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Fast least-squares algorithms

William C. Davidon

Department of Physics, Haverford College, Haverford, Pennsylvania 19041

(Received 3 June 1976; revised 21 September 1976)

New least-squares algorithms are introduced. Instead of waiting for all data to be in before
making a fit, these algorithms update a fit after each point is entered so trends can be
detected promptly as an experiment proceeds. Coupled linear equations are not solved
numerically, reducing rounding errors, calculation time, and memory requirements. When
used for fitting degree- N polynomials to equally weighted data points whose abscissas are
equally spaced, these algorithms need just one multiplication by an integer constant and one
division to update each of the N +1 polynomial coefficients. Pocket calculator programs are
available for polynomial fits to data points whose abscissas are equally spaced; one of these
gives equal weight to all points while another gives more weight to recent points.

1. INTRODUCTION

Fast algorithms are defined as those which reduce by
orders of magnitude the number of operations needed to
solve certain types of problems. For example, the fast
Fourier transform introduced by Cooley and Tukey in 1965
needs only a fixed multiple of N log/V rather than the N?
operations previously used when approximating the Fourier
transform of a function, given its value at N equally spaced
points.! Similar fast algorithms reduce the number of op-
erations needed for matrix multiplication or for solving
coupled sets of linear equations, though these are advan-
tageous only for very large problems.? The fast least-
squares algorithms introduced in this paper need only a
fixed multiple of MN rather than the usual MN? operations
to fit M data points with /V parameters.

Among the least-squares algorithms previously described
in this Journal, some introduce shortcuts specific to the
important special case of straight-line fits.*> More general
algorithms for curve-fitting by higher degree polynomials,
or by linear combinations of other functions, have either
numerically solved a coupled set of linear equations or else
used an appropriate set of orthogonal functions to eliminate
the coupling.o Only the equation solvers can be used in the
general case when the abscissas of the data points or their
relative weights are not all specified in advance. However,
these not only need more time and memory space than al-
gorithms using orthogonal functions, but the coupled
equations they solve can be so ili-conditioned that rounding
errors make their output inaccurate, if not useless.

When the abscissas of all the data points and their rela-
tive weights have a preset pattern, algorithms using or-
thogonal functions have been preferable. These evaluate
all of the orthogonal functions at the abscissa of each data
point, and they determine a fit only after all the data are in,
so they provide no intermediate output to help guide an
experiment as it proceeds.

The new algorithms to be introduced, like those using
orthogonal functions, require that the abscissas of all the
data points and their relative weights have some preset
pattern. But unlike the older algorithms, these new ones
evaluate only one function at each data point, and they
update a fit as each data point is entered so trends can be
detected and acted upon promptly. In their general form,
these algorithms fit data by functions from any function
space F [such as the (V + 1)-dimensional space of all
polynomials of degree at most N, or the 2/N-dimensional
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space of Fourier series with N nonzero frequencies] which
is closed under real linear combinations; i.e., if fand g are
any two functions in the space and « and 8 are any two real
numbers, then af + Bg must also be in F. Given such a
function space F and a sequence of data points (xy, yx) with
weights wy 2 0 for each integer k = 1, these algorithms find
a corresponding sequence of functions fy from the function
space F, each of which minimizes the weighted sum of
squares

A= X Wi—faxi)]?wi

1€i<sk

(1.1)

The weights wy and abscissas x;, which may be common
to many data sets, are used to determine basis functions u;
from F, each of which minimizes the weighted sum of
squares

(1= we e )Pwe + 2 we(xi)w;. (1.2)

1 <€i<k

Updates from f;—; to fx and from (x?)x— to (x2)« are
made using these basis functions u; and the differences y;
— frx~1(xx) between the actual kth ordinate y; and a pre-
dicted one f—(xx) based on the least-squares fit to the £
— 1 previous points; specifically,

Je = fie—1 + Dk = S (i) Ju (1.3)
and
Ak = k=1 + e = fa=1 ()P = we Oce) Twe.
(1.4)

The starting function fp is arbitrary, since for k = 0 there
are no points to fit and (x2)o = 0 for any f.

