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The origin of irreversible behavior is
a persistent theme in physics. Since the
fundamental microscopic laws, includ-
ing both Newton’s laws and quantum
mechanics, are reversible (except for the
weak interactions), the fact that most
macroscopic systems behave irre-
versibly has long been recognized as an
important issue.

The problem of understanding
macroscopic irreversibility was solved
more than 100 years ago by Ludwig
Boltzmann, who recognized that sys-
tems evolve toward more probable
states, namely, those that have a larger
number of microscopic configurations
for a given macroscopic state. This is
such a powerful tendency that on the
macroscopic level, fluctuations that go
against it are so improbable as to be
negligible. The result is a probabilistic
explanation of macroscopic irreversibil-
ity and the second law of thermody-
namics. (See the article by Joel Lebowitz
in PHYSICS TODAY, September 1993,
page 32.)

Nevertheless, Boltzmann did not ex-
plain the microscopic chaotic dynamics
that leads to macroscopicirreversibility.
Consider an imaginary gas of hard
spheres that elastically collide with
each other and obey the laws of New-
tonian mechanics. It is perfectly con-
ceivable that many microscopic states
will never be visited, even in the age of
the universe, and that some improbable
states will persist, so the exploration re-
quired to achieve macroscopic irre-
versibility is not guaranteed. For exam-
ple, a hard-sphere gas in a box in which
all particles move parallel to the x di-
rection so that they do not collide could
persist forever. But, it is known that the
hard-sphere gas is chaotic. Thus, on the
average, a small perturbation to an ini-
tial configuration of particles becomes
amplified exponentially over time.
Chaos ensures that evolution to a rep-
resentative sample of microstates oc-
curs,! and that reversal of the velocities
of all the particles does not in practice
lead to a time-reversed motion. There-
fore, both the microscopic and macro-
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scopic behaviors of statistical systems
are irreversible.

The strength of this sensitivity to ini-
tial conditions due to chaotic dynamics
may be characterized by what are
known as the Lyapunov exponents.
They give the rates of exponential
growth of the vector difference between
two nearby trajectories along different
directions in phase space.

In some fields of physics outside the
domain of equilibrium statistical me-
chanics, similar considerations apply.
For example, consider turbulence,
which can produce irreversible mixing
of a localized impurity in a fluid. The
evolution of the fluid is governed by the
Navier—Stokes equations, a set of deter-
ministic nonlinear differential equa-
tions for the velocity field. Turbulence
is generally understood to involve
chaos arising from the nonlinear dy-
namics of these equations. (See the arti-
cle by Gregory Falkovich and Katepalli
Sreenivasan in PHYSICS TODAY, April
2006, page 43.) Therefore, a statistical
description is necessary.

Flow at low Reynolds number

Direct experimental tests of reversible
behavior are rare in physics. One can
imagine looking at the evolution of a
hard-sphere gas, but there is no way to
reverse the velocities at an instant to in-
vestigate the time-reversed evolution.
However, in fluid dynamics there is a
way to do this, because the equations of
fluid dynamics at low Reynolds num-
ber Re (that is, for sufficiently slow flow
or high viscosity 1) are in fact strictly re-
versible. These Stokes equations are ob-
tained from the Navier-Stokes equa-
tions for incompressible fluids simply
by omitting the nonlinear term and the
time derivative of the velocity field:

~Vp + nVPu =0
V-u=0.

The velocity field u(r, t) is then governed
simply by the pressure p and the bound-
ary conditions on u(r, t). In a simple shear
flow between parallel plates, these equa-
tions imply that reversal of the boundary
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motion will instantly reverse the velocity
at each position in the fluid.

It may seem odd that the flow of a
dissipative fluid can be reversible, since
physicists usually associate reversibil-
ity with the conservative limit of classi-
cal mechanics. Yet in this driven system,
reversibility occurs in the highly dissi-
pative limit.

Half a century ago, G. I. Taylor made
a movie that beautifully demonstrated
the reversibility of low Re flow by in-
serting a small blob of dye into a very
viscous fluid contained in the gap be-
tween two concentric cylinders, then
rotating the inner cylinder many turns,
thus stretching the dye into a thin fila-
ment about 50 cm long. Finally, the ro-
tation was reversed, and the dye was
miraculously reconstituted as a spheri-
cal blob, with only a slight amount of
blurring due to Brownian motion at the
edges of the blob. (See the online video?
of Taylor’s famous demonstration.)

A viscous suspension

Last year, we asked ourselves whether
the same reversible behavior would
occur if the fluid is a suspension of
macroscopic particles rather than a pure
viscous Newtonian fluid. A Newtonian
fluid is one for which the shear force and
strain rate or velocity gradient are pro-
portional. Many common fluids, such as
blood and paint, are actually suspen-
sions. If we assume Brownian motion is
negligible, the fluid should still follow
the Stokes equations, though the equa-
tions would be complicated to solve ex-
actly, since the correct no-slip boundary
conditions would have to be satisfied on
the surfaces of all the particles as well as
on any exterior surfaces, such as the
walls of the cylinders containing the
fluid. One can reverse the motion of the
fluid and the particles simply by revers-
ing the motion of the inner cylinder, just
as Taylor did in the demonstration just
mentioned.

When we tried the experiment, we
found that the motion of a dense viscous
suspension is almost perfectly reversible,
but only if the rotation prior to reversal
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is not too large. The appropri-
ate dimensionless measure of
rotation is the strain ampli-
tude, the maximum az-
imuthal translation divided
by the width of the gap be-
tween the cylinders. But if the
strain amplitude exceeds a
critical value, the motion actu-
ally becomes visibly irre-
versible, and particles fail to
return to their starting posi-
tions.? In fact, they execute a
random walk if the rotation is

havior of the solar system
over long times.> The solar
system has sensitivity to
initial conditions, and it
would presumably be irre-
versible as a result. How-
ever, the extent of ir-
reversibility, and the
possible existence of a
threshold, would obvi-
ously have to be studied
numerically.

