Haverford College
Haverford Scholarship

Faculty Publications Mathematics & Statistics

1974

Algebraic Description of Motion

William C. Davidon
Haverford College

Follow this and additional works at: https://scholarship.haverford.edu/mathematics_facpubs

Repository Citation
Davidon, William C. "Algebraic Description of Motion." American Journal of Physics 42.9 (2005): 764-767.

This Journal Article is brought to you for free and open access by the Mathematics & Statistics at Haverford
Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford
Scholarship. For more information, please contact nmedeiro@haverford.edu.


https://scholarship.haverford.edu/
https://scholarship.haverford.edu/mathematics_facpubs
https://scholarship.haverford.edu/mathematics
https://scholarship.haverford.edu/mathematics_facpubs?utm_source=scholarship.haverford.edu%2Fmathematics_facpubs%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu

AMERICAN
JOURNAL

PHYSICS EDUCATION Of PHYS ICS -
e —

Algebraic Description of Motion
William C. Davidon

Citation: Am. J. Phys. 42, 764 (1974); doi: 10.1119/1.1987831

View online: http://dx.doi.org/10.1119/1.1987831

View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v42/i9
Published by the American Association of Physics Teachers

Additional information on Am. J. Phys.

Journal Homepage: http://ajp.aapt.org/

Journal Information: http://ajp.aapt.org/about/about_the_journal

Top downloads: http://ajp.aapt.org/most_downloaded

Information for Authors: http://ajp.dickinson.edu/Contributors/contGeninfo.html

ADVERTISEMENT

going green with

2013

Downloaded 06 May 2013 to 165.82.168.47. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

STTARARL


http://ajp.aapt.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/2114182956/x01/AIP/PortlandSM_HA_TPTCovAd_1640Banner_04_02_2013/SM13_Portland_PDFdwnld.jpg/7744715775302b784f4d774142526b39?x
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=William C. Davidon&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.1987831?ver=pdfcov
http://ajp.aapt.org/resource/1/AJPIAS/v42/i9?ver=pdfcov
http://www.aapt.org/?ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://ajp.aapt.org/about/about_the_journal?ver=pdfcov
http://ajp.aapt.org/most_downloaded?ver=pdfcov
http://ajp.dickinson.edu/Contributors/contGenInfo.html?ver=pdfcov

AJP Volume 42

Algebraic Description of Motion
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(Received 13 September 1973; revised 23 November 1973)

An algebraic defimition of time differentiation 1s
presented and used to relate tndependent- measurements of
position and velocity. With this, students can grasp
certain essential physical, geometric, and algebraic
properties of motion and differentiation before under-
taking the study of limats.

I, INTRODUCTION

Since the end of the seventeenth century, when
Newton and Leibniz began the development of
differential caleulus, the velocity of an object at
one time has usually been defined as the limit of
its average velocity Axz/Atf as the time interval At
approaches zero. This definition has become so
familiar to many of us that certain physical,
mathematical, and pedagogical difficulties with it
are often overlooked. Among these are:

(1) Physical measurements of the velocity
at one time cannot be based directly on this
definition since as At decreases sufficiently, the
determination of average velocity by successive
position measurements gives decreasing precision
due to experimental, thermal, and quantum
limitations.

(2) The physical significance of velocity as
an independent physical quantity and the
possibility of measuring it directly are obscured.

(3) While the algebraic and geometric aspects
of differentiation commonly used in physies
problems can be deduced from a definition in
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terms of limits, they need not be. There are im-
portant epistemological and pedagogical reasons
for making no stronger assumptions than are
needed and for choosing definitions which relate as
closely as possible to actual physical processes and
typical computations concerning them.

(4) Most scientists, let alone first~year
physics students, are not sufficiently familiar
with the local topological properties of the con-
tinuum to appreciate the full implications of the
deceptively simple assumption that the limit of
Az/ At exists as At—0. The existence of this limit
is usually taken for granted or justified intuitively
even though it is a vast extrapolation beyond
experience to aspects of motion over time and
distance intervals on a sub-nuclear scale.