These algorithms are particularly simple and fast when
F is the space of all polynomial functions of degree at most
N, when all the abscissas x; are equally spaced, and when
the weights wy are either all equal or else form an increasing
geometric sequence giving more weight to recent points. The
simplest of these is for N = 0, when the algorithm reduces
to one for simple averaging. This is described in Sec. 2 to
provide a most familiar context for comparing certain
features of the new algorithms with others. Section 3 gives
a more typical and useful example for fits by fourth-degree
polynomials. Precise statements of the basic mathematical
properties of the general algorithm are given in the Ap-
pendix.
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2. AVERAGING

Simple averaging can be viewed as a least-squares fit to
data by polynomials of degree 0, and this was the first use
of least-squares by Gauss, who originated the method in
1795 when he was eighteen.® In this special case, no dif-
ference remains between algorithms solving coupled linear
equations and ones using orthogonal polynomials. Both find
the average ay of the first k ordinates yy, y», ..., yx ina
sequence by

(2.1)

and the chi-squared measure of how well these fit the data
by

i — ax)?

- z=() ()" e

In this case, the functions f in the function space F are
just constants f(x) = a and the weights wy, all equal 1, so
the basis functions u; minimizing expression (1.2) are the
constants 1/k. The initial ag is arbitrary, (x2)o = 0, Eq.
(1.3) for updating f; simplifies to

ar = ax— + (r — ax1)/k,

and Eq. (1.4) for updating (x2) simplifies to

Ok = O-1 + n = a1 = 1/k).  (2.4)

While Eqs. (2.3) and (2.4) offer little computational ad-
vantage over their more familiar counterparts, Egs. (2.1)
and (2.2), they still may throw some light on certain aspects
of this family of least-squares algorithms. Proving that Eqgs.
(2.1) and (2.3) give the same a; and that Egs. (2.2) and
(2.4) give the same (x2), is an exercise in mathematical
induction which may be useful, particularly for those who
may not wish to study the more general mathematical re-
sults given in the Appendix.

= X

1<igk

(2.3)

3. QUARTIC FITS

Input to the algorithm specified in this section again
consists of just the ordinates y; from a sequence of data
points (x4, yx) whose abscissas x; are equally spaced. Its
output is a sequence of fourth-degree polynomial functions
Pr. scaled so that p (i) is an estimate for the ith ordinate
i based on the least-squares fit to the first & points. Hence,
each py minimizes the chi-squared measure (x2) of the fit
to the first k£ data points:

0= 3 vi—p)) (3.1

1<isk

Minimizing (x2); determines the quartic uniquely if and
only if the number k of points is at least 5. For k < 5, car
= 0 and there is a (5 — k)-dimensional subspace of quartics
which all fit the data exactly. :

Of the many ways to use five real numbers to specify the
quartics pg, one which offers several computational ad-
vantages is
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pe(t) = a; + {bk + [ck + (dk + e ’_’f%)

t—k—=3]t—-k-2
x5 ] : } t—k=1. (3.2)
With this expansion, no further computation is needed to
evaluate the prediction p;— (k) = a,_, for the kth ordinate
based on the least-squares fit to the first k — 1 points.

The five coefficients of the starting quartic are arbitrary,
for again there are not yet any points to fit. However,
rounding errors are usually minimized with ag = bo = co
= do = eq = 0. Equation (1.3) for updating f; now reduces
to

ax = gy + by + 25&%, (3.3a)
_ Pk = @iy |
bk—bk_|+ck_|+300 k(k+1) N (33b)
_ Yk — Ak—1
Ck = Ci—1 +dk_| + ZIOO“k(k_I_ ])(k+ 2) , (330)
_ Yk — Qg—
di = di-1 + e + 8400 T Dk + Dk +3)°
(3.3d)
and
Yk — Q-
= e, _ 1 .
ek = e+ 1512000 Dk + 2)(k + 3)(k + 4)
(3.3¢)

When fitting by polynomials of degree N, the N + 1 inte-
gers replacing 25, 300, 2100, 8400, and 15 210 in the gen-
eralization of Egs. (3.3) are

(N+n+ 1)
N=n)l(n+ 1)

N+1)

for n from O through V.
Equation (1.4) for updating (x2)x reduces in this case
to

OOk = k=1 + k= ax=1)?

