
special cases A = 0, B = 0, and A2 + 4B = 0) branch points occur when there is a nontrivial
solution (C1, C2, C3, C4, c̆1, c̆2) to



1 0 1 0 0 1
2K1B

0 −1 0 −1 − 1
2K1B

0

cosω1 sinω1 cosω2 sinω2 0 1
2K1B

sinω1 − cosω1 sinω2 − cosω2 − 1
2K1B

0
2(1−cosω1)

ω1
−2 sinω1

ω1

2(1−cosω2)
ω2

−2 sinω2
ω2

− 1
K1B

0

−2 sinω1
ω1

−2(1−cosω1)
ω1

−2 sinω2
ω2

−2(1−cosω2)
ω2

0 − 1
K1B







C1

C2

C3

C4

c̆1
c̆2



=




0
0
0
0
0
0



,

where ω1,2 are the (possibly complex) quantities A±√
A2+4B
2 .

Denote the upper-left 4-by-4 block of this 6-by-6 matrix as M11, the upper-right 4-by-2
block as M12, the lower-left 2-by-4 block as M21, and the lower-right 2-by-2 block as M22.
Then detM11 = 2(1− cos(ω1 − ω2)). As long as ω1 − ω2 �= 2nπ, n = 1, 2, 3, . . . , we then find
that 


C1

C2

C3

C4


 = −M−1

11 M12

[
c̆1
c̆2

]
.(6.7)

Thus

−M21M
−1
11 M12

[
c̆1
c̆2

]
+M22

[
c̆1
c̆2

]
=

[
0
0

]
.

Simplifying the above equation, we find

1

K1Bω1ω2 sin
(
ω1−ω2

2

) (2(ω1 − ω2) sin
ω1

2
sin

ω2

2
− ω1ω2 sin

(
ω1 − ω2

2

))[
1 0
0 1

] [
c̆1
c̆2

]
=

[
0
0

]
.

(6.8)

Thus, we have only the trivial solution c̆1 = c̆2 = C1 = C2 = C3 = C4 = 0 unless

2(ω1 − ω2) sin
ω1

2
sin

ω2

2
− ω1ω2 sin

(
ω1 − ω2

2

)
= 0,
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or, in terms of A and B:

2
√
A2 + 4B sin

A+
√
A2 + 4B

4
sin

A−√
A2 + 4B

4
+B sin

(√
A2 + 4B

2

)
= 0.(6.9)

If this condition does hold, then any (c̆1, c̆2) will satisfy (6.8), with (C1, C2, C3, C4) then
determined by (6.7). Thus we have a branch point when (6.9) holds, and the corresponding
conjugate point has multiplicity two.

A check of the special cases ω1−ω2 = 2nπ, n = 1, 2, 3, . . . , reveals that the conjugate point
condition again takes the form (6.9), again with each conjugate point having multiplicity two.

In the special cases A = 0, B = 0, and A2 + 4B = 0, the general solution used above is
not valid, but we may directly analyze these cases to find the following:

• The case B = 0, A �= 0 yields the branch point condition

A

2
cos

(
A

2

)
= sin

(
A

2

)
,(6.10)

which matches the dominant term in a Taylor series expansion of (6.9) in the limit
that B → 0. Again, the conjugate points in this case have multiplicity 2.

• The case A = 0, B �= 0 yields the branch condition

√
B sin(

√
B)− 4 sin2

(√
B

2

)
= 0,

which matches (6.9) when A = 0. Again, the conjugate points in this case have
multiplicity 2.

• The case A2 + 4B = 0 can exhibit no branch points.

In summary, branch points are the solutions to (6.9) when B �= 0 and A2+4B �= 0. When
A2 +4B = 0, there are no branch points, while, when B = 0, they are the solutions to (6.10).

6.3. Results. In Figure 6.1, we show the index of the unbuckled configuration (color-
coded by the scheme given in Figure 6.2) for various values of the twist angle α, loading force
λ, bending stiffness ratio ρ, and twisting-to-bending stiffness ratio γ. In each frame of the
figure, the black lines indicate the locations of the branch points as a function of α and λ/K1

for ρ and γ held fixed. The top row of frames is for the isotropic problem ρ = 1, so the lines
were determined by (6.9), while, for the remaining frames, they were determined using (6.6).
The coloring of the diagrams is a computation of the index via the numerical conjugate point
test described in section 2 and verifies the result proven in this section, namely, that the index
at a point (α, λ/K1) is equal to the number of lines that lie below it. (In the isotropic case
ρ = 1, each line is counted with multiplicity two, as shown in section 6.2.)

