Depolarized resonance light scattering by porphyrin and chlorophyll a aggregates

Jai Parkash
John H. Robblee
John Agnew
Julio C. de Paula

Haverford College

Follow this and additional works at: http://scholarship.haverford.edu/chemistry_facpubs

Repository Citation

This Journal Article is brought to you for free and open access by the Chemistry at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact nmedeiro@haverford.edu.
Depolarized Resonance Light Scattering by Porphyrin and Chlorophyll a Aggregates

Jai Parkash,* John H. Robblee,* John Agnew,* Esther Gibbs,# Peter Collings,§ Robert F. Pasternack,¶ and Julio C. de Paula*

*Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041; #Department of Chemistry, Goucher College, Towson, Maryland 21204; and Departments of §Physics and Astronomy and ¶Chemistry, Swarthmore College, Swarthmore, Pennsylvania 19081 USA

ABSTRACT A quantum mechanical model is developed for the observed resonance enhancement of light scattering by aggregates of electronically interacting chromophores. Aggregate size, monomer oscillator strength, extent of electronic coupling, and aggregate geometry are all important determinants of intensity in resonance light scattering (RLS) spectra. The theory also predicts the value of the depolarization ratio \(R(90) \) of RLS for a given aggregate geometry. These results are used to interpret the RLS depolarization ratios of four aggregates: tetrakis(4-sulfonatophenyl)porphine aggregated at low pH \((R(90) = 0.17 \text{ at } 488 \text{ nm}) \), \(\text{trans-bis(N-methylpyridinium-4-yl)-diphenylporphinato copper(II)} \) aggregated in 0.2 M NaCl solution \((R(90) = 0.13 \text{ at } 450 \text{ nm}) \) and on calf thymus DNA \((R(90) = 0.20 \text{ at } 454 \text{ nm}) \), and chlorophyll a aggregates in formamide/water \((R(90) = 0.23 \text{ and } 0.32 \text{ at } 469 \text{ and } 699 \text{ nm}, \text{respectively}) \). The analysis is consistent with a \(J \)-aggregate geometry for all four systems. Furthermore, the specific values of \(R(90) \) allow us to estimate the orientation of the monomer transition dipoles with respect to the long axis of the aggregate. We conclude that depolarized resonance light scattering spectroscopy is a powerful probe of the geometric and electronic structures of extended aggregates of strong chromophores.

INTRODUCTION

Recent studies have shown that a number of biological light-harvesting systems, such as the LHI and LHII complexes of purple photosynthetic bacteria (McDermott et al., 1995; Karrash et al., 1995; Cogdell et al., 1996; Fulleris and Sundström, 1996) and the chlorosome of green photosynthetic bacteria (Blankenship et al., 1995), consist of aggregated bacteriochlorophylls. These results have sparked renewed interest in the design and characterization of supramolecular assemblies of chromophores (Lehn, 1995)—most notably chlorophylls (Katz et al., 1991; Scherz et al., 1991) and the related porphyrins (Fuhrhop et al., 1994; Pasternack and Gibbs, 1996)—that mimic the energy transfer function of photosynthetic antenna complexes.

New spectroscopic techniques need to be developed to selectively and sensitively probe the rather unique electronic and geometric structures of supramolecular light-harvesting systems. Work from our laboratories suggests that a new light scattering technique, resonance light scattering (RLS), may be used to determine both ground and excited state structures of extended porphyrin (Pasternack et al., 1993, 1994; Pasternack and Collings, 1995) and chlorophyll aggregates (de Paula et al., 1995).

The RLS effect consists of an increase in the intensity of scattered light at the wavelength where the aggregate has an electronic absorption transition. The phenomenon, observed in a variety of systems such as semiconductors (Gurioli et al., 1996), small chromophores in solution (Anglister and Steinberg, 1979; Stanton et al., 1981), chromophore-protein complexes (Ma et al., 1996; Borissevitch et al., 1997), chromophore-nucleic acid complexes (Pasternack et al., 1993, 1996; Huang et al., 1997), porphyrin aggregates (Pasternack et al., 1993, 1994), and chlorophyll \(a \) aggregates (de Paula et al., 1995), is consistent with all known theories of light-matter interactions (Miller, 1978; Anglister and Steinberg, 1979; Stanton et al., 1981; Pasternack and Collings, 1995; Lagendijk and van Tiggelen, 1996). A number of studies have shown that supramolecular assemblies show RLS signals that are intense enough for detection with commercial spectrofluorimeters (Pasternack et al., 1993, 1994; de Paula et al., 1995; Ma et al., 1996, 1997; Huang et al., 1997). Detection of RLS by monomers and small oligomers requires special methods to correct for strong absorption effects at the resonance frequency (Anglister and Steinberg, 1979; Stanton et al., 1981; Borissevitch et al., 1997).

Pasternack and Collings (1995) have suggested that the RLS technique may be used to determine the size and shape of chromophore aggregates in much the same way that conventional steady-state and dynamic light scattering measurements yield the size and shape of biopolymers. However, this potential will be realized only when the quantum mechanical basis for the large RLS intensities in exciton-coupled systems (such as porphyrin and chlorophyll aggregates) have been described.

In this contribution we develop a theoretical model for resonance light scattering by exciton-coupled systems, with the goal of describing the dependence of RLS intensity on aggregate size, strength of electronic coupling, and aggregate geometry. The model allows for correlation of the...
degree of depolarization of the RLS signal with the geometry of the aggregate. These principles are applied to depolarized resonance light scattering spectra of tetrakis(4-sulfonatophenyl)porphine (H2TPPS4−) aggregated at low pH, trans-bis(N-methyl)pyridinium-4-yl)-diphenylporphinato copper(II) aggregated in 0.2 M NaCl solution and on calf thymus DNA, and of chlorophyll a aggregates in formamide/water. The results indicate that depolarized resonance light scattering spectroscopy is a powerful probe of the geometric and electronic structures of extended aggregates of strong chromophores.