% (k = D)(k = 2)(k = 3)(k — 4)(k = 5)
k(k+ 1)(k+2)(k+3)(k+4)

The updates of Eqgs. (3.3) take just one multiplication by
an integer constant and one division for each coefficient of
the least-squares polynomial. The update of Eq. (3.4) takes
N + 2 additional multiplications when fitting polynomials
of degree N, for a total of 3N + 4 multiplications or divi-
sions to update both the least-squares polynomial as well
as the chi-squared measure of how well it fits all past data.
Only N + 3 quantities need be stored from one iteration to
the next: the current &, the N + 1 polynomial coefficients,
and (x?);.

One measure of the simplicity of this algorithm for fitting
quartics to equally spaced and equally weighted data is that
a program of 99 steps is available for an HP-65 pocket
calculator that updates the quartic p; and its (x?)« using
Egs. (3.3) and (3.4), and that also evaluates Di for any ¢
using Eq. (3.2).° A similar 100-step program is also avail-
able for sixth-degree fits which give more weight to recent
points, but without the calculation of the weighted chi-
squares. !0

3.4
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APPENDIX

Here, while generalizing the specific algorithms of Secs.
2 and 3, we continue to consider only the field R of real
numbers, though complex or other number fields could be
used as well. Our first theorem follows directly from lin-
earity or the superposition principle: a least-squares fit to
the sum of two sequences is the sum of the least-squares fits
to each.

Theorem I. Let F be any real vector space of
functions from R to R, and for each integer k = 1, let
Wi, Xk, and yy be real numbers with w; = 0. Define
Jo as any function in F. For each integer k = 1, de-
fine uy as a function in F that minimizes expression
(1.2) and define f; by Eq. (1.3). Then each f; mini-
mizes the weighted sum of squares (x?)x of Eq.
(1.1), and these minimal (x2), satisfy Eq. (1.4).

This theorem is computationally useful because the
functions u; depend only on the function space F, the
weights wy, and the abscissas x;, but not on the ordinates
yx of the data points to be fitted. Hence, the same set of
functions u; can be used in many different experimental
runs, reducing the computation needed for each. In par-
ticular, if F is the space of all polynomial functions of degree
at most N; if all the weights wy are equal, and if the ab-
scissas xy are just x; = k for all k > 1, then we can express
the uy as follows.

Theorem 2. For each integer k > 1, a polynomial
uy, of degree N which minimizes

X = {1 —w(k)]* + 1 2 ) ur (i)

<i<
is

u(t)= 2

0<nsN

N+ D(N+n+ 1Dk~ 1)
(N=—n)!(n+ 1) (n+ k)

X(t—k_1>,
n
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for which

k= 1\ /N + k\~!
X wl) = (v 1)\ +1

where (;) is the binomial coefficient, defined for any
real x and integer n = 0 by

(o)=1 e (30)=C)ait

The polynomial u is the only one minimizing x2 if
andonlyifk 2 N + 1.

To prove this theorem, and its counterparts for other
abscissas and weightings, use orthogonal polynomials for
minimizing the appropriate sum of squares.!' Once this is
done and the functions u; are determined, then only the u;
and not the orthogonal polynomials are needed for the
least-squares algorithm itself. The integer coefficients (N
+ 1)(N + n+ 1)!1/(N — n)!(n +1)! appearing in the sum
for each uy and, hence, in Eqgs. (3.3) are just (—1)"n! times
the corresponding element in the first column of the inverse
of the (¥ + 1) X (N + 1) Hilbert matrix.'?
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