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Kinematics and dynamics of elastic rods

William C. Davidon
Department of Physics
Haverford College

Haverford, Pennsylvania 19041
(Received 2 December 1974)

A simple macroscopic theory of elastic rods is pre-
sented in which all assumptions but one are consistent
with both Newtonian mechanics and special relativity.
The one distinguishing assumption is the inertial equiva-
lence of energy. While invariance of the theory under
Lorentz transformations is proved, all physical conse-
quences—including the stress and velocity dependence of
the length and inertial mass of a rod as well as the
velocities of sound through it—are derived and can be
tested in any one inertial frame. Exact wave solutions
of the basic equations are obtained for an idealized
elastic material in which the velocity of sound is in-
dependent of amplitude. These solutions are used to
account for the kinematics and dynamics of accelerated
rods, including the time-dependent processes which result
in their overall Lorentz contraction.

1. INTRODUCTION

In Newtonian mechanics, the length of an elastic rod
changes with stress but is independent of its velocity,
while its linear momentum changes with velocity but is
independent of stress. When the inertial equivalence of
energy is considered, length and momentum each depend
on both stress and velocity. While the velocity depen-
dence of these and other quantities can be determined by
symmetry under Lorentz transformations, symmetry alone
does not determine the time-dependent stresses and ve-
locities of different parts of a body during acceleration.
For these, a more specific theory of elastic bodies is
needed.

Theories based on Newtonian mechanics have long
been used to describe the kinematics and dynamics of
elastic bodies at nonrelativistic speeds.! Corresponding
theories invariant under the Lorentz transformations of
special relativity rather than the Galilean transformations
of Newtonian physics, such as those presented by Synge,*
Mgller,® and others, have been used less frequently,
probably because of their considerable complexity and the
lack of experimental tests. Nevertheless, a study of the
processes which take place in elastic bodies during accel-
eration, as described in any one inertial frame, can con-
tribute to our understanding not only of elastic bodies but
also of more general conservation laws and symmetry
principles.

Here, we introduce a simple theory of moving elastic
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bodies and use it to account for the kinematics and
dynamics of rods accelerated to any speed less than that
of light. While symmetry of this theory under Lorentz
transformations is proved, this need not be used in deriv-
ing the physical consequences of the theory in any one
inertial frame. Of the five basic equations of this theory,
four are consistent with both Newtonian mechanics and
special relativity. The fifth, from which symmetry under
Lorentz rather than Galilean transformations follows, is
the inertial equivalence of energy; that is, to each quantity
E of energy, there corresponds an inertial mass E/c2. All
aspects of the theory can be directly compared with their
Newtonian counterparts by substituting zero for 1/c2.

To focus on the most essential physical ideas, we con-
sider only one-dimensional rods, and we assume that all
deformations occur elastically and adiabatically, with no
thermal or hysteresis effects. To facilitate the physical in-
terpretation of the theory and comparisons with its New-
tonian limit, we leave the factor 1/c? explicit and sepa-
rately specify the space and time components of space—
time vectors and tensors.

Throughout this paper, we choose a single though ar-
bitrary inertial frame for the description of all physical
processes, just as we choose a single though arbitraty set
of units. We will consistently leave this choice implicit,
and refer to the velocity of a particle or the momentum
and kinetic energy of a body without repeating each time
that these are with respect to the arbitrarily chosen inertial
frame.

To ensure that no hidden assumptions are used in deriv-
ing our basic results, and to separate their precise state-
ment and proofs from more informal and intuitive discus-
sions of their physical significance, we give five essen-
tially self-contained theorems and mark the end of their
proofs with a square, o. We define 9, and 9, as differen-
tiation with respect to space and time, and similarly &,
and 9, are differentiation with respect to stress S and vel-
ocity v. While we consider only one-dimensional rods,
we choose lowercase greek letters for quantities which in
the three-dimensional case are scalars, lowercase latin let-
ters for quantities which generalize to 3-vectors, and up-
percase latin letters for those which generalize to second-
rank tensors or 3 X 3 matrices.

2. BASIC QUANTITIES AND ASSUMPTIONS

In the theory to be presented, there are just two inde-
pendent quantities defined at every point in an elastic
body at each time. These are the stress S and the velocity
v. Figure 1 shows a rod moving with constant velocity v
while subject to a uniform compressional stress S by a
force + S at its left end and — § at its right end. In one
dimension, the SI unit of stress is a newton, N, and in
three dimensions it is a N/m?. This theory will determine
the time development of the stresses and velocities of all
parts of an elastic body in terms of their values at any
one time, the elastic properties of the material, and the
values of any external forces.

In addition to the two independent quantities S and v,
four dependent ones are basic:

(i) U, the strain, whose increment U, — U, at a point
embedded in the material gives the factor L,/
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FORCE: §
POWER IN: SV

FORCE: -S
POWER OUT: SV

Fig. 1. A stressed rod in uniform motion. Balanced forces § and —§
transfer momentum at the rate S and energy at the rate Sv from the left
to the right end of the rod.

Lo = exp(U; — Uy) by which the distance L to each nearby
point changes. It is dimensionless. There are various de-
finitions for finite strain which all agree to first order.
This one is chosen here since its time dependence is re-
lated to v by the simple differential equation (2.1).