Are there other areas of
physics for which the ori-

repeated and the particles
are observed stroboscopically,
that s, once per cycle of the ro-
tation and reversal. The figure
shows some of these appar-
ently random trajectories. It
looks like Brownian motion,
but it is not due to thermal excitation,
which is negligible for particles that are
200 microns in diameter.

Why do the reversible equations of
motion produce such irreversible be-
havior? To answer this question, our
colleagues John Brady and Alex Le-
shansky performed accurate numerical
simulations of the process.> They
demonstrated that the motion is sensi-
tive to initial conditions, and that the
largest Lyapunov exponent for this
process grows rapidly just where the
experiments show that the motion be-
comes irreversible.

Thus, the irreversible particle trajec-
tories in a viscous suspension flow re-
semble particle trajectories in a hard-
sphere gas or tracers in turbulence. All
three involve sensitivity to initial condi-
tions or to perturbations anywhere
along the path in phase space. The im-
portant difference is that the suspension
case allows a clear experimental demon-
stration, because reversal of the bound-
ary motion reverses the motion of all of
the particles and the intervening fluid.

One remaining mystery is that we
don’t really know why there appears to
be a threshold in the amount of rotation
required to produce irreversibility.
Other chaotic systems do not show a
sharp change of this kind.

Note that the irreversibility of the
trajectories of individual particles is mi-
croscopic, and therefore would lead in-
evitably to macroscopic irreversibility.
For example, were we to repeat Taylor’s
experiment on a suspension by insert-
ing a blob of dye, the blob should dif-
fuse anomalously fast.

Other examples of irreversibility

Irreversibility of fluid motion also oc-
curs at a high Reynolds number, but it
is not surprising there because the
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twice the thickness o
individual particles.

Demonstration that particles in a reversing shear flow behave

irreversibly. The trajectories shown are of tracked particles

observed once per cycle. The maximum displacement is about
{ the fluid layer. Different colors indicate

equations are nonlinear and time de-
pendent. For example, vorticity spreads
irreversibly in a turbulent flow, in much
the same way that tracer molecules
spread in a solution.

Irreversibility and mixing can also
occur at an arbitrarily low Reynolds
number in a pure fluid, as Julio Ottino’s
elegant experiments have shown.* One
example is the time-periodic flow in the
annulus between counterrotating cylin-
ders with the inner one off center. The
equations for the stream function
W(x, y), whose derivatives give the ve-
locity components along x and y for
fluid motion in two dimensions, turn
out to be of the same form as Hamilton’s
equations of classical mechanics, as was
pointed out years ago by Hassan Aref.
The result is something equivalent to
the chaos that occurs in classical me-
chanics (for example, in simple anhar-
monic oscillators), but in real space
rather than in phase space. Chaotic mix-
ing in these two-dimensional flows,
where there are no added particles and
the Reynolds number is small, is simply
a consequence of the motion of fluid el-
ements in a flow determined by the pre-
scribed boundary motion. This pure
fluid flow should also be irreversible.

These examples show that the irre-
versibility of microscopic trajectories of
particles or fluid elements does not re-
quire that the dynamical equations vio-
late time-reversal symmetry (though
that can also happen, as in finite
Reynolds number flows), or that the
system be coupled to a source of exter-
nal noise. Furthermore, fluid dynamics
provides anatural context to explore re-
versibility experimentally.

Farther dofield

Another well-known example of irre-
versibility mediated by chaos is the be-

gins of microscopic irre-
versibility can be usefully
explored? These days,
there is much interest in co-
herent quantum systems
that could potentially be
used for computing. One of
the key difficulties in achieving useful
computation is decoherence, in which
interactions between a quantum system
and its surroundings produce irre-
versible change. That occurs even
though the laws of quantum mechanics
governing the system plus its environ-
ment are reversible, as is the case for the
suspension flow, where the fluid equa-
tions are reversible but the particles be-
have irreversibly.

The irreversibility due to chaos dis-
cussed in this column is quite different
from the violation of time-reversal sym-
metry that occurs, for example, in the
weak interactions governing the
K-meson system. The microscopic irre-
versibility of particle trajectories in the
viscous suspension arises from sensi-
tivity to initial conditions. It does not re-
quire any fundamental asymmetry be-
tween future and past and provides a
mechanism for both macroscopic and
microscopic irreversibility. The experi-
mental study of irreversibility can lead
to unexpected results.

The authors appreciate helpful discussions
with Paul Chaikin, Robert Hilborn, Pierre
Hohenberg, Leo Kadanoff, Joel Lebowitz, and
Tom McLeish.

References

1. J. R. Dorfman, Phys. Rep. 301, 151 (1998).

2. A video clip of G. I. Taylor’s demonstra-
tion is available at http://www.physics
nyu.edu/pine/research/hydroreverse.html.
Along with many other lovely demon-
strations, it is contained in Multimedia
Fluid Mechanics CD-ROM, G. M. Homsy,
et al, Cambridge U. Press, New York
(2000).

3. D. ]. Pine, ]J. P. Gollub, J. E. Brady, A. M.
Leshansky, Nature 438, 997 (2005).

4. J. Ottino, Annu. Rev. Fluid Mech. 22, 207

(1990).
5. G.J. Sussman, J. Wisdom, Science 257, 56
(1992). [}

August 2006 Physics Today 9