The stability results in the isotropic case ρ = 1 match the standard intuition about
buckling. For zero twist, the unbuckled configuration is stable up to a maximal loading force
and becomes more and more unstable thereafter. As twist (either negative or positive) is
added, the same behavior is observed, except that the threshold for instability is lowered
since the twist destabilizes the unbuckled configuration.
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Figure 6.1. The index on the plane of unbuckled equilibria for various values of ρ, the ratio of bending
stiffnesses, and of γ, the ratio of twisting to bending stiffness. In each graph, the index of the unbuckled
equilibrium with twist angle α and endloading λ is indicated by color, following the scheme in Figure 6.2. Black
curves indicate the set of branch points as determined by the analysis in sections 6.1 and 6.2.
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0 1 2 3 4 5 6 7 8 9 10 12
Figure 6.2. Color scheme used to represent the index (index 11 is omitted since it does not appear in any

of our figures).

Comparing the ρ = 1 row to the ρ = 3/2 row, we can see the splitting generated by the
anisotropy, as each curve where the index jumps by two when ρ = 1 splits into a pair of
interlaced curves, where the index jumps by one when ρ = 3/2. As ρ grows, we also note a
prominent trend whereby a twist angle α can cause a stabilization of the first buckling mode,
as seen by the emergence of two protuberances symmetrically about α = 0, e.g., at ρ = 3/2
for γ = 1/2, at ρ = 2 for γ = 1, or at ρ = 3 for γ = 2. Physically, this corresponds to the fact
that an imposed twist effectively transfers some of the enhanced bending stiffness K2 to the
direction governed by K1 in the untwisted configuration. For α sufficiently large, this effect
is eventually countered by the fact that the act of twisting itself imposes a certain degree of
instability so that the green-yellow boundary curve eventually begins to decrease for values of
α further from the line α = 0. As ρ increases further, the protuberances become larger. The
bands with higher index mimic the shape of the green (stable) region.

As γ decreases, we can see that the dominant trend is simply to stretch the diagram
laterally away from α = 0. In the isotropic case, this stretching transformation is obeyed
exactly. (We can see in the theoretical derivation that the index depends on α only through
the term αγ.) In the anisotropic case, a change in γ causes some slight qualitative changes in
the index diagram in addition to this lateral stretch.

We note that we have restricted ρ to be greater than 1 in Figure 6.1 since any ρ < 1
diagram may be deduced from an appropriate ρ > 1 diagram. Specifically, given ρ < 1 and
any values for γ and K1, we have a strut with weaker bending stiffness equal to K2, stronger
bending stiffness equal to 1/ρ times the weaker bending stiffness (K1 = (1/ρ)K2), and twisting
stiffness equal to γ/ρ times the weaker bending stiffness (K3 = (γ/ρ)K2 = γK1). Thus, if we
consider the diagram with ρ∗ = 1/ρ > 1 and γ∗ = γ/ρ and relabel the y-axis as λ/K2 rather
than λ/K1, we will have the correct index diagram for (K1,K2,K3). (If one wants a diagram
with λ/K1 to match the other diagrams, one would simply scale vertically by K1/K2 = 1/ρ.)

7. Stability of buckled configurations.

7.1. “Slices” of the sheets of buckled equilibria. In the previous section, for fixed values
of ρ and γ, the index of each unbuckled configuration in the α−λ plane was determined. The
curves on this plane where the index changes indicate where sheets of buckled equilibria
intersect this plane. In this section, we discuss these sheets of buckled equilibria. They are
fairly complicated due to folding and branching, so we compute only those portions of the
sheets corresponding to some of the simplest buckled configurations.