(ii) p, the density of inertial mass, or simply the in-
ertia density, including the inertial equivalent of all forms
of energy, elastic and kinetic. The value of inertia density
p whenv =0, as a function of stress alone, is defined as
the mass density w, that is, u = plv=o. The SI units of
both p and g are kg/m in one dimension and kg/m® in
three.

(iii) g, the flux of inertial mass past a stationary
point, as well the density of linear momentum, or simply
momentum density. Its ST unit is kg/sec = N sec/m in one
dimension, and kg/m? sec = N sec/m3 in three.

(iv) T, the flux of linear momentum past a stationary
point, with T =8 when v = 0. Its SI unit is a newton in
one dimension and N/m? in three.

Our first assumption about these quantities is the only
purely kinematic one,

(0, +v3,)U=20,0. 2.1)

This states that the total time rate of change of strain U at
a point moving with the material equals the space rate of
change of velocity v. Instead of assuming this, it could be
derived from (d; + v, )U = &,L/L and ;L = Ld,v,
where L is the distance between closely spaced points
embedded in the material.

Our next two assumptions state that the time rate of
change of inertial mass and linear momentum within any
region equals their net flux into the region. When the
only external forces are applied at the boundaries of the
elastic body so that there are no sources or sinks for iner-
tial mass or momentum in its interior, these assumptions
give the homogeneous equations of continuity

9,p+0,8=0 2.2)
and
9,8+9, T=0, (2.3)

Our last two assumptions express the flow of inertial
mass and momentum as a sum of a convective part,
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equal to the density of the quantity times the velocity of
the material, and a conductive part, equal to the flow past
a point moving with the material,

T=gv+$S (2. 4)

and

g=pv+Sv/c, (2. 5)

where 1/c? = 1.11265 x 1077 kg/J is the inertial equiva-
lent of energy. The terms in Eqgs. (2.4) and (2.5) have
simple physical interpretations in the situation shown in
Fig. 1. A rod under uniform stress § conducts linear
momentum from one end to the other at the rate S, giving
the second term on the right of Eq. (2.4). A moving rod
under stress also transmits energy from one end to the
other at the rate Sv, and the inertial equivalent Sv/c? of
this energy flux gives the second term on the right of Eq.
(2.5). This is the only place where the fundamental con-
stant 1/c? enters our basic assumptions, Egs. (2.1)-(2.5).

3. STRESS AND VELOCITY DEPENDENCE OF
QUANTITIES

Equations (2.4) and (2.5) alone give the momentum
density g and the momentum flux 7 as functions of stress
S, velocity v, and inertia density p. We now show that
the stress and velocity dependence of p as well as of g,
T, and the strain U are uniquely determined by our gen-
eral assumptions, Eqs. (2.1)-(2.5), together with a con-
stitutive equation giving the mass density u = p|v=0 as a
function of stress for the particular elastic material.

Theorem 1. For any differentiable function u of §
with u + S/c? + 0, there is just one set of func-
tions p, g, T, and U of § and v which satisfy the
boundary conditions u = plvzo and 0 = U IS,L,:O as
well as Egs. (2.1)—(2.5) for all 8,5 and d,v. These

are
=%, (3. 1a)
g=“i”—jfz”7/ccrz, (3. 1b)
T= 1“_”2* /S’c (3. 1¢)

and
(3.2)

I dli
=1 2 /n2) e
U=%1In(1 -2%/c?%) '[ +S/ct "

Proof. Use the chain rule to express the x and ¢ deriva-
tives of p, g, T, and U in terms of their S and v deriva-
tives, for example, U =9,U08,S + 0,Ud,v. Substitute
these into Egs. (2.1)-(2.3) to get three linear equations in
9,8, d,v, 8, v, and 0,v,
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2,5 0
oU o,U v U vo ,U-1

0,0 0
0,p ,p 0,8 0,8 2.9 = ol
o,g 9,g o,T 2o, - 0

For this to have solutions for all 3,5 and d,v, this 3 X 4
coefficient matrix must have rank 2 or less; that is, every
3 X 3 submatrix must have zero determinant. This gives
two independent linear equations for 9,/ and 9,UU. Use
Eqgs. (2.4) and (2.5) to express the S and v derivatives of
g and T in terms of 9, and 3,0 and solve for .U and
o,U to get

. 3p vi/ct
WU==578/a prs/ena —otjeny & 32)
and
2
3.U= - —uP v/c (3. 3b)

v _p+S/cz+1—vz/cz ’

These equations are integrable for U as a function of S
and v if and only if the v derivative of the first equals the
S derivative of the second, from which it follows that
d.p/(p + Sic?) = 2v/(c? — v?). Integrate this with re-
spect to v with the boundary condition u = p] p=o tO get
Eq. (3.1a). Substitute this p into Egs. (2.4) and (2.5) to
get Egs. (3.1b) and (3.1c¢), and into Egs. (3.3) to get

d b
—_ s
o, U= 5%S/et (3. 4a)
and
_ v/ct
o,U=~ T—0t/ct" (3. 4b)

Integrate these with the boundary condition 0 = U |s,l,=0
to get Eq. (3.2). o

Combining Eq. (3.4a) with 9,U = d,L/L gives a first-
order differential equation relating the stress dependence
of length L and mass density u,

is_=__ O bk

L H+S/ce (3. 5)

This can be solved for the stress dependence of either L
or u when the other is known. Equation (3.5) can also be
derived by considering the rate at which external forces
do work on a rod. The rate at which the elastic energy E
changes with stress is 0, F = — Sd,L. The total inertial
mass wL of the rod at rest increases by the inertial equi-
valent of this elastic energy, so 0,(ul) = O;E/c?
= —§8,L/c?. Differentiating the product ul and solv-
ing for 8, L gives Eq. (3.5).