MATERIALS AND METHODS

Computer simulations of RLS by aggregates

All mathematical operations described in the Theory section were performed on a Dell Latitude LX 4100D notebook computer (486DX processor, 100 MHz clock, 12 Mb RAM) with MathCAD Plus version 5.0 (MathSoft). Copies of the files are available from Julio de Paula.

Depolarized resonance light scattering measurements

For vertically polarized exciting radiation and scattered radiation detected at 90°, the depolarization ratio is defined as \(\rho_v(90°) = I_{vh}/I_{vv} \), where \(I_{vh} \) is the scattered intensity with horizontal polarization and \(I_{vv} \) is the scattered intensity with vertical polarization. We have measured \(\rho_v(90°) \) with two instruments: a spectrofluorimeter and a laser light scattering apparatus.

The fluorimeters used were a SPEX Fluorolog 2 and a Fluorolog 3, both equipped with a xenon lamp, a 0.25-m excitation monochromator, a 0.34-m emission monochromator, a photomultiplier tube (PMT) operating in photon counting mode in the sample arm, and a photodiode detector in the reference arm. The spectral bandwidth for our measurements was 1.0 nm. Glan-Thompson linear polarizers were used to polarize the exciting beam and to analyze the scattered radiation. It is necessary to correct the value of \(I_{vh} \) for the polarization-dependent response of the emission monochromator. Hence, the measured quantity was

\[
\rho_v(90°) = G \cdot \frac{I_{vh}}{I_{vv}} \tag{1}
\]

where \(G = I_{vv}/I_{vh} \) is the correction factor. This is the same correction factor generally used to correct fluorescence anisotropy data obtained with spectrophotofluorimeters (Lakowicz, 1986).

The laser light scattering apparatus is a Brookhaven Instruments Corporation BI-200SM goniometer. The excitation source is a Coherent Innova 70 mixed-gas ion laser (argon ion and krypton ion). The exciting beam is vertically polarized. Scattered light detected at 90° relative to the excitation beam is passed first through a linear polarizer and then through a narrow bandpass filter (which allows only the Rayleigh scattered light to pass) before reaching the PMT detector.

Preparation of aggregates

Chlorophyll a aggregates in aqueous formamide solution were prepared according to de Paula et al. (1995). Briefly, a stock solution of chlorophyll a (from *Anacystis nidulans*, purchased from the Sigma Chemical Company, St. Louis, MO) in acetone (spectrophotometric grade, Aldrich Chemical Company, Milwaukee, WI) was prepared and its concentration determined spectrophotometrically by using \(\varepsilon_{681.6\, \text{nm}} = 82.6 \, \text{mM}^{-1}\, \text{cm}^{-1} \). Enough stock solution was added to a 9:1 (v/v) solution of formamide (spectrophotometric grade, Aldrich Chemical Company, Milwaukee, WI) and 75 mM potassium phosphate buffer (pH 6.8) so that the final concentration of chlorophyll a was \(-0.4 \, \text{mM}\). Aggregates form within 2 h of incubation in the dark at 4°C.

Aggregates of tetrakis(4-sulfonatophenyl)porphine (H2TPPS4−, Midcentury Chemicals) were formed by adding a small aliquot (-25 μl) of a stock solution of porphyrin in deionized water to -9 ml of 0.2 M HCl. Formation of the aggregate was confirmed by the appearance of a sharp electronic absorption band at 489 nm and by a strong RLS feature at 489 nm.

Porphyrin-DNA complexes were prepared from the Cu(II) derivative of trans-bis(N-methyl)pyridinium-4-yl)-diphenylporphine (CuPaggH2) and calf thymus DNA (lot number QC81456203, Pharmacia Fine Chemicals) according to Pasterнак et al. (1993). Formation of the porphyrin aggregate on the DNA template was confirmed by absorption and CD spectroscopy. The samples for which data are reported were typically 55 μM in DNA, 4.8 μM in CuPaggH2, and 0.2 M NaCl. The solvent was a 1-mM potassium phosphate buffer (pH 6.80). CuPaggH2 was aggregated in 0.2 M aqueous NaCl solution to give a final [CuPaggH2] = 1.94 μM.

THEORY

Exciton coupling in J-, H-, double-stranded, and cylindrical aggregates

The first step in the calculation of scattering cross-sections of aggregates in a variety of geometries is to determine the aggregate’s transition frequencies and moments by exciton coupling theory. Then the wavelength dependence of the aggregate’s polarizability is calculated, and from that the scattering cross-sections and depolarization ratios are determined.

Our exciton coupling calculations use the point dipole approximation, which has been somewhat successful in describing the photophysical properties of light-harvesting systems (Pearlstein, 1991). Each monomer is described by a single transition with transition moment \(\mu_{\text{mon}} \) and frequency \(\tilde{\nu}_{\text{mon}} \). We will treat five coupling geometries, shown in Fig. 1.