To build up to displaying the sheets of buckled equilibria, we first consider “slices” in which
the angle α is fixed, while the force λ is allowed to vary. For example, we consider (ρ, γ) = (1, 1)
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Figure 7.1. A buckling problem at various values of the twist angle α. For bending stiffness ratios ρ = 1
(left) and ρ = 3/2 (right) and twisting-to-bending stiffness ratio γ = 1, we show the plane of unbuckled equilibria
colored by stability from Figure 6.1. Now we fix α at several values (π/2, π, 3π/2, 2π, 3π, and 4π) and vary
the force λ. Branches of buckled configurations will bifurcate at each point where an arrow meets a change in
color.

and (3
2 , 1). In each case, we fix several values of α, namely, α = π

2 , π,
3π
2 , 2π, 3π, 4π, and then

we vary the force λ, as shown in Figure 7.1.
For each slice, we compute one-dimensional branches of buckled equilibria using AUTO

[5, 6], which uses numerical parameter continuation to compute solutions to boundary value
problems (BVPs) such as we have here with the Euler–Lagrange equations in q(s) subject to
the constraints in (5.1). We present here only the briefest of introductions to continuation
methods and refer the reader to [5, 6] and references therein for a full description.

As the name suggests, numerical parameter continuation is the computation of a family
of solutions to a BVP as a parameter (in this case, λ) is varied. After discretization in s, the
BVP becomes a finite-dimensional equation of the form

F(X) = 0, F : R
n+1 → R

n.(7.1)

This system has one more variable than it has equations; the extra variable is the contin-
uation parameter λ. Therefore, given a solution X0, there generally exists a locally unique
one-dimensional family of points, called a solution branch, that passes through X0. AUTO
computes a numerical approximation to this solution branch using a well-known algorithm
called the pseudoarclength continuation method [15]. As implemented in AUTO, branch points
where new solution branches intersect the current branch can be detected and followed, and
thus we may begin with a known solution X0 on the plane of unbuckled equilibria, follow so-
lutions numerically on this plane, and then detect and follow the bifurcating branches which
emerge at the color changes in Figure 7.1.
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Figure 7.2. Force-length diagrams for several values of the twist angle α and the bending stiffness ratio ρ:
ρ = 1 in the left column, and ρ = 3/2 in the right column; α increases from π/2 to 4π vertically; γ = 1,K1 = 0.1
throughout. In each graph, the length z(1) is plotted against the force λ. Branches are colored by stability index,
using the color scheme from Figure 6.2. Horizontal branches represent unbuckled configurations. For ρ = 1, we
show the branch of buckled configurations arising from the first branch point, which splits into the two branches
shown in the ρ = 3/2 diagrams. Some secondary bifurcating branches are shown as dashed lines. Circles and
squares indicate points at the edges of the surfaces in Figures 7.9 and 7.11. Triangles with corresponding letters
A–D indicate configurations depicted in Figure 7.3.
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Figure 7.3. Physical configurations appearing in the bifurcation diagrams in Figure 7.2. The centerline of
the strut is shown as a green tube, while the director d1 is shown as a blue ribbon.

To visualize these branches, we create force-length bifurcation diagrams, i.e., two-
dimensional graphs that plot the force λ against the “length” z(1), the distance between
the two ends of the strut. (Thus negative lengths indicate that the endpoint of the strut cor-
responding to s = 1 has passed through the origin to the other side of the z-axis.) Figure 7.2
contains diagrams for the simplest buckling solutions. For the isotropic problem ρ = 1, these
simple solutions arise from the first branch point, the green-to-blue transition on the plane of
unbuckled equilibria. In the anisotropic problem ρ = 3

2 , these simple solutions perturb to two
branches of solutions, the green-to-yellow and the yellow-to-blue transitions on the plane of
unbuckled equilibria.