Since 8,2 = 040,L) = (LA U) = d,Lo,U + LA 2U
= L[@U) + 82U], it follows from Eq. (3.4a) that a
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rod satisfies Hooke’s law 9,2L = 0 if and only if
(h+85/c?)0 =20 (1 +1/2¢%).  (3.6)

The general solution for this second-order differential
equation is

_ Mo+ S%/2pa’c?
1~ S/ﬂoagz

where o, = p,]s=0 is the mass density of an unstressed
rod at rest and a, = (63;1,)'”2|3=0 will be shown to be the
speed of sound through an unstressed rod at rest. This re-
sult can also be obtained by adding the inertial equivalent
Elc? of the elastic energy E =LyS%/2uqa,® to the un-
stressed mass uyL, and dividing by the length
L =Ly(1 —S/moae?) of the rod under stress.

Theorem 1 shows that Eqs. (2.1)—(2.5) determine the
velocity as well as the stress dependence of a rod. They
give the (1 —v?%/c?)"? Lorentz contraction factor of an
accelerating rod in any one inertial frame, rather than the
ratio of lengths ascribed to the same rod by observers in
different inertial frames. The stress and velocity depen-
dence of the total inertial mass pL and total momentum
gL is also uniquely determined by Egs. (2.1)-(2.5) with
appropriate boundary conditions, since p and g as well as
L are so determined.

4. SOUND VELOCITIES

In Newtonian physics, the inertial mass pL of a rod is
independent of both stress and velocity, its momentum gL
changes with velocity but not stress, and its length L and
strain U change with stress but not velocity; however,
since the speed of sound a through matter at rest usually
depends on stress, the velocities w, =v = a of sound
through moving matter depend on both stress § and veloc-
ity v. When the inertial equivalence of energy is consid-
ered, all these quantities depend on both stress and vel-
ocity. Theorem 1 shows that Egs. (2.1)—-(2.5) together
with the elastic properties of the material determine the
stress and velocity dependence of p, g, 7, and U, and
now we show they determine the stress and velocity de-
pendence of the velocities w.. of sound as well.

We define a 2 X 2 matrix W which gives the time
derivatives of S and v as linear combinations of their
space derivatives,

0, S| _ Wy Wyl 19,8

0 Way Way| 0.0
The eigenvalues w. of the matrix W are the velocities of
sound, since when § and v depend only on x — wr, we
have 9,S = —wd,S and 9y = — wd,v. The magnitude

of 8,8/8,v = 3,5/0y for the eigenvectors of W is defined
as the acoustic impedance of the material.*

(4.1)

Theorem 2. For any differentiable function u of S
with u + S/c? £ 0 and d,u > 1/c?, Egs. (2.1)-
(2.5) with the boundary condition p.=p|v=0

William C. Davidon [ 707



uniquely determine the stress and velocity depen-
dence of the matrix W in Eq. (4.1) for all v <c?,
and it is

1
T oG —v2/ch

v(d b = 1/c?)

w

L+S/c?

4,2)
% (1 _02/62)238“ (
L ST p(dgn = 1/c?
The eigenvalues of this W are
vta
w*_liav/cz’ (4.3)
where
a= (@)% (4.4)

The ratio of the components of the eigenvectors of
W is

Eﬁ=£=iau+3/02
0

0,V 1-0%/c? " (4.5)

Proof. Use the chain rule to express the x and ¢ deriva-
tives of p, g, and T in Egs. (2.2) and (2.3) in terms of
their S and v derivatives, and express the result as

[asp 89p} [%S] _ [asg 9, ] [axs]
0,g 0,81 Lo o,T 0,T1 10w
This has a unique solution for 9,5 and 9 if and only if
the determinant of their 2 X 2 coefficient matrix is not
zero. Use Egs. (3.1) to express the S and v derivatives of
p, g, and T in terms of S, v, u, and 0., so the determi-
nant is 8,00,8 — 8,g0,p = (u + S/c®)(F 0 — vZecH(1
—v2/c?)?. Since the theorem assumes w + S/c? + 0, d,u
> 1/c?, and v? <2, this determinant is nonzero and we
can multiply on the left by the inverse matrix to obtain
Eq. (4.1) with W given by Eq. (4.2).