Other criticisms of this definition of velocity
range from the philosophical ones in Berkeley’s
Analyst' to pedagogical ones in Saletan’s Velocity
without Limats.? While Saletan defines velocity
without reference to limits, his definition does use
the usual ordering of real numbers from which all
their topological properties and hence the usual
limits could be defined.

In this paper, we propose an alternative alge-
braic definition of differentiation which makes no
use of limits or other topological concepts and
which does not share the difficulties listed here for
the usual one. While the basic mathematical
ideas are standard algebraic ones, their use in
physies seems to have been overlooked.

II. MEASUREMENT OF VELOCITY

While length and time have been chosen as
primary quantities in terms of which kinematic
ones can be defined, this is a result of historical
and technical developments and is not logically
necessary. Velocity could be chosen as a primary
quantity to replace length or time, as is electrie
current in emu and SI units for the precisely
analogous electrical case.

By putting position and velocity measurements
on a more equal footing, we can better study the



relations between them and derive either from the
other, rather than being bound to the view that
velocity is necessarily derived from position.

Some methods for measuring velocity directly
which are of considerable scientific and techno-
logical importance are based on the following
velocity dependent effects:

(1) Centripetal acceleration of a rotating
mass—used for governors on old steam engines.

(2) Bernoulli pressure drop in a moving
fluid-—used to measure the air speed of some air-
planes.

(3) Force between a magnet and a con-
ducting loop in relative motion—used in auto-
mobile speedometers.

(4) Doppler frequency shift—used for deter-
mining interstellar and intergalactic velocities as
well as in radar measurements of the velocities of
nearby planets, satellites, and terrestrial objects.

(5) Cerenkov radiation—used to measure
the velocity of charged particles travelling through
matter at speeds greater than ¢/n, where ¢ is the
velocity of light in vacuum and » is the refractive
index of the matter through which the particle
moves.

When measuring time-dependent velocities,
each actual measurement is a weighted average
of the instantaneous velocity over the response
time of the measurement apparatus. A better
approximation to the instantaneous velocity can
be achieved by shortening the response time or by
mathematical processing of the data. These
features are common to measurements of all time-
dependent quantities—position, for example, as
well as velocity—and give no reason for con-
sidering velocity to be a derived quantity or less
directly measurable than others.

In the absence of restrictions on the time de-
pendence of forces on a particle, no finite sequence
of position measurements, no matter how short the
time duration between them, can provide any
strict bounds at all, let alone precise values for the
velocity at any time. This is the case even with the
assumption that the position varies as a “smooth’
(e.g., polynomial) function of time. It is useful
therefore to divide the process of relating position
to velocity into three parts. In the first, position
mesasurements are used to determine a smooth
interpolating function for the time dependence of
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position. In the second part, the velocity as a
smooth function of time is obtained from this
interpolating function by time differentiation to be
defined algebraically in the next section. Finally,
independent measurements of velocity at any time
are compared with this derivative.

III. AN ALGEBRAIC DEFINITION OF
TANGENTS AND DIFFERENTIATION

Methods which make no use of limits have been
known since antiquity for constructing tangents to
circles and other conics, Tt seems to be less widely
known that finite or algebraic means exist for
constructing tangents to any algebraic curve,
i.e.,, one whose abscissa and ordinate satisfy an
algebraic equation. Our definition of differentia-
tion and its geometric interpretation is based on
the following property of polynomials®.

Theorem 1: For every polynomial ¢ in time,
there is just one polynomial function ¢’
with ¢(2) =q(a) + (t—a)q' (a) + (t—a)¥/(t, a)
for some polynomial function f and for
every {and a.

Proof: By substituting (I—a)+a tor ¢t and ex-
panding, any polynomial ¢ in ¢ can be expressed
as a polynomial in {—a with coefficients which
are polynomials in a. We obtain the expression
for ¢(¢) needed to prove the theorem by then
factoring (t—a)? from terms of second and higher
degree.

Definitions: The time-derivative ¢' of any
polynomial ¢ in time is the unique one
specified in theorem 1. The tangent at time
t=a to the graph of ¢ is the graph of the first
degree polynomial, g(a)+ (t—a)q'(a).