Some sample physical configurations appearing in these bifurcation diagrams are shown in
Figure 7.3. Configurations close to the plane of unbuckled equilibria contain a small amount of
buckling, as in configuration A, reminiscent of the first buckling mode of the classic untwisted
problem. For some values of α, these are initially stable and then become unstable at a fold in
λ, while, for sufficiently high α, they are always unstable. Further down the branch are more
drastically buckled configurations, still with positive length, such as configuration B. Some of
these are stable, as seen in the portions of the lowermost green branches that have z(1) > 0.
There are also negative length configurations such as configuration C, and, again, some of
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Figure 7.4. Force-length diagrams for the next-higher buckling modes as compared to those shown in Figure
7.2. For ρ = 1, γ = 1, we plot the branch of buckled configurations arising from the second branch point, while,
for ρ = 3/2, γ = 1, we plot the branches of buckled configurations arising from the third and fourth branch
points, which are the splitting of the branch in the first column. The square in the lower left graph indicates a
point at the edge of the surface in Figure 7.9. Triangles with corresponding letters E–G indicate configurations
depicted in Figure 7.5.
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Figure 7.5. Physical configurations appearing in the bifurcation diagrams in Figure 7.4. The centerline of
the strut is shown as a green tube, while the director d1 is shown as a blue ribbon.

these are stable. Finally, in some diagrams, there are branches leaving the graph at the left
edge; the corresponding configurations look like configuration D, and are all unstable. The
anisotropic diagrams are relatively simple splittings of the isotropic diagrams into two images,
although there are a few secondary bifurcating branches that appear, sometimes connecting
the two images to each other, and in one case (α = 3π

2 , ρ =
3
2) connecting a branch to itself.

Figure 7.4 illustrates the next-simplest buckling configurations. For the isotropic problem,
these solutions arise from the second branch point, the blue-to-light-blue transition on the
plane of unbuckled equilibria; for the anisotropic problem, these solutions perturb to two
branches of solutions, the blue-to-red and the red-to-light-blue transitions. Some sample
physical configurations appearing in these bifurcation diagrams are shown in Figure 7.5. The
strut initially buckles to a two-mode shape like configuration E, as in the classic untwisted
problem. Further on the branch, there are more drastically buckled configurations such as
configuration F . Negative length configurations also exist, such as configuration G; in one case
(α = π

2 , ρ =
3
2), these are stable. Here, the perturbation in the diagram caused by anisotropy

is quite complicated, leading in many cases to multiple secondary bifurcating branches with
complicated connectivity. We expect that this complication would only worsen for higher
buckling modes.

7.2. The sheets of buckled equilibria. Since AUTO is designed to compute one-
dimensional branches of solutions as described in the previous section, it does not directly
compute the two-dimensional sheets of buckled equilibria that we are interested in. However,
by using a judicious itinerary of parameter switching, one may compute an approximation of
the two-dimensional surface using a collection of one-dimensional curves [18, 22].

Consider first the computation of the plane of unbuckled equilibria. Of course, the config-
urations on this plane are known in closed form, so it is hardly necessary to determine them
numerically, but nevertheless it serves as a useful first example. Furthermore, it is compu-
tationally expedient to compute this plane numerically since in so doing AUTO will detect
branch points to be used as starting points for the computation of the sheets of buckled equi-
libria. We begin the computation of the plane of unbuckled equilibria at (λ, α) = (0, 0). We fix
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Figure 7.6. Triangulation of plane of unbuckled equilibria: The solid horizontal line at the bottom
of the grid represents the initial calculation fixing λ and allowing α to vary. Each of the solid vertical
black lines represents a continuation in λ keeping α fixed. Each (λi,j , αi) is marked with a black circle,
and the triangulation is shown with the dotted lines.

λ = 0 and allow α to vary, giving a system of the form (7.1), with α but not λ a component of
X. We then perform N steps of the continuation calculation described in section 7.1, giving a
solution branch which we will denote by (λi,1, αi), 1 ≤ i ≤ N . (Note that λi,1 = 0 for all i.) We
now begin a new one-dimensional continuation calculation at each of the solutions (λi,1, αi) by
fixing α = αi and allowing λ to vary. This leads to a solution branch which we shall denote by
(λi,j , αi), 1 ≤ j ≤M . We choose M to be fixed for all i so that the result is a “grid” of points
in the plane of unbuckled equilibria. Even though λi,1 = 0 for 1 ≤ i ≤ N , it is not necessarily
the case that λi,j = λk,j for j > 1, k �= i, since AUTO automatically adapts the step size
∆t during the calculation. We then triangulate the plane by choosing as the vertices of our
triangles (λi,j , αi), (λi+1,j , αi+1), (λi+1,j+1, αi+1) and (λi,j , αi), (λi,j+1, αi), (λi+1,j+1, αi+1) for
1 ≤ i ≤ N − 1, 1 ≤ j ≤M − 1, as shown in Figure 7.6.