Since O u is assumed to be positive, Eq. (4.4) defines
a positive number a. Obtain the eigenvalues w.. of W as

the roots of the characteristic equation for W, which in
terms of a is

wi(1 = a*¥/ct) - 2wv(1 = a*/cty+ vt - a=0.
This factors as
(w1 +av/c?) —v -allw(l —av/c*) - v+a]=0,

from which Eq. (4.3) follows. The ratio 8,$/0y = 9,5/
d,v is determined by the eigenvalue equation
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3 T | B
[a,v] =-W [axv] i [va ’ =

Equation (4.3) for the sound velocities is usually obtained
by making a Lorentz transformation by v on the velocities
= a of sound through stressed material at rest. Here, Egs.
(4.2)—(4.4) are obtained as consequences of Egs. (2.1)-
(2.5) alone. The matrix W defined by Eq. (4.1) can also
be used to obtain Egs. (3.4) for the stress and velocity
dependence of strain U, since from Egs. (2.1) and (4.1)
alone it follows that o,U = [(vl - W)“]zl and 4,.U
= [(vI - WT‘]ZZ, where / is the 2 X 2 identity matrix.

Since both the length L of a rod and the speed a of
sound through it depend on stress, the period T = 2L/a
for a sound wave to make one round trip also depends on
stress. Differentiating Eq. (4.4) with respect to stress
gives

0.a _ 1 2.2
a 2 ogu’
which with Eq. (3.5) gives
2T ALt A 127w
T L a u+S/ct 2 A’

Thus the period of a sound wave going back and forth
through a rod is independent of stress if and only if

(L+S/c?)au=2(,u)% (4. 6)

This agrees with Eq. (3.6) based on Hooke’s law only in
the Newtonian limit when the inertial equivalent of
energy 1/c? is neglected.

5. A GENERALIZATION OF HOOKE’S LAW

The stress dependence of mass density w can be deter-
mined in several ways, for example, by measuring the
length L of a rod or the speed a of sound through it as a
function of stress and using Eq. (3.5) or (4.4). It can also
be derived theoretically, at least in principle, by a quan-
tum statistical model for the microscopic structure of the
material. For most materials, only & and dgu for small §
can be determined without exceeding elastic limits, but it
is conceptually and computationally convenient to ex-
trapolate from these to an idealized constitutive equation
which gives w as a function of § for large stress as well.
Two different such extrapolations are determined by Egs.
(3.6) and (4.6), the first based on the assumption that the
change in length is proportional to stress, and the second
on the stress independence of the period of a sound wave
oscillating back and forth in a rod. We now consider a
third extrapolation which is more useful than either of
these for analyzing large-amplitude sound waves. It will be
derived from the assumption that the velocity of a sound
wave is independent of its amplitude. These three ex-
trapolations are all equivalent to Hooke’s law only in the
Newtonian limit.

Consider two waves moving in the same direction, say

William C. Davidon



+ x. The velocity of each is given by Eq. (4.3), w, = (a
+ v)I(1 + av/c?), where v is the velocity of the material
and a is the speed of sound, which depends on stress.
Each wave produces fluctuations in both velocity and
stress and these must have exactly opposite effects on w,
if neither wave is to change the velocity of the other. We
now determine the stress dependence of mass density u
that is necessary and sufficient for this cancellation to oc-
cur.

Theorem 3. Let u be a differentiable function of §
and define a and w. by Eqs. (4.3) and (4.4). Then
9w, =0 for all 9,5 and 9,v satisfying Eq. (4.5)
if and only if u satisfies

(L +S/c?ou=20,u(du -1/c?). (5.1)
The general solution of this equation is
Lo+S/ct
M 0+5/ (5. 2)

“1-Sla, T =D/’

where py = ,u,|3=0 and q, = a|s=0. This function is
differentiable and satisfies u + S/c2 # 0 for all S in
the interval

Ho@yC Hody’
- . 5.
1+ay/c 1—a,’/c? (6.3)
For these S,
a=@u)yt=[1 ~S(ay? - %)/ wlag (5. 4)

and 0 <a <c.

Proof. Set to zero the x derivative of w. given by Eq.
“4.3)to get (1 — a?c»Hdy = (1 — v2c®)d,a = 0. Dif-
ferentiate Eq. (4.4) with respect to x to get d,a
= — a%(0,2u)9, 5/2, so that 8,w. = Oif and only if (1 — a?/
iy = £ (1 —v¥c?)a®d,2ud,S/2. This holds for all
9. S and 8,v satisfying Eq. (4.5) if and only if (1 — a?/c?)
= a*(u + S/c?)0,*u/2. Substitute du = a2 from Eq.
(4.4) into this to get the differential equation (5.1). Dif-
ferentiation verifies that the u of Eq. (5.2) is the general
solution of this equation and gives the a of Eq. (5.4). As
S approaches the positive limit peae?/(1 — ae?/c?), u in-
creases without bound and a goes to zero, while as S ap-
proaches the negative limit — uoaec/(1 + ao/c), u + Skc?
goes to zero and a approaches ¢. o

From Egs. (3.5) and (5.2) we obtain the stress depen-
dence of the length of a rod for this idealized constitutive
equation:

1= (ag"2 - c®)S/ 1y
L= L°{1 +[2 = (@)™ = 1S/ 1]/ oc B/ % *

(5. 5)

Combining Eqs. (5.2) and (5.5) gives the stress depen-
dence of the inertial mass,
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L L 1+S/‘J:06'2 6
S TP PPy e R

and combining Eqs. (5.4) and (5.5) gives the stress de-
pendence of the period of acoustic oscillation,

o B e
T a ay / \{1+[2 - (ag™ = ¢2)S/1o}S/ 1ot

This period and the inertial mass given by Eq. (5.6) be-
come independent of stress in the Newtonian limit when 0
replaces 1/c2.