The geometries of Fig. 1 correspond to the well-known J-aggregates \((0 < \varphi < \pi/2)\) and H-aggregates \((\varphi = \pi/2)\). For the cases where \(\varphi = 0 \) and \(\pi/2 \), the transition energies and the transition moments for the nth exciton state are (McConnell, 1961; Lin, 1989; Buck and Struve, 1996):

\[
\tilde{\nu}_n = \tilde{\nu}_{\text{mon}} + 2\beta \cos\left(\frac{m\pi}{N+1}\right) \tag{2}
\]

\[
\mu_n = \left(\frac{2}{N+1}\right)^{1/2} \sum_n \mu_{\text{mon}} \sin\left(\frac{m \cdot n \cdot \pi}{N+1}\right) \tag{3}
\]

where the summation is over all \(N \) exciton coupled states of the aggregate. Equations 2 and 3 were derived by making two important assumptions (Alden et al., 1992; Lin, 1989; McConnell, 1961; Somsen et al., 1996): 1) the monomer energy and the monomer transition moment are not affected by interactions with other monomers in the aggregate; and 2) only nearest-neighbor interactions contribute to the coupling matrix element \(\beta \), which is written as (Somsen et al., 1996):

\[
\beta = \frac{\left|\mu_{\text{mon}}\right|^2}{4\pi\varepsilon_\eta R^2} (1 - 3 \cos \theta) \tag{4}
\]
In Eq. 4, ε_0 is the permittivity of free space, n is the refractive index of the medium, μ_{mon} is the transition moment of the monomer, R is the distance between nearest neighbors in the aggregate, and θ is the angle between monomer transition moment vectors in the aggregate. For a “linear” aggregate (Fig. 1a), $\theta = 0$; for a “zigzag” aggregate (Fig. 1b), $\theta \neq 0$.

For a J-aggregate the exciton coupling constant β is negative, which leads to red-shifts in the spectrum relative to the monomer. By contrast, $\beta > 0$ for H-aggregates, with resultant blue-shifts in the spectrum. Equations 2 and 3 also apply to a helical aggregate of any pitch or diameter where the monomer transition dipoles are aligned with the parallel axis of the helix.

For the calculations in this document we chose monomer parameters that correspond closely to those of the Qy(0–0) band of chlorophyll a ($\lambda_{\text{mon}} = 662$ nm, $\mu_{\text{mon}} = 6.5$ Debye). We have chosen a value of β to yield a limiting \tilde{v}_1 of 699 nm, which is the transition wavelength for the largest aggregate of chlorophyll a formed in a 9:1 formamide/water system (de Paula et al., 1995). Although the consequences of Eqs. 2 and 3 are described with a specific numerical example, the calculations still provide useful qualitative insight that may be used to predict the behavior of any exciton-coupled aggregate.

For the remaining geometries, the general approach is to write the Hamiltonian matrix for the aggregate. The diagonal elements are equal to the monomer resonance frequencies and the off-diagonal elements reflect couplings between pigments. For the double-stranded aggregates (Fig. 1, c and d), we define two coupling constants: one for intrastrand interactions (γ) and another for interstrand interactions (β). For example, the Hamiltonian for a tetramer is:

$$
\begin{pmatrix}
\tilde{v}_{\text{mon}} & \beta & \gamma & 0 \\
\beta & \tilde{v}_{\text{mon}} & \beta & \gamma \\
\gamma & \beta & \tilde{v}_{\text{mon}} & \beta \\
0 & \gamma & \beta & \tilde{v}_{\text{mon}}
\end{pmatrix}
$$

Diagonalization of the matrix gives the transition energies and wavefunctions for the exciton split states. The transition moment for the lowest energy transition is calculated from the wavefunction of the first excited state (Eq. 6).
by Eq. 7:

\[\Phi = \sum_{j=1}^{N} C_j \phi_j \]
(6)

\[\mu = \mu_{\text{mon}} \cdot \left(\sum_{j=1}^{N} C_j \right) \]
(7)

Two alignments of the double-stranded aggregates were investigated: 1) the transition dipoles all point along the same direction (in-phase case, Fig. 1 c), and 2) the transition dipoles of the one strand point in the opposite direction of the transition dipoles in the other strand (out-of-phase, Fig. 1 d). Mathematically, this is equivalent to letting \(\beta > 0 \) and \(\gamma < 0 \).

Somsen et al. (1996) and Buck and Struve (1996) considered the effect of exciton coupling on the absorption spectra of several cylindrical aggregates. For simplicity, we consider here only the arrangement described in Fig. 1 e: stacks of \(N_2 \) rings, each with \(N_1 \) pigments, with each ring rotated with respect to its neighbors by a pitch angle of \(2\pi/N_1 \). We consider only nearest-neighbor interactions. Given the interpenetrating nature of the arrangement, each pigment interacts only with pigments that are diagonally above and below it. These couplings are reminiscent of those found in "slipped" J-aggregates (Fig. 1 a, \(0 < \varphi < \pi/2 \)). Hence, the interaction energies \(\beta \) and \(\gamma \) are negative. The Hamiltonian for a three-ring cylinder, each with four pigments, is given below. The transition energies and moments are calculated as above for double-stranded aggregates (Eqs. 6 and 7).

\(\nu_{\text{mon}} \)	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\gamma \)	0	0	0		
\(\nu_{\text{mon}} \)	0	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\gamma \)	0			
0	\(\nu_{\text{mon}} \)	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\gamma \)				
0	0	\(\nu_{\text{mon}} \)	\(\beta \)	0	0	\(\beta \)	\(\beta \)	0	0				
\(\beta \)	\(\beta \)	0	0	\(\nu_{\text{mon}} \)	0	0	\(\beta \)	\(\beta \)	0	0			
\(\beta \)	\(\beta \)	0	0	0	\(\nu_{\text{mon}} \)	0	0	\(\beta \)	\(\beta \)	0			
\(\gamma \)	0	0	0	\(\beta \)	0	0	\(\beta \)	\(\nu_{\text{mon}} \)	0	0	0		
\(\gamma \)	0	0	0	\(\beta \)	0	0	\(\beta \)	\(\nu_{\text{mon}} \)	0	0			
0	\(\gamma \)	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\nu_{\text{mon}} \)	0	0		
0	0	\(\gamma \)	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\nu_{\text{mon}} \)	0	0	
0	0	0	\(\gamma \)	0	0	0	\(\beta \)	\(\beta \)	0	0	\(\nu_{\text{mon}} \)	0	0

