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Dendritic and Fractal Patterns in Electrolytic Metal Deposits

Yasuji Sawada, ~' A. Dougherty, and J. P. Gollub
Physics Department, Haverford College, Haverford, Pennsylvania 19041, and Physics Department,

University ofPennsylvania, Philadelphia, Pennsy(vania 19104
(Received 21 October 1985)

Pattern formation in the electrodeposition of Zn from a thin layer of ZnSO4 solution was studied
as a function of electrolyte concentration and applied voltage. We found several qualitatively dif-
ferent growth forms in this system. Most strikingly, a transition from dendritic crystals (where
crystalline anisotropy dominates) to disordered ramified patterns is found when the electrolyte con-
centration is reduced. The disordered patterns may be described as fractal below a concentration-
dependent cutoff length.

PACS numbers: 61.50.Cj, 05.70.Ln, 68.70.+w

The growth of dendritic crystals has attracted scien-
tific interest for nearly half a century because the
resulting symmetrical but complex forms are not well

understood. ' The complexity of dendritic growth has
been identified as being due to the Mullins-Sekerka
morphological instability, which renders a growing in-
terface unstable with respect to spatially periodic undu-
lations. Since the full nonlinear problem is difficult to
solve (even numerically), interest has centered on cer-
tain simplified models and limiting cases. 3 One fas-
cinating discovery is that transitions from ordered den-
dritic patterns to more disordered ("tip-splitting" ) pat-
terns may occur as the parameters representing crystal-
line anisotropy and supersaturation are varied.

On the other hand, deposition by diffusion to inter-
faces can lead to fractal patterns or aggregates, such as
those produced by diffusion-limited —aggregation
models. These are quite different from dendrites, in
that there is often no evidence of preferred axes, and
the surface is rough on a wide range of scales. The
possible connections between ordered interfacial pat-
terns and fractals have been explored to a limited ex-
tent both theoretically and experimentally through a
hydrodynamic analog. ' In this paper, we present an
experimental study of the electrodeposition of zinc
metal in a thin layer. We show that dendrites and
several distinct disordered patterns can be realized
simply by change of parameters.

The experimental configuration is a thin layer of
ZnSO4 solution confined between Plexiglas disks of di-
ameter 15 cm. The gap is 0.25 mm and is uniform to
within about 5'/0. A circular Zn electrode of diameter
10 cm surrounds the fluid, and a small carbon elec-
trode of diameter 0.5 mm protrudes vertically into the
fluid through a small hole at the center of the upper
disk. This configuration differs substantially from an
earlier experiment on Zn electrodeposition" in which
the growth occurred at the interface between two im-
miscible fluids in a deep cell. We chose the present
configuration in order to achieve a well-defined two-
dimensional growth process.

The electrolyte concentration C was varied from

0.0025M to 1M and the applied potential difference
4 V across the cell was varied from 2 to 12 V. We
found that the current through the cell was linear in
5 V to within about 10% in all cases, so that the trans-
port is essentially Ohmic. Deposits that formed on the
carbon electrode over times ranging from minutes to
hours were recorded on videotape and analyzed subse-
quently. (The competing process of electrolysis did
not appear to be significant except at very low C. ) We
found four qualitatively distinct growth regimes as C
and 5 V were varied. These regimes are summarized
in the phase diagram of Fig. 1, which is based on the
growth of approximately sixty patterns with parameters
located at most combinations of the labeled values of
Cand 5 V.

(a) At the lowest C (below about 0.01M) and low
4 V, the deposits are ramified structures with an outer
boundary that remained circularly symmetric (especial-
ly at low 5 V) during the entire growth period. We call
these homogeneous patterns and describe them quan-
titatively later. An example is shown in Fig. 2. As the
concentration is further reduced, these structures be-
gin to resemble those of DLA.