Figure 2 sketches the stress dependence of length given
by Eq. (5.5), inertial mass given by Eq. (5.6), and the
velocities of sound given by Eq. (5.4), together with the
velocity dependence of these quantities and their Newto-
nian limits. The shapes of these curves depend only on
the ratio a¢/c, and the exceptionally large value of a/c
= 15 was used in making these graphs to exhibit more
clearly the differences between these stress dependencies
and their Newtonian limits. As the stress approaches its
positive limit poao2/(1 — ao/c?), the rod is compressed to
arbitrarily small length, its inertial mass increases toward
the limiting value poLo/(1 — ay?/c2)!2 which it has when
moving with velocity a, while unstressed, the velocities
of sound approach zero, and the period of acoustic oscil-
lations approaches its minimum value (2Lyag)(1 — aq?/

LENGTH LENGTH
Lo/"\
STRESS -¢ VELOCITY  +¢

|
INERTIAL INERTIAL
MASS MASS

Fohl&/ soly - T
: !
STRESS -c VELOCITY +¢

N SOUND VELOCITIES SOUND VELOCITIES
’

~ +c4 /s

= 1 1
/ -c, / +c
-ag // VELOCITY
7

- e J
- 4
’ .

Fig. 2. Dependence of length L, inertial mass pL, and the velocities of
sound w. on the stress § and velocity v of an elastic rod satisfying a
generalization of Hooke’s law. Dashed lines show the Newtonian limits.
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c2)1/2. As the stress approaches its negative limit
— moaec/(1 + ay/c), the length and inertial mass of a rod
increase without bound, the velocities of sound approach
* ¢, and the period of acoustic oscillations increases with-
out bound.

The idealized constitutive equation (5.2) can also be
expressed as uS = (U — S/c? — wo)ioao?/(1 — ay®/c?).
Since it follows directly from Egs. (3.1) that pT — g*
=uS and p — Tlc* = u — Slc?, we obtain an idealized
constitutive equation for just p, g, and 7',

pT - g= (p-T/c* - Ho)“oaoz .

1-a02/6'2 (5- 7)

Equations (2.2), (2.3), and (5.7) give three equations for
just p, g, and T, and mathematically the simplicity of this
idealized constitutive equation follows from the linearity
of Eq. (5.7) in the velocity-independent quantities pT
—g%and p — Tlc2.

Exact wave solutions of Egs. (2.1)-(2.5) and (5.2) are
now readily obtained, since for this idealized constitutive
equation the velocity of a sound wave is independent of
its amplitude and waveform.

Theorem 4. Let g, ay, and vy be numbers with uq
>0, 0 <ay<c, and vy? <c?. Define w = (a,
+ vl (1 + agvy/c?), let f be any function of x — wt
bounded by —cla, <f < 1, and define ¢ = f(1
+agwelc®)?(1 — H(1 —fas?/c?). Then a solution
to Egs. (2.1)—(2.5) and (5.2) is

=I—%, (5. 8a)
”:1—%’ (5. 8b)
B=pe/(1-1), (5. 8c)
=%1n<1-”c_°:>+1n<1$1—%/c-2>, (5. 8d)
p=1i—;0?7;-2 Ko, (5. 8e)
g=lv_;';q':7ucizuo, (5. 8f)
T=% Hy. (5. 8g)

From each of these solutions, another can be ob-
tained by substituting — a4 for a, throughout.

Proof. Since ¢ is a function of f, it too depends only
on x —wt so 94 = —wd,¢. Use this and Egs. (5.8¢)-
(5.8g) to verify Egs. (2.2) and (2.3). Verify Eqgs. (2.4)
and (2.5) by substituting for S, v, p, g, and T from Egs.
(5.8) and using the definition of ¢ in terms of f. Finally,
use 0,f = —wd,f and Egs. (5.8b) and (5.8d) to verify
Eq. 2.1). o

The arbitrary function f in Theorem 4 can be inter-
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0
t ta tg 1 tp
Fig. 3. Space-~time diagram for an accelerating rod. A constant force is
applied from time 7, to time 5, at the — x end of the rod, OBD, while a
sound wave goes back and forth.

preted as an invariant and dimensionless amplitude for the
wave. Equations (5.8a) and (5.8b) can be solved for f in
terms of S or v to give f = §/(wy + SlcDae? = (v — vo)f
(I = wwoc®)a,. When f is small and the inertial equiva-
lence of energy is neglected, then the fluctuations in
strain produced by the wave equal —f, and § = fueaq2, v
=vo+tfas, K=p=potfro, & = Move T frolao
+vo), and T = pevo® + fo(ao + vo)?.

6. ACCELERATING RODS

We now use Theorem 4 to describe quantitatively what
happens when a constant force is applied to one end of an
elastic rod which at 7, = 0 is at rest and unstressed, as
shown in the space-time diagram of Fig. 3. We assume
an idealized material in which the velocity of sound is in-
dependent of amplitude.