The sheets of buckled equilibria are calculated in a similar fashion. During each one-
dimensional continuation in λ on the plane of unbuckled equilibria, AUTO is set to automat-
ically report all branch points that it detects. Let λi,1k denote the value of λ at the kth branch

point on the branch with α = αi. We note that, in general, λi,1k �= λm,1
k when m �= i since the

position of the branch point is a function of α. At each such branch point, AUTO can be used
to switch branches and compute a solution branch on the sheet of buckled equilibria emanating
from the branch point. So, similar to the unbuckled case, we have an initial set of solutions
(λi,1k , αi) from which we perform continuation calculations, keeping α fixed and allowing λ to
vary. These calculations give rise to a set of buckled equilibria; we denote the values of λ and α
for these equilibria by (λi,jk , αi) for 1 ≤ i ≤ N and 1 ≤ j ≤M . Finally, we triangulate the kth

sheet by choosing the vertices of our triangles to be (λi,jk , αi), (λi+1,j
k , αi+1), (λi+1,j+1

k , αi+1)
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Figure 7.7. Triangulation of a sheet of buckled equilibria: As in Figure 7.6, the thick black line in
the (λ, α) plane represents the initial continuation in α keeping λ fixed, and the thin black lines in the
plane represent the continuations in λ keeping α fixed. We now represent the branch points by black
squares and show the branches of buckled equilibria emanating from each of them. The vertices of the
triangulation of the sheet are shown as circles on the branches. This triangulation is indicated by the
dotted lines, although, for clarity, we show only the triangulation between the first pair of branches.

and (λi,jk , αi), (λi,j+1
k , αi), (λi+1,j+1

k , αi+1) for 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, as shown in
Figure 7.7.

This method for generating bifurcation surfaces is fairly intuitive, but it may not produce
smooth results when the surfaces are complicated, such as in the case shown in the second
column of Figure 7.4. Folds and sharp bends can be difficult to track smoothly, and, because
the different one-dimensional branches are computed independently, the grid may become
significantly more skewed than in the relatively regular cases shown in Figures 7.6 and 7.7.
However, if the geometry of the surface is sufficiently simple, or if the discretization is made
sufficiently fine, then the surface can be smoothly portrayed.

For example, we now give two examples of the computation of sheets of relatively simple
buckled equilibria. First, we consider the region of the ρ = 1, γ = 1 plane of unbuckled equi-
libria highlighted in Figure 7.8, and then we show in Figure 7.9 two sheets of buckled equilibria
branching from this region. Each sheet required approximately 6 hours of computation on a
700 MHz Pentium III Xeon and consisted of 40 MB of data. For each equilibrium, the index
was calculated using a numerical implementation of the conjugate point technique discussed
in section 2.2, and the surface is color coded by index with the color scheme from Figure 6.2.
The first sheet contains portions of the slices appearing in column 1 of Figure 7.2, while the
second sheet matches up with column 1 of Figure 7.4. On the first sheet, buckled solutions
very close to the plane of unbuckled equilibria are stable (green) if α is sufficiently small but
have index 1 (yellow) for larger values of α. Continuing further on the sheet, we see that the
stable equilibria give way to index-1 equilibria as buckling continues. This pattern is repeated
on the second sheet but with index-2 equilibria giving way to index-3 equilibria.

As a second example, we consider the region of the ρ = 3
2 , γ = 1 plane of unbuckled

equilibria highlighted in Figure 7.10, and then we show in Figure 7.11 two sheets of buckled
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Figure 7.8. A portion of the plane of unbuckled equilibria for an isotropic rod (ρ = 1) with twisting-to-
bending stiffness ratio γ = 1. Within the region marked by the box, we will compute sheets bifurcating from the
lines of color changes; these sheets are shown in Figure 7.9.