(b) At high C (roughly 0.1M—1M) and low 5 V, the
patterns grow slowly, and open ramified deposits are
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FIG. 1. Phase diagram showing the various types of pat-
terns observed as a function of electrolyte concentration C
and applied voltage 6 V.
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FIG. 2. Homogeneous pattern produced by the tip-
splitting instability, at two different magnifications
(C = 0.01M, S V = 6 V).

FIG. 3. (a) Open ramified deposit grown at high C ann
low 6 V (C = IM, 6 V=2 V). (b) Stringy pattern grown at
higher 6 V (C =0.01M, d V = 12 V).

obtained, as shown in Fig. 3(a). They appear to be
roughly fractal, but are too thick to merit quantitative
analysis. These patterns are similar to those studied
previously. "

(c) At high b, V and a wide range of C, the growth is
extremely fast, and thin stringy (nonoriented) struc-
tures are obtained [Fig. 3(b)]. Here, most of the
growth occurs at very few sites. The patterns resemble
those produced in dielectric breakdown.

(d) Finally, there is an intermediate and rather nar-
row range of C that yields dendritic growth, as shown
in Fig. 4(a). Here, there are well-defined "back-
bones" whose orientation is determined by crystalline
anisotropy. In fact, these patterns are much more op-
tically reflective than the other patterns, and each of
the dendrites seems to be a single crystal. Side
branches emerge from the main stems at fairly regular
intervals (0.5 mm). When examined at higher magni-
fication, we find that these dendrites have a more
complex structure, as shown in Fig. 4(b). The side
branches are covered with secondary side branches
whose spacing is about 0.05 mm. There may also be
even finer structure that is not resolved in these pic-
tures.

The boundaries shown in the phase diagram are only

approximate. A much larger number of runs would be
required to determine them accurately. This did not
seem worthwhile for two reasons. First, the diagram
depends to some extent on the layer thickness and on
the ambient temperature (23—25 'C in our experi-
ments). Second, the locations of the boundaries are
not sharply defined, since the patterns can be inhomo-
geneous. For example, stringy regions are found close
to the center of the homogeneous patterns [see Fig.
2(a)], presumably because the local field gradients are
high there. To avoid ambiguity, our classification is
based on the nature of the pattern 1.5 cm from the
center.

Examination by electron microscopy showed the
deposits to be thinner than 0.2 p, m in cases (a) and
(d). Thus, the homogeneous and dendritic patterns
may be reasonably regarded as two dimensional. On
the other hand, the deposits of cases (b) and (c) are
much thicker (about 0.1 mm). [The open deposits (b)
are composed of randomly oriented hexagonal plate-
lets a few microns in diameter. ]

Some insight into these qualitatively distinct regimes
can be obtained by comparison of the linear growth
speeds (Fig. 5) for various patterns, measured at the
outermost part when it is about 1.5 cm from the

1261



VOLUME S6, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MARCH 1986

50-

QQ

E

50-
Ch
IJJ

cn 20—

IQ—
O.OI M

Ch I I I

0 2 4 6 8 lO

a v (v)

I

l2

FIG. 5. Linear growth speeds for all the patterns, mea-
sured when the outermost portion of each one is 1.5 cm
from the center, as a function of C and 5 V.

FIG. 4. Dendritic pattern found at intermediate concen-
trations (C = 0.03M, 5 V = 6 V).

center. At low C (homogeneous patterns), the veloci-
ty is approximately independent of 5 V. This contrasts
sharply with the behavior at high C, where the growth
speed is strongly nonlinear in 6 V. In that case, the
growth is extremely slow and roughly fractal deposits
are formed if A V is low, while fast-growing stringy pat-
terns occur if 4 V is high. Finally, we note that the
growth speed is quite linear in the voltage for the den-
dritic case (0.03M).