Because the applied force is assumed constant, the total
momentum of the rod increases linearly, but the distribu-
tion of this momentum is uneven and changes with time
so that no part of the rod accelerates continuously as does
its center of inertia. Instead, a sound wave starts atr, = 0
to travel down the rod, accelerating each part of the rod
as it passes, leaving it with constant stress and velocity.
At time t, when the wave front is reflected from the other
end of the rod, the entire rod is under a stress equal to
the applied force and it is all moving with the same ve-
locity. As the wave front returns, it leaves behind it an
unstressed region moving at a higher velocity. In the
adiabatic approximation, the wave continues to go back
and forth, the stress at each point of the rod alternates be-
tween zero and the applied force, and the velocity at each
point increases in a stepwise fashion. If the applied force
ts removed when the entire rod is unstressed, as at time tg
or tp in Fig. 3, there will be no further changes in stress
or velocity.

For a quantitative description of the first pass of the
wave, we use Theorem 4 with vg = 0, f = 0 for x — wt
> 0, and f = v/ay for x — wr < 0, where w = q, is the
velocity of the first wave. Substituting into Egs. (5.8)
gives the quantities at time ¢4, after this wave has passed:

ayv P'o

Sa= 1-agw/c*’

Va=0,

Us=1n(1 -v/ay),

William C. Davidon



1+ w=av/cug
PA= 1 — /a1 -ag/ch)
o

8a™ (1-v/a)1-aw/c?)’

T, = ao'Uu’o
47 (1-v/a)1 -aw/c?)’

The length L, of the rod at time r, is L, = Loexp(Uy
— Uy =Lyl —vla,). The time required for the first wave
to traverse the rod is t, = Ly/a,.

For the return wave, we match the stress and velocity
at time t4, using vy = 2v/(1 +v%/c?), f = —v/a, for x
—wt <Ly—wty, and f =0 for x —wt > Ly —wty,
where w = (v — ao)/(1 — agvelc?) is the velocity of the
return wave. Substituting into Eqs. (5.8) gives the quantities
at time 1, after the first acceleration cycle:

SB =0’
~ 2v
U871 +02/ct

1 —vz/cz)
Us —m(l +vi/ct )’

(1+0%/c?)?
Pp=Htyg (1 _ 02/02)2 ,

v(1+0%/c?)
8p= 2”0(1 — 02 /ct)?

1)2

Tp=4K, (1 =v2/c?)?"

The length Ly of the rod at time t5 is Lp =L, exp(Ug
- UA) =L0 eXp(UB - U()) = Lo(l - Vz/cz)/(l + v2/c2)'
The time 1z — ¢, is determined by (tp — t4)(v —wgqg) =L,
=Lo(1 —viayg) and is tg —t, = t,(1 +v¥c? — 2av/c?)/
(1 —v3/c?). In the Newtonian limit, t3 — 74 = ¢, and each
traversal by the wave takes the same time. When the iner-
tial equivalence of energy is considered, then when the
rod is being pushed within its elastic limits, 0 < v < g,
and t; — t, < t, while, when it is pulled, — ¢ <v <0
andty — t, > t,.

Alternate kinematic and dynamic arguments can be
used to check the results obtained with Theorem 4. For
example, since the external force F = S increases the to-
tal momentum of the rod at the rate S and its total inertial
mass at the rate Fv/c?, conservation laws alone give gL
=St and pL = poL, + Svtic? at times 1, = 0, ¢4, and t5.

Subsequent acceleration cycles can either be analyzed
directly as was the first, or they can be obtained from the
first by active Lorentz transformations to be considered in
the next section. As long as the applied force remains
constant, the magnitude of f is the same in every cycle, f
= S/(wo + S/c?a,?. The velocity v of the rod when all of
it is stressed and the velocity v, at the end of each accel-
eration cycle are given in terms of fa, and the velocity v;
at the beginning of each cycle by v = (fa, + v;)/(1
+ fagvid/c?) and vy = (fag + v)/I(1 + fagv/c®). The ratio of
the unstressed lengths of the rod before and after each cycle
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iSLAL; = (v — VIV = v)) = (1 = fagleH/(1 + fawic?)
= (1 — v — v2lc?)/2. The time to complete
each cycle is

B 1 - fay?/c? 2L,
T =/ e 21 =0V ay

T

When v = 0, this reduces to the period of acoustic oscil-
lations obtained in Sec. 5 for a rod at rest.

Here, as in our previous derivation of the Lorentz con-
traction, the familiar (1 — v2/c2)t/2 factor in the de-
nominator gives the increase in the period of oscillation
for an accelerating rod as described in one inertial frame,
rather than the ratio of the periods ascribed to the same
oscillation by observers in different inertial frames.

7. ACTIVE LORENTZ TRANSFORMATIONS

From each solution to the basic equations (2.1)—(2.5),
others can be obtained by symmetry. Here we consider
only active symmetry transformations which change the
state of physical systems, rather than passive transforma-
tions which change only how a given physical situation is
described.

More precisely, to each state 4 of a physical system
and each space-time point P, an active symmetry trans-
formation / associates a new physical state /4 and a new
space~time point IP. For other quantities, such as the ve-
tial frame, coordinate system, units, measurement ap-
paratus, etc. Certain measurements on state A in the
neighborhood of any space-time point P—for example,
stress and velocity—uniquely determine the results of all
measurements on the new state /4 made in the neighbor-
hood of the new space—time point /P.

Consider, for example, rod I in the space—time diagram
of Fig. 4. It initially moves at velocity — v, and after an
elastic collision with a fixed object, it rebounds with ve-
locity + v. An active Lorentz transformation by +v
changes this situation to the one analyzed in some detail
in the last section, in which rod II, initially at rest, is
struck by an object moving with constant velocity + v.

SPACE
ROD Il AFTER

ROD /I BEFORE IR

\ ROD | AFTER

TIME

Fig. 4. Space-time diagram for two elastic collisions related by an ac-
tive Lorentz transformation which changes the state of rod I to that of
rod 11 and shifts space—time points such as P to [P.
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For some quantities, such as stress, measurements
made on state A at the space—time point P give the same
result S 4 | p as measurements made on new state /4 at the
space—-time point /P. For other quantities, such as the ve-
locity v of the material, v, | p determines v,Allp but these
are not equal.

We now consider how a Lorentz transformation / by a
velocity shift u changes each of the basic quantities of
this theory. The coordinates of the points P and [P, in the
same coordinate system, are related by

Xp+lpi
V1P = (/)i (7. 1a)
and
Ip+xpu/ct
tip= (1 -t/ (1. 1b)

If —u is substituted for u, these equations give the in-
verse transformation / 1, and if O is substituted for the in-
ertial equivalent of energy l/c%, these give a Galilean
transformation.

Theorem 5. Let S,, vy, p4, T4 and U, be one solu-
tion to Egs. (2.1)-(2.5) and let # be any number
with 4?2 < ¢2. Then a new solution Si4, Vi1, Piss
gua> Tia, and Uy, of these same equations is given

by
Sial1p =54 | b (7. 2a)
U+ DV,

lel P /et | (7. 2b)
_pa+2gau+Taul/ct

plA| 1P 1—ut/c? K (7. 2¢)
_pau+gall+u?/c?)+ T u/c?

Zialip Tl (120

2

Paut+2g4u+ Ty

TzAI 1p= 1wt/ , (7. 2e)

(1 —u?/cH)/?
U,A|1P=UA+1n Truv,Jct , (7. 2f)

1 4

where the coordinates of points P and [P are related
by Egs. (7.1).

Proof. Use Eqgs. (7.2) alone to derive

(g’U+S—T)1AIzp=[gv+S- T+(pv+Sv/c’~ gula
1+uvy/c? P

and

(pv+Sv/c® - g)14| 1p
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[pv+Sv/ct =g+ (gv+S=Tw/c*|a
1+ur,/c?

P

From these it follows that, if §, v, p, g, and T for state A
satisfy Egs. (2.4) and (2.5), they do for state /4 as well.

When considering the differential equations (2.1)-(2.3),
it is convenient to extend the definition of the Lorentz
transformation / so that it permutes functions over space—
time as well as space—time points. For any function f of x
and ¢, define a new function [f by lf|,,, = f|p for all P;
that is, the value of the new function /f at the new point
IP always equals the value of the old function f at the old
point P. It follows immediately that / preserves sums and
products of functions; that is, I(f +g) = If + g and I( fg)
= (IH)ilg) for any two functions f and g of x and ¢. The
transformation / does not commute with differentiation
with respect to x and ¢, since Egs. (7.1) and the chain
rule for differentiation imply the operator identities

l(at - uax)

atl=(1—_;p%27m (1.3a)

and

8.7 1(2, — ud,/c?
T (1 -ut/ DI

(7. 3p)
Use these and Eqs. (7.2) alone to derive

l[atpA+ 0,84+ (0, 84+ axTA)'l/CZJ
(1 —u?/c?)/?

04P1a+ 0, 814"

and

o, ga+0,Ta+(3,pa+0,84) 0]
(1 —u?/ct)l/?

0,814+ 0, T1a=

Hence, when p, g, and T for state A satisfy Eqgs. (2.2)
and (2.3), they do so for state /4 as well. Finally, use
Eqs. (7.2) and (7.3) alone to derive

(8t+v,Aax)U,A— E)xv,A
=l<(at+vAax)UA" ava><1 _u_2>1/2
1+uv,/c? c? '

so that, when v, and U, satisfy Eq. (2.1), v;4 and U4 do
so as well.

For a simple and useful example, we make a Lorentz
transformation by v on a stressed rod at rest, so that S,
=S, vy=0, ps=pn, g4=0, T,=S5 and U,
= — [¥dul/(u + Slc?), and the final state [A is described
by Egs. (3.1) and (3.2).

The transformation of most of the basic quantities in
this theory are familiar ones; S and u are scalars, p, g,
and T are the components of a symmetric rank two
space-time tensor, and v is the ratio between the compo-
nents of a space-time vector. However, the strain U and
the length L of a rod are not as simply related to space-
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time vectors and tensors. While quantities such as p, g,
and T which transform linearly can always be decom-
posed into scalars, vectors, and tensors of other rank, this
is not the case for quantities such as strain U which un-
dergo nonlinear transformations.

The proof of Theorem 5 shows that transforming any
solution of Eq. (2.1) alone gives a new solution, whether
or not the old one satisfies any of the other basic equa-
tions. Hence, the set of all solutions or the solution set
for Eq. (2.1) is invariant under Lorentz transformations
even though this equation is not written in covariant
form. While none of the other four basic equations
(2.2)-(2.5) has a solution set that is invariant under
Lorentz transformations, the intersection of those for Eqs.
(2.2) and (2.3) is invariant, as is the intersection of solu-
tion sets for Egs. (2.4) and (2.5).

8. SUMMARY AND CONCLUSIONS

The macroscopic theory of elastic rods that has been
presented assumes five basic equations, (2.1)-(2.5), relat-
ing stress S, velocity of the material v, strain U, inertial
density p, inertial flux and momentum density g, and
momentum flux 7. Section 2 presents these equations and
the intuitive physical significance of each. Theorem 1
shows that the stress and velocity dependence of p, g, 7,
and U is uniquely determined by these assumptions to-
gether with appropriate boundary conditions. From these,
the usual relativistic results for the velocity dependence of
the length and inertial mass of a rod are derived.

Theorem 2 shows that, in this theory, the values and
space derivatives of $ and v at any point uniquely deter-
mine their time derivatives, and from this the velocities (v
+ a)/(1 = av/c?) of sound through moving matter are de-
rived, where a is the speed of sound through matter at
rest. Theorem 3 determines the stress dependence of mass
density that is necessary and sufficient for the velocity of
sound waves to be independent of amplitude. In Newto-
nian mechanics, this reduces to Hooke’s law. Theorem 4
gives exact, finite-amplitude wave solutions for these
equations, with the values for S, v, p, g, T, and U at all
parts of the wave. Theorem 5 shows that from any solu-
tion of the basic equations, regardless of the elastic prop-
erties of the material, new ones can be obtained by active
Lorentz transformations which change the physical situa-
tion as described in any one inertial frame. This estab-
lishes the Lorentz invariance of the theory even though
the basic equations are not written in manifestly covariant
form.

This approach to the study of elastic bodies has certain
advantages even in situations when relativistic effects are
small. It provides a detailed picture for the localized den-
sities and flows of conserved quantities in elastic objects
subject to stress and acceleration, and this often contri-
butes to an understanding of physical processes at any
speed. It describes different physical processes in a sin-
gle, arbitrarily chosen inertial frame by using just one
coordinate system and set of units rather than transform-
ing among equivalent descriptions of the same physical
processes.

Many of our results are certainly well known from spe-
cial relativity, including the velocity dependence of the
length, inertia, and period of oscillation of an accelerating
rod, and the relativistic velocity addition formula. All that
is new for these here is that they are derived in any one
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inertial frame from assumptions in which the fundamental
constant 1/c? enters only in the one term of Eq. (2.5),
where it associates a momentum density Sv/c? to the
energy flux Sv.

In another paper,® certain other occurrences of the
speed of light ¢ in physics, including those in Maxwell’s
equations of electromagnetism, were also derived from
assumptions in which the only 1/c? terms were identified
with the inertial equivalence of energy. These results sup-
port the conjecture that with adequate specific theories all
occurrences of the speed of light ¢ in physics can be de-
rived from the inertial equivalent of energy 1/c2.

In addition to providing an alternate derivation of
well-known results and a more detailed model for follow-
ing relativistic processes in any one inertial frame, this
theory gives certain new results. For example, it shows
that certain conditions which each determine the stress
dependence of mass density, while all equivalent to
Hooke’s law in Newtonian mechanics, give different
generalizations of it when the inertial equivalence of
energy is taken into account. Three of these are (i) de-
formation proportional to stress, 8,2 = 0 or [Eq. (3.6)]

(1 +S/c?)d =20, 1 +1/2cP),

(ii) stress independence of the period of acoustic oscilla-
tions, dy(L/a) = 0 or [Eq. 4.7)),

(b +S/ch)ou=2(3,1)%

and (iii) amplitude independence of the velocity of sound
waves |Eq. (5.1)],

(b +S/c?)o 2 =20 u(d 0 —1/c?).

This theory also gives more information about the
dynamics of elastic deformation and sound wave propaga-
tion than is determined by Lorentz invariance alone.

While only one-dimensional rods have been considered
in this paper, the basic equations (2.1)—(2.5) generalize to
three space dimensions. In this case, additional constitu-
tive equations are needed to relate shear stresses to the
deformations they produce in each elastic material, since
the stress dependence of mass density no longer uniquely
determines the elastic properties of material as it does for
the one-dimensional case.

ACKNOWLEDGMENTS

It is a pleasure to thank Jerry Gollub for studying an
earlier draft of this paper and for his helpful suggestions,
particularly in clarifying several aspects of the physical
interpretation of this theory.

1A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity
(Dover, New York, 1944), 4th ed.

2J. L. Synge, Relativity: the Special Theory (North-Holland, Amster-
dam, 1965), 2nd ed., pp. 173-181.

3C. Mpller, The Theory of Relativity (Clarendon, Oxford, England,
1972), 2nd ed., pp. 260-301.

“P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill,
New York, 1968), p. 259.

3W. C. Davidon, Found. Phys. (to be published).

William C. Davidon |/ 713



	Kinematics and dynamics of elastic rods
	Repository Citation

	tmp.1374513300.pdf.5UHZ4