The equality between the value of the time deriva-
tive and the slope of the tangent follows directly
from these definitions.

Theorem 2: Time differentiation has the
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properties

(i) (t—a)’ =1 for any number a,
(i) (p+¢)'=p'+¢ and

(i) (pg) =p'q+pq for any polynomials
p and g. Conversely, if p* is the image of p
under any map of polynomials into poly-
nomials satisfving these three properties, then
p*=1p’, the time derivative of p, for all p.

The proof follows directly from the definition of
the time derivative and the fact that two poly-
nomials in t—a are equal if and only if their cor-
responding coefficients are all equal. Actually, only
the coefficients of the first power of {—a need be
considered.

Theorem 2 establishes that properties i, i,
and iii give an equivalent algebraic definition of
the time-derivative of polynomials. These alge-
braic properties are the ones most frequently used
when carrying out differentiations. Properties ii
and iii alone define a derivation on the ring of poly-
nomials? and there is just one derivation satisfying
property 1. Of these three properties, the one that
many find least intuitive is the product rule, iii.
Indeed, one of the sounder parts of Berkeley’s
criticism of Newton’s fluxions, at least by current
standards, concerned just this property, as Hamil-
ton noted in a letter to the mathematician DeMor-
gan.® Its geometric significance can be seen by con-
sidering the growth of a rectangle whose sides p
and ¢ are funetions of time. If the orientation of its
sides and the position of one vertex remains fixed,
the trajectory of the opposite vertex divides the
rectangle into two parts whose areas change at the
rates p'g and pg’. Thus the total area changes at
the rate (pq)’=p'qg+pq’.

As a mathematical exercise to demonstrate con-
clusively that no hidden use has been made of
limits or other topological assumptions in this
definition of differentiation and tangents, it may
be instructive to substitute a finite number field,
for example, the field of integers modulo a prime p,
for the coefficients, arguments, and values of the
polynomials.® The graphs of polynomials and their
tangents then each consists of just a finite number
of points, though for large p they exhibit many
features of the usual ones.
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IV. CURVE FITTING

Having given an algebraic definition of differen-
tiation, we return to the first and third parts of the
process of relating position to velocity measure-
ments mentioned at the end of Sec. II, i.e., we
use the results of N position measurements, each
made with finite precision, to determine the best
values of up to N parameters for a family of
interpolating functions. ¥From these, an estimate
for both the mean value and the standard devia-
tion for the velocity at any time can be obtained by
differentiation. These can then be compared with
velocity measurements.

For a specific and useful example of this pro-
cedure, we consider a situation in which it is
believed reasonable to assume that the accelera-
tion remains constant over the period of time that
measurements are made. Then, at least three
position measurements are needed to determine
the values of the three coeflicients of the second
degree polynomial function which gives the best
fit to the position data. For reasons of simplicity
and symmetry, assume that four measurements
are made at times —3a/2, —a/2, a/2 and 3a/2
with results T se2, T—as2, Tep, 8nd Ts.z and that
they are all made with the same precision. The
best estimate for the mean value and standard
deviation for the velocity v, at t=0 is then

Vo= ( 10(1) -1 (3l'3a/2+ Zopp— T—pja— 3T _zqs2

+ I zSu/Z_ 3xu/2+31—'a/2_ I—3B/2 |) .

This result is obtained by standard methods®
based on the assumption that the measure of
goodness of fit, chi-squared, is to have its mean
value, the number of measurements less the num-
ber of parameters, which in this case is 4—-3=1.

V. CONCLUSION

The velocity of an object at one time is con-
sidered an independent physical quantity directly
measurable by such methods as those listed in
Sec. II. The process of relating independent posi-
tion and velocity measurements can be divided



into three parts—fitting a polynomial function
to the position measurements, differentiating this
polynomial by the algebraic means presented in
Sec. III, and then comparing the result with
velocity measurements. An example is given in
Sec. IV for a procedure to estimate the velocity at
one time and its standard deviation based on four
position measurements.

By applying these methods both to actual
position and velocity measurements as well as in
computations, students can grasp the essential
physical, algebraic, and geometric aspects of
differentiation before they undertake any study
of limit processes.
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