We have calculated the size dependence of \(\tilde{\nu}_1 \) for the cases in Fig. 1, c–e and quote only the results for large \(N \). The double-stranded aggregates have a limiting value of \(\tilde{\nu}_1 = \tilde{\nu}_{\text{mon}} + 4\beta \). The cylindrical aggregates as described have a limiting value of \(\tilde{\nu}_1 = \tilde{\nu}_{\text{mon}} + 6\beta \) if \(\beta = \gamma \). Also, in both cases the interactions lead to red-shifts in the absorption spectrum of the aggregate relative to that of the monomer (\(\beta < 0 \)). However, the cylindrical and double-stranded aggregates are red-shifted more extensively than J-aggregates with the same \(N \) and \(\beta \).

Calculation of scattering cross-sections in exciton-coupled systems

We will first describe the calculation of polarizabilities and scattering cross-sections for those cases where the transition dipole moment vector and polarizability tensor have only one component. This corresponds to all of the geometries in Fig. 1, except for the "slipped" J-aggregates, for which \(0 < \varphi < \pi/2 \). We may then calculate just one value of the polarizability.

We have made the following assumptions in our calculations. First, we allow only a single excited state of the monomer to contribute to the polarizability around the lower energy absorption frequency. Second, we assume that neither hyperchromism nor hypochromism is significant in these model aggregates.

The quantum mechanical expressions for the real and imaginary parts of the polarizability are given below for a system where the dipole moment vector has one component (Barron, 1976):

\[\text{Re} \alpha(\tilde{\nu}) = \frac{1}{2 \pi \epsilon_0 \hbar c} \sum_{m} \left(\frac{\tilde{\nu}_m^2 - \tilde{\nu}^2}{(\tilde{\nu}_m^2 - \tilde{\nu}^2)^2 + \tilde{\nu}_m^2 \Gamma_m^2} \right) |\mu_m|^2 \]
(9)

\[\text{Im} \alpha(\tilde{\nu}) = \frac{1}{2 \pi \epsilon_0 \hbar c} \sum_{m} \frac{\tilde{\nu} \tilde{\nu}_m \Gamma_m}{(\tilde{\nu}_m^2 - \tilde{\nu}^2)^2 + \tilde{\nu}_m^2 \Gamma_m^2} |\mu_m|^2 \]
(10)

where \(\tilde{\nu}_m \) and \(\mu_m \) are defined as before and \(\Gamma_m \) is the spectral linewidth. The scattering (\(C_{\text{sca}} \)) and absorption (\(C_{\text{abs}} \)) cross-sections follow directly from Eqs. 9 and 10 and the definitions (Pasternack and Collings, 1995):

\[C_{\text{sca}} = \frac{8}{3} \pi^3 \tilde{\nu}^4 [\text{Re} \alpha]^2 + \text{Im} \alpha]^2] \]
(11)

\[C_{\text{abs}} = 2 \pi \tilde{\nu} \text{Im} \alpha \]
(12)
We have chosen units for the parameters and variables in Eqs. 9–12 so that the polarizabilities are expressed in cm3/molecule and the cross-sections in cm2/molecule.

Our exciton coupling calculations confirm earlier results by Alden et al. (1992), who showed that the transition to the first exciton state of the aggregate is far stronger than transitions to other exciton states. Consequently, Im(α) peaks and Re(α) vanishes at \tilde{v}_1. This leads to the prediction that C_{sca} peaks at \tilde{v}_1, which is the resonance light scattering effect. The next two sections illustrate further the behavior of C_{sca} and C_{abs} for the “linear” aggregate case (Fig. 1, $\theta = \varphi = 0$).

Dependence of RLS intensity on aggregate size

Fig. 2 suggests that \tilde{v}_1 decreases sharply and μ_1 increases somewhat less sharply with size until $N \approx 25$. For $N > 25$, \tilde{v}_1 approaches the limiting value of $\tilde{v}_{\text{mon}} + 2\beta$, while μ_1 continues to increase. These results have two important consequences. First, using the position of the strongest absorption band to determine the size of a large J-aggregate (Horng and Quitevis, 1993) may lead to errors. Second, $C_{\text{sca}}(\tilde{v}_1)$ does not begin to depend strongly on size until $N > 25$ (Fig. 3).

Dependence of RLS intensity on electronic coupling

It is important to consider four features of our model when evaluating the effect of electronic coupling on C_{sca} of linear J- or H-aggregates ($\theta = 0$). First, Eq. 4 suggests that two parameters modulate electronic coupling very efficiently in these aggregates: the interchromophore distance R and the monomer transition moment μ_{mon}. Second, we conclude from Eqs. 2 and 3 that changes in β modulate \tilde{v}_1 only; μ_1 is independent of β at this level of approximation. Third, the polarizability scales with the volume of the aggregate (van de Hulst, 1981). Our calculations confirm that α^2 does indeed increase with R regardless of the sign and magnitude of the β parameter (data not shown). Lastly, $C_{\text{sca}}(\tilde{v}_1)$ depends both on the square of the volume of the aggregate and on the fourth power of the absorption frequency \tilde{v}_1 (Eq. 11). These principles facilitate the interpretation of the data in Fig. 4, which shows the dependence of $C_{\text{sca}}(\tilde{v}_1)$ on R and μ_{mon} for “linear” aggregates with $N = 100$.