equilibria branching from this region. In this case, the sheets of buckled equilibria match up
with the slices appearing in column 2 of Figure 7.2, i.e., the splitting of the first sheet of
buckled equilibria from the isotropic problem. The first sheet follows approximately the same
pattern of index-0 equilibria giving way to index-1 equilibria that appeared in the isotropic
case, while the second sheet involves a similar pattern of index-1 equilibria yielding to index-2
equilibria. This pattern is consistent with the usual expectation for stability of equilibria
under symmetry-breaking perturbations: one of the perturbed images has the index of the
symmetric case, and one has index one higher. In addition, we see a new feature in this case:
the presence of a blue (index-2) patch on the first sheet. This blue patch exists because of
a secondary bifurcating sheet, which is not shown in Figure 7.11 but can be clearly seen in
the (α = 3π

2 , ρ = 3
2) slice in Figure 7.2 as a yellow dashed branch running on top of a solid

blue branch. The solid blue branch is a slice of the blue patch in Figure 7.11, and thus we
can infer that the blue patch is spanned by a nearly parallel yellow patch of which the yellow
dashed branch is a slice. Looking through the slices in Figures 7.2 and 7.4, we can see that
this is the simplest example of the type of surface branching and reconnection that proliferates
through the bifurcation surface for more complicated buckled equilibria, not to mention the
dependence of this topological structure on ρ and γ.
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Figure 7.9. Portion of the surface of buckled equilibria for an isotropic rod (ρ = 1) with twisting-to-bending
stiffness ratio γ = 1, colored by the index of the equilibria according to the color scheme in Figure 6.2. For each
buckled equilibrium, the value of the force λ, twist angle α, and length z(1) are plotted, and three perspectives of
the resulting surface are shown. The plane is the portion of the plane of unbuckled equilibria shown in Figure
7.8, and two sheets bifurcate from it. The origin of the red axes is at (α, λ, z(1)) = (0, 0, 1). The spheres and
cube correspond to marked points in the left columns of Figures 7.2 and 7.4.

Figure 7.10. A portion of the plane of unbuckled equilibria for ρ = 3
2
, γ = 1. Within the region marked

by the box, we will compute sheets bifurcating from the lines of color changes; these sheets are shown in Figure
7.11.
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Figure 7.11. Portion of the surface of buckled equilibria for ρ = 3
2

and with twisting-to-bending stiffness
ratio γ = 1, colored by the index of the equilibria according to the color scheme in Figure 6.2. As in Figure 7.9,
three perspectives of the same surface are shown. The plane is the portion of the plane of unbuckled equilibria
shown in Figure 7.10, and two sheets bifurcate from it. The origin of the red axes is at (α, λ, z(1)) = (0, 0, 1).
The spheres and cubes correspond to marked points in the right column of Figure 7.2.

8. Conclusions. In this article, we developed a significant simplification of the standard
technique for determining the index of equilibria in parameter-dependent calculus of variations
optimization problems. One might argue that in practice only local minima are of interest, in
which case it would seem more efficient to employ a minimization algorithm directly rather
than pursue the apparently circuitous strategy of finding all equilibria and then performing a
conjugate point computation to locate the local minima. For a single optimization problem,
this argument may be correct, but for a problem with one or more parameters, it is less
clear. As the parameters are varied, the set of equilibria tend to form connected sets that
are readily tracked by parameter continuation, as we have seen in the one-dimensional and
two-dimensional bifurcation diagrams in this paper. In contrast, the local minima may exist
in several disconnected regions of parameter space and hence may be more difficult to locate
and track using standard minimization techniques.

Such computational issues aside, the equilibrium approach offers major advantages in
terms of qualitative understanding. The differential equations describing equilibrium may
yield to qualitative analysis, at least for a subset of the solutions, that leads to insight into
the overall structure of the problem. The central result of this paper, the corollary in section 3
and its extension to isoperimetrically constrained problems in section 4, is an example of this
type of analysis. This result applied to the unbuckled configurations of the elastic strut led to
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a complete understanding of the stability index of these configurations, as shown in Figure 6.1.
These unbuckled configurations were in turn the skeleton of the full set of equilibria, as seen
in Figures 7.2, 7.4, 7.9, and 7.11, in that they provided the starting point for the numerical
continuation necessary to compute the buckled configurations. As this pattern of complicated
“nontrivial” solutions bifurcating from a “trivial” family of solutions is quite common, the
combination of analysis and computation presented here could be applied to a variety of other
parameter-dependent problems.
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