
Haverford College Haverford College 

Haverford Scholarship Haverford Scholarship 

Faculty Publications Mathematics & Statistics 

1973 

A Multiple Exchange Property for Bases A Multiple Exchange Property for Bases 

Curtis Greene 
Haverford College, cgreene@haverford.edu 

Follow this and additional works at: https://scholarship.haverford.edu/mathematics_facpubs 

Repository Citation Repository Citation 
Greene, Curtis. "A multiple exchange property for bases." Proceedings of the American Mathematical 
Society 39.1 (1973): 45-50. 

This Journal Article is brought to you for free and open access by the Mathematics & Statistics at Haverford 
Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford 
Scholarship. For more information, please contact nmedeiro@haverford.edu. 

https://scholarship.haverford.edu/
https://scholarship.haverford.edu/mathematics_facpubs
https://scholarship.haverford.edu/mathematics
https://scholarship.haverford.edu/mathematics_facpubs?utm_source=scholarship.haverford.edu%2Fmathematics_facpubs%2F123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu


A Multiple Exchange Property for Bases
Author(s): Curtis Greene
Source: Proceedings of the American Mathematical Society, Vol. 39, No. 1 (Jun., 1973), pp. 45-
50
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2038987 .

Accessed: 12/04/2013 13:29

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org 

This content downloaded from 165.82.168.47 on Fri, 12 Apr 2013 13:29:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ams
http://www.jstor.org/stable/2038987?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 39, Number 1, June 1973 

A MULTIPLE EXCHANGE PROPERTY FOR BASES 

CURTIS GREENE1 

ABSTRACT. Let X and Y be bases of a combinatorial geometry 
G, and let A be any subset of X. Then there exists a subset B of Y 
with the property that (X-A)uB and (Y-B)UA are both bases 
of G. 

I. Introduction. This paper is an outgrowth of a number of recent 
efforts to extend the methods of both linear algebra and classical invariant 
theory to the study of combinatorial geometries ([3], [4], [5], [6], [7]). 
One result of such efforts will, hopefully, be a completely satisfactory 
coordinatization theory for geometries-one which will include general 
techniques for automatically translating linear arguments into combi- 
natorial ones. In spite of much encouraging work in this direction-and 
many interesting results-the full story apparently remains to be told. 

As a result, the gap between "linear" and "nonlinear" combinatorial 
geometries sometimes seems embarrassingly large. There exist results 
which are easy to derive for linear geometries, using determinants or 
other techniques of linear algebra-but which are apparently much more 
difficult to prove by direct combinatorial methods. 

This paper is devoted to the following example: 

THEOREM. Let X and Y be bases of a geometry G. Then for any subset 
Ac X, there exists a subset B c Y wvith the property that (X-A)uB and 
(Y-B)u A are both bases of G. 

The case IAI =1 is a slight strengthening of the fact taken by Whitney 
[7] as the defining property for bases. It is easily proved by elementary 
arguments (see [2]). 

If G is linearly representable- that is, if the points of G can be repre- 
sented as points in a vector space V over a field F in such a way that 
dependence in G corresponds to linear dependence in V-then the result 
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46 CURTIS GREENE [June 

is an immediate consequence of the Laplace expansion theorem for 
determinants. The argument is as follows: 

Suppose that G has dimension n. We choose the elements of the basis 
Y as coordinate vectors, and assume that the points of G are represented 
accordingly as n-tuples over F. For any set Sc G of size n, we define 
M(S) to be the n x n matrix whose columns are the vectors in S. Since X 
is a basis, the matrix M(X) is nonsingular. Applying the Laplace 
expansion theorem to the set A of columns of M(X), we obtain 

det M(X) = ? t det M((X - A) u B)det M((Y - B) u A). 
BC y 

Since det M(X)$O, some term on the right must be nonzero, and the 
result follows. 

We remark that our combinatorial proof of this fact (given below) is 
not totally without interest in the linear case since it can easily be trans- 
lated into an algorithm for actually finding the set B. Purely combinatorial 
versions of the exchange theorem can be obtained from the classical 
examples of combinatorial geometries-for example, if "bases" are 
replaced by spanning trees of a graph or maximal transversals of a family 
of sets. In these cases our proof provides a constructive method for carrying 
out the exchange. 

2. Proof of the theorem. For the basic facts about combinatorial 
geometries, we refer the reader to [1] or [2]. 

We begin with a few elementary lemmas. 

LEMMA 1. Let Xand Ybe bases of G, andlet x E X. Let dbe the copoint 
spanned by X-x and let C be the unique circuit obtained by adding x to Y. 
Then for any y E Y, (X-x)uy and ( Y-y)ux are both bases:y$d and 
y E C. 

PROOF. Immediate. 

LEMMA 2. Suppose y1, - - ,y