Fig. 4 a shows the effect of changes in R on $C_{\text{sca}}(\tilde{v}_1)$. For a J-aggregate ($\beta < 0$), $C_{\text{sca}}(\tilde{v}_1)$ is not strongly dependent on R, but does increase monotonically with R. The data are consistent with the expectation that C_{sca} should increase with the size of the aggregate. In this case both the α^2 and \tilde{v}_1^4 terms work together to give the observed behavior. By increasing the R value, we cause $|\beta|$ to decrease, which in turn enhances the \tilde{v}_1^4 term. Moreover, increasing R also increases the length of the aggregate and thus enhances the α^2 term. Therefore, $C_{\text{sca}}(\tilde{v}_1)$ increases with R even though the strength of electronic coupling, as measured by the magnitude of β, decreases.

Fig. 4 a also shows that $C_{\text{sca}}(\tilde{v}_1)$ decreases with increasing R for an H-aggregate ($\beta > 0$). The data illustrate the interaction between the \tilde{v}_1^4 and α^2 terms in the expression for $C_{\text{sca}}(\tilde{v}_1)$ (Eq. 11). Increasing R results in a decrease in $|\beta|$ and attendant decreases in \tilde{v}_1. Even though α^2 does increase with R (data not shown), the \tilde{v}_1^4 term predominates, leading to the counterintuitive result that the magnitude of $C_{\text{sca}}(\tilde{v}_1)$ decreases.
is inversely proportional to the value of \(R \). However, in this geometry we observe that \(C_{\text{sca}} \) does increase with the strength of electronic coupling.

Fig. 4b shows the effect of changes in \(\mu_{\text{mon}} \) on \(C_{\text{sca}}(\vec{p}_1) \). According to Eqs. 2–4, this affects \(\mu_{\text{mon}} \), \(\beta \), and \(\vec{v}_m \). For a J-aggregate with given \(\vec{v}_{\text{mon}} \), \(R \), \(\theta \), and \(N \), \(C_{\text{sca}}(\vec{p}_1) \) increases strongly with \(\mu_{\text{mon}} \). Qualitatively similar results are obtained for H-aggregates (data not shown). The value of \(\mu_{\text{mon}} \) may be changed either by changing the chemical composition of the aggregate or through intramolecular interactions that affect the electronic structure of the monomer in the aggregate (Ohno et al., 1993).

Dependence of RLS intensity on aggregate geometry

Table 1 compares \(C_{\text{sca}}(\vec{p}_1) \) for aggregates with different geometries but the same number of monomers (\(N = 100 \)) and coupling constants (\(\beta = \gamma = -400 \text{ cm}^{-1} \) for all cases except for H-aggregates, where \(\beta = 400 \text{ cm}^{-1} \)). We find that \(C_{\text{sca}}(\vec{p}_1) \) is largest for H- and J-aggregates and smallest for cylindrical aggregates.

Among the double-stranded aggregates, the in-phase alignment results in far greater \(C_{\text{sca}} \) when compared to the out-of-phase alignment. Among the cylindrical aggregates, short cylinders with many monomers per ring are better scatterers than long cylinders with few monomers per ring.

The dependence of \(C_{\text{sca}}(\vec{p}_1) \) on aggregate geometry may be understood in terms of the above discussion on J-aggregates. Cylindrical and double-stranded aggregates show larger red-shifts in their absorption spectra than do J-aggregates. However, the magnitude of \(\mu_1 \) depends only on the number of monomers bound in the aggregate, not on geometry. Therefore, the lower values of \(\vec{p}_1 \) in the cylinders and double strands result in lower scattering cross-sections for a given \(N \), relative to the predictions for J-aggregates.

Calculation of RLS depolarization ratios of J-aggregates

Stanton et al. (1981), Strommen (1992), and Barron (1976) summarize the theory that leads to the calculation of depolarization ratios in resonance Rayleigh and Raman scattering. Depolarization of the incident light is a result of anisotropy in the molecular polarizability. Hence, \(\alpha \) may be described as a tensor; it is in fact a complex symmetric tensor.

The general form of the depolarization ratio \(\rho_v(90) \) for incident vertically polarized light and a \(90^\circ \) scattering geometry is (Barron, 1976; Strommen, 1992):

\[
\rho_v(90) = \frac{3|\gamma_s|^2 + 5|\gamma_{as}|^2}{45|\alpha|^2 + 4|\gamma_s|^2}
\]

where the trace of the polarizability tensor, the symmetric anisotropic, and antisymmetric anisotropic tensor invariants are given respectively by:

\[
\tilde{\alpha}(\vec{p}) = \frac{1}{3}(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})
\]

\[
|\gamma_s|^2 = \frac{1}{2}[(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2]
\]

\[
+ \frac{3}{4}[(\alpha_{xy} - \alpha_{xz})^2 + (\alpha_{yz} - \alpha_{yx})^2 + (\alpha_{zx} - \alpha_{zy})^2]
\]

\[
|\gamma_{as}|^2 = \frac{3}{4}[(\alpha_{xy} - \alpha_{yz})^2 + (\alpha_{yz} - \alpha_{zx})^2 + (\alpha_{zx} - \alpha_{xy})^2]
\]

In resonance Rayleigh scattering, the scattering tensor is symmetric and \(\gamma_{as} \) is zero (Barron, 1976). Therefore,

\[
\rho_v(90) = \frac{3|\gamma_s|^2}{45|\alpha|^2 + 4|\gamma_s|^2}
\]

It is simple to calculate \(\rho_v(90) \) for three limiting cases: 1) an aggregate with a spherically symmetric tensor (\(\alpha_{xx} = \alpha_{yy} = \alpha_{zz} \)) has \(\rho_v(90) = 0 \); 2) an aggregate with one nondegenerate excited state (\(\alpha_{||} \gg \alpha_{\perp} \)) has \(\rho_v(90) = \frac{1}{5} \); and 3) an aggregate with a degenerate excited state (\(\alpha_{||} \ll \alpha_{\perp} \)) has \(\rho_v(90) = \frac{1}{6} \). Nondegenerate excited states are expected for the idealized J-type, H-type, cylindrical, and double stranded aggregates described previously (\(\varphi = 0 \)) because the net transition dipole moment vector has one component in the axis system defined by the molecular frame. However, the limiting values for the depolarization ratio may be observed only rarely. For example, \(\rho_v(90) = \frac{1}{5} \) is predicted for excited states where \(\alpha_{||}/\alpha_{\perp} > 1000 \). This may only occur in aggregates with a high degree of long-range order.

Fig. 5 shows the variation in \(\rho_v(90) \) with \(\alpha_{||}/\alpha_{\perp} \). The data point out some limitations in the use of \(\rho_v(90) \) for the characterization of symmetric top excited states. Namely, two geometries are consistent with each value of \(\rho_v(90) \) below \(1/5 \) and above \(0 \). Most striking is the fact that a \(\rho_v(90) \) value of \(1/5 \) is consistent with both \(\alpha_{||}/\alpha_{\perp} = 0 \) and \(\alpha_{||}/\alpha_{\perp} = 4 \). Consequently, only if \(\rho_v(90) > 1/5 \) or \(\alpha_{||}/\alpha_{\perp} > 4 \) can the data be described by a unique geometry.

The preceding analysis applies to any scatterer, including monomeric species. However, the emphasis here is on ag-

TABLE 1 Resonance light scattering cross-sections for model chromophore aggregates in a variety of geometries

<table>
<thead>
<tr>
<th>Geometry</th>
<th>(\lambda_{\text{max}}) (nm)</th>
<th>(C_{\text{sca}}(\lambda_{\text{max}}) \times 10^3 \text{ cm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double strands (out-of-phase)</td>
<td>740</td>
<td>0.06</td>
</tr>
<tr>
<td>Cylinders ((N_1 = 5, N_2 = 20))</td>
<td>784</td>
<td>2.21</td>
</tr>
<tr>
<td>Cylinders ((N_1 = 10, N_2 = 10))</td>
<td>776</td>
<td>2.41</td>
</tr>
<tr>
<td>Cylinders ((N_1 = 20, N_2 = 5))</td>
<td>755</td>
<td>3.02</td>
</tr>
<tr>
<td>Double strands (in-phase)</td>
<td>740</td>
<td>3.36</td>
</tr>
<tr>
<td>J-aggregates</td>
<td>699</td>
<td>4.38</td>
</tr>
<tr>
<td>H-aggregate</td>
<td>628</td>
<td>6.69</td>
</tr>
</tbody>
</table>
The depolarization ratio then follows from Eq. 17. Fig. 6 shows the dependence of the polarizability tensor are calculated with Eqs. 9 and 10. The parallel and perpendicular components of the transition dipole moment vector for the nth exciton state of these “slipped” J-aggregates are given by Pearlstein (1991):

\[
\mu_{\parallel} = \left(\frac{2}{N+1} \right)^{1/2} \sum_n \mu_{\text{mon}} \cdot \cos \varphi \cdot \sin \left(\frac{m \cdot n \cdot \pi}{N+1} \right)
\]

\[
\mu_{\perp} = \left(\frac{2}{N+1} \right)^{1/2} \sum_n \mu_{\text{mon}} \cdot \sin \varphi \cdot \sin \left(\frac{m \cdot n \cdot \pi}{N+1} \right)
\]

From these, the parallel and perpendicular components of the polarizability tensor are calculated with Eqs. 9 and 10. The depolarization ratio then follows from Eq. 17. Fig. 6 shows the dependence of \(\rho_v(90) \) at \(\tilde{\gamma} \) on the “slip” angle \(\varphi \). As expected from the analysis given above, \(\frac{1}{2} \leq \rho_v(90) \leq \frac{1}{3} \). The curve is symmetrical around \(\varphi = \pi/4 \), so that \(\rho_v(90) \) rises to \(\frac{1}{3} \) at \(\varphi = \pi/2 \).

The treatment above is not limited to the geometry of Fig. 1 a. Any aggregate with non-zero values of \(\alpha_1 \) and \(\alpha_\perp \) will yield results that can be interpreted with Fig. 6. Examples include: 1) a helical or cylindrical aggregate where the monomer transition dipoles point away from the major axis by an angle \(\varphi \); and 2) a double strand consisting of two interacting slipped J-aggregates.

RESULTS

Table 2 summarizes the depolarization ratios for aggregates of H4TPPS4− at pH 0.5, CuPagg2+ in 0.2 M NaCl and on DNA, and chlorophyll a in formamide/buffer (pH 6.8). The data were obtained at or very near their respective resonance wavelengths, with either a spectrofluorimeter or with a linear light scattering apparatus, as described in the Materials and Methods section. We were unable to obtain linear light scattering data at 699 nm because our mixed gas ion laser does not have emission lines near that wavelength. The good agreement between the fluorimeter and linear light scattering apparatus demonstrates that Eq. 1 is valid. Therefore, reliable RLS depolarization ratios may be obtained with instrumentation that is both readily available and relatively inexpensive.

Fig. 7 shows that \(\rho_v(90) \) varies with wavelength. We have chosen to show this behavior for the 699 nm band of chlorophyll a aggregates because, unlike the Soret band (also known as the B band), the Q_y transition of chlorophyll a is pure (van Zandvoort et al., 1995). As a result, the dispersion of \(\rho_v(90) \) within the 699 nm band is not likely to be an artifact of spectral congestion that may occur from closely spaced x- and y-polarized transitions.

The data in Fig. 7 are fully consistent with the theoretical treatment of Stanton et al. (1981) for symmetric tops. Dispersion of \(\rho_v(90) \) arises from the frequency dependence of the molecular polarizability (Eqs. 9 and 10). At frequencies far below the resonance frequency, the depolarization ratio is dictated by the system’s static polarizability tensor, which, in turn, depends on the structure of the system’s ground state. At the resonance frequency, the depolarization ratio depends on the polarizability induced by the electronic transition. The value of \(\rho_v(90) \) is expected to increase with increasing frequency, reaching a plateau near the resonance frequency (Stanton et al., 1981). Beyond resonance, the depolarization ratio rises and can reach a maximum value of \(\frac{1}{3} \) at a wavelength where the tensor's trace (\(\alpha \)) vanishes (Eq. 17). For every symmetric top, there is a wavelength

TABLE 2 Depolarization ratios at resonance for some porphyrin and chlorophyll aggregates

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\lambda) (nm)</th>
<th>(\rho_v(90))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4TPPS4− at pH 0.5</td>
<td>488</td>
<td>0.17**</td>
</tr>
<tr>
<td>CuPagg2+ in 0.2 M NaCl</td>
<td>450</td>
<td>0.13*</td>
</tr>
<tr>
<td>CuPagg2+ on DNA</td>
<td>454</td>
<td>0.15*</td>
</tr>
<tr>
<td>Chlorophyll a in formamide/buffer (pH 6.8)</td>
<td>469 0.23*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>468</td>
<td>0.22*</td>
</tr>
<tr>
<td></td>
<td>699</td>
<td>0.32*</td>
</tr>
</tbody>
</table>

*Measured with a spectrofluorimeter.

*Measured with a laser light scattering apparatus.
aggregated in formamide/buffer. (a) RLS spectrum of the chlorophyll a aggregate in the Q_y region; (b) dependence of $\rho_\lambda(90)$ with wavelength in the Q_y region.

(a) RLS spectrum of the chlorophyll a aggregate in the Q_y region. (b) Dependence of $\rho_\lambda(90)$ with wavelength in the Q_y region.

DISCUSSION

Factors that determine intensity in resonance light scattering spectra

The calculations presented above lead to predictions of which molecular systems are amenable to analysis by RLS spectroscopy. However, it is important to discuss the limitations of the model before moving on to predictions.

Our calculations do not include charge-resonance (CR) and charge-transfer (CT) interactions. Thompson et al. (1991) have argued that such interactions contribute importantly to the position and intensity of the absorption spectrum of the bacteriochlorophyll b dimer in the reaction center of *Rhodopseudomonas viridis*. For example, both CT and CR enhance the extent of red-shift in the aggregate’s absorption spectrum relative to the monomer spectrum. Hence, CR and CT interactions are likely to modulate RLS intensities as well. However, we have chosen the simplest exciton-coupling model in order to minimize the number of adjustable parameters in the calculations. We believe that as long as the simple model is used appropriately and consistently we can gain qualitative insight into the RLS phenomenon. Our future efforts at understanding not only RLS intensities but also the electronic structure of porphyrin and chlorophyll aggregates will feature basis sets where CR and CT will be included explicitly.

Alden et al. (1992) point out that the exciton coupling calculations summarized by Eqs. 2–8 are valid for aggregate sizes that are considerably smaller than the resonance wavelength. For chlorophyll aggregates with moderately long resonance wavelengths ($\lambda > 660$ nm), the calculations may be taken to be valid up to $N \sim 100$, which translates to an effective length of ~ 200 nm for chlorophyll aggregates. As the aggregate size becomes very large, two effects are likely to occur: 1) the diagonal elements of the exciton coupling Hamiltonian will deviate from $\mathbf{\hat{t}}_{\text{mon}}$, and 2) the monomer transition moments will deviate from $\mathbf{\mu}_{\text{mon}}$. A charge resonance interaction between the Soret and Q states of the monomers is among the mechanisms that can bring about these changes (Ohno et al., 1993).

As a result of these constraints, our calculations of scattering cross-sections are ideally suited for investigation of relatively small aggregates. To this end, the data show that the scattering cross-section at the resonance frequency increases with size of an exciton-coupled aggregate of chromophores. However, the dependence is not simple and C_{sca} does not depend strongly on size until $N > 25$. These results explain some experimental observations concerning resonance light scattering spectroscopy: 1) monomers, dimers, and trimers of porphyrins do not show enough RLS to overcome absorption effects in the spectrum (Anglister and Steinberg, 1979; Stanton et al., 1981; Pasternack et al., 1993, 1994; de Paula et al., 1995; Borissevitch et al., 1997); and 2) the same is true for chlorophyll-binding proteins, such as the 47-kDa antenna protein of spinach photosystem II, which binds as many as 25 chlorophylls (data not shown).

Preliminary measurements of the size of H$_4$TPPS$_4^{2-}$ at low pH indicate that $N \approx 10^2-10^5$ (Pasternack, Gibbs, and Collings, unpublished results). Assuming that $N = 10^5$ and that the aggregate is roughly a cylinder (Ohno et al., 1993) with a radius corresponding to the radius of a tetraphenylporphine molecule (~ 0.2 nm; see Tran-Thi et al. (1992) for a justification), we estimate that the length of the aggregate is roughly 16 μm. We conclude from our calculations and observations to date that the aggregate must be very large in order to exhibit RLS spectra that are essentially free of absorption effects. A more exact determination of the threshold beyond which RLS overcomes absorption in synchronous luminescence measurements requires the characterization of systems where aggregate size may be controlled in the range $10^2 < N < 10^5$. Such experiments are being conducted in our laboratories.

Our results suggest that in addition to size two molecular parameters are important determinants of RLS intensity: electronic coupling and aggregate geometry. However, it is not always prudent to consider size, geometry, and electronic coupling as completely independent factors. For example, the resonance scattering cross-section depends on the mechanism through which coupling electronic coupling is modulated, as shown by Fig. 4. On the one hand, the scattering cross-section may be increased by increasing the monomer transition moment (Fig. 4 b). This may occur via charge resonance interactions between monomers which in turn may be facilitated by changes in the size and geometry of the aggregate (Ohno et al., 1993). On the other hand, changes in interchromophore distance can either increase or...
decrease the scattering cross-section in a manner that is dependent on the geometry of the aggregate (Fig. 4a).

Depolarized RLS as a probe of structure

Our theory predicts that the value of $\rho_v(90)$ depends only on the ratio of the principal values of the polarizability tensor at the resonance frequency. Therefore, the depolarization ratio reports on the geometry of the excited state of the aggregate, regardless of its size. To this extent, our calculations of $\rho_v(90)$ do not suffer from the limitations described above for the calculations of absolute values of $C_{scav}^\text{v(90)}$.

The $\text{H}_4\text{TPPS}_4^-$ aggregate at pH 0.5 has $\rho_v(90) = 0.17$ at 488 nm. From Fig. 5 we calculate $\alpha_{\parallel}/\alpha_\perp = 5.6$. Based on electronic absorption, fluorescence, and resonance Raman measurements, Ohno et al. (1993), Maiti et al. (1995), and Akins et al. (1996) have proposed that this system resembles the slipped J-aggregate of Fig. 1a, but the data did not allow for a determination of the slip angle φ. From our depolarized RLS measurement and from Eqs. 17–19, we calculate a value of $\varphi = 33^\circ$ or 56°.

The self-assembled aggregate of CuP^{2+} in 0.2 M NaCl has $\rho_v(90) = 0.13$ at 450 nm, which corresponds to $\alpha_{\parallel}/\alpha_\perp = 4.2$ (Fig. 5). This system also has spectral properties that suggest a J-aggregate (Pasternack et al., 1991). By applying the same rationale used above for the $\text{H}_4\text{TPPS}_4^-$ aggregates, we calculate $\varphi = 41^\circ$ or 49°. The $\text{CuP}^{2+}/\text{DNA}$ system has $\rho_v(90) = 0.20$ at 454 nm, which corresponds to $\alpha_{\parallel}/\alpha_\perp = 7.2$. Electronic absorption and RLS data suggest that the porphyrin forms a helical aggregate on the DNA template (Pasternack et al., 1991, 1993). Our depolarized RLS data are consistent with this hypothesis and further suggest that the porphyrin transition dipoles point away from the DNA helix axis by an angle of 29° or 61°.

The chlorophyll a aggregate in formamide/phosphate buffer (pH 6.8) has $\rho_v(90)$ values of 0.23 and 0.32 at 469 nm (Soret band) and 699 nm (Q$_y$ band), respectively. These correspond to $\alpha_{\parallel}/\alpha_\perp$ values of 9.7 (Soret band) and 85 (Q$_y$ band). Spectroscopic data on both chlorophyll a and bacteriochlorophyll a in aqueous formamide systems suggest that they self-assemble into a J-type aggregate with a helical structure (Scherz et al., 1991; de Paula et al., 1995). Our depolarized RLS data are consistent with either a slipped J-aggregate or with an anisotropic helical aggregate.

The data also suggest that the transition dipoles giving rise to the Soret band are “slipped” by $\varphi = 25^\circ$ or 65°, whereas the Q$_y$ dipoles are “slipped” by $\varphi = 9^\circ$ or 81°. Whereas either value for the slip between the Soret dipole and the aggregate axis is possible, we must exclude 81° as a possibility for the slip angle between the Q$_y$ dipole and the aggregate axis. This is because between the two possibilities only a slip angle of 9° is consistent with the observed red-shift of the Q$_y$ transition upon aggregation. A slip angle of 81° is consistent with an H-aggregate structure and would result in blue shifts in the Q$_y$ transition upon aggregation.

FIGURE 8 (a) Structure of chlorophyll a showing the ring numbering system used in the text. (b) Proposed alignment of the chlorophyll a monomer transition moments with respect to the long axis of the aggregate. The dashed line (the “aggregate axis”) represents the direction along which the macrocycles aggregate, with each macrocycle having the orientation shown in the figure. Only one monomer is shown.
CONCLUSIONS

Our data indicate that depolarized resonance light scattering is a powerful technique for the study of porphyrin and chlorophyll a aggregates. A simple determination of $p_{60}(90)$ with a commercial fluorimeter yields in fluid solution the same structural information that would only be accessible through linear dichroism studies in rigid or oriented systems. Our application of the technique to chlorophyll a aggregates led to a model (Fig. 8) of the alignment of the monomer units that is consistent with the crystal packing of chlorophyll a derivatives (Kratky and Dunitz, 1977).

Our calculations and a number of experiments by different groups indicate that the RLS technique, although highly sensitive to exciton-coupled aggregates, is limited in scope: only nanometer-to-micron-sized particles are likely to yield RLS signatures that are not affected strongly by absorption. However, this feature of the technique may be exploited in the study of a variety of biological and synthetic macromolecular systems, ranging from the light-harvesting chlorosomes of green photosynthetic bacteria (Blankenship et al., 1995) to materials for nonlinear optical applications (Schultz et al., 1990).

This work was supported by National Science Foundation grant CHE-9530707 (to J.dP., R.F.P., P.C., E.G.).

REFERENCES