We analyzed the homogeneous patterns quantita-
tively by digitization with a resolution of 512 x 480 pix-
els. The growth zone was found to be confined to the
outer 10% (approximately) of the pattern. We mea-
sured the fractal dimension by dividing the pattern
into boxes of size e, and then counting the number of
boxes containing occupied pixels as a function of e, in
the usual way. This number scales as e, where D is
the fractal dimension. A well-defined scaling range
was not found. Instead, there appears to be a cross-
over from a large value D =1.8+0.2 at scales larger
than a concentration-dependent length 5 to a much
smaller value of roughly 1.4+0.2 at smaller scales.
The patterns may be regarded as fractal on scales
below 5 (but above some microscopic lower cutoff),

and as approximately homogeneous on larger scales
(hence the name). The length scale 5 is only about 1

mm in Fig. 2, but increases strongly as the concentra-
tion is reduced. At a concentration of 0.005M, 5 is

sufficiently large (about 1 cm) that the patterns resem-
ble typical DLA patterns (they show larger gaps of
variable size between growing branches than those
seen in Fig. 2).

What theoretical framework is appropriate for ef-
forts to explain these phenomena~ It is well estab-
lished that electric charge neutrality can be assumed,
except within a thin boundary layer at the surface of
the metal deposit. ' The thickness of this boundary
layer is of the order of 10 A for a static system, but
here it might be thicker, possibly of the order of the
diffusion length given by the ratio of the diffusion
constant to the interfacial velocity. This length would

typically be tens of microns. Outside the boundary
layer, the electric potential is determined by Laplace's
equation. (Certain DLA models can also be regarded
as generators of solutions to Laplace's equation. ) The
rate of mass transport outside the boundary layer is

simply proportional to the gradient of the potential and
to the concentration of the transported species (Zn).
We believe that transport by diffusion can be neglect-
ed outside the boundary layer, because the cell is
Ohmic, as explained earlier. We have also checked for
macroscopic fluid motion in the cell by searching for
enhanced transport of a neutral soluble dye. Motion
on scales larger than the layer depth was not detected
at moderate C and 4 V. However, motion on the scale
of the layer depth near the interface may possibly be
present. The release of latent heat is one mechanism
that could induce such motion, and electric-
field-induced bulk motion is also known. Therefore,
the ionic transport near the surface could involve a
mixture of diffusion, bulk convective motion, and
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field-driven motion. This complexity may make it un-
realistic to seek a quantitative model for all of the
growth forms of Figs. 2-4. However, we believe that
the transition from homogeneous to dendritic patterns
as the concentration is varied should be amenable to
theoretical treatment.

We wish to emphasize the essential observation that
the transition from disordered to dendritic forms gen-
erally involves an increase in growth speed. For exam-
ple, one can go from homogeneous (tip-splitting) pat-
terns to dendrites by increasing C (and indirectly, the
growth speed) at a fixed b, V=8 V. This behavior is
consistent with theoretical expectations and the
behavior of simple model systems, for example, the
"geometrical model" of crystal growth, in which the
local growth speed is taken to be a function of the local
curvature. Numerical and analytical studies of this
model reveal a transition to dendritic behavior as the
supersaturation S (or growth speed) is increased. If S
is lower than a critical value, a tip-splitting instability
prevents the formation of regular dendritic patterns.
Similar transitions have been observed in other simula-
tions. ' Tip splitting has been observed in ordinary
crystal growth, but dendrites seem to be much more
robust in that case.

During the preparation of this manuscript, we be-
came aware of related experiments by Grier et al. '

They also observe the dendritic to fractal transition as
C is reduced, but classify the various patterns some-
what differently.

These observations support the existence of a close
relationship between dendritic patterns that are dom-
inated by crystalline anisotropy, and disordered pat-
terns that may in some cases be considered to be frac-
tal, as suggested by several theoretical models. This
work leaves several important questions unanswered.
What is the origin of the concentration-dependent
crossover length scale 5? Why is crystalline anisotropy
manifested macroscopically only in a relatively narrow
part of the parameter space?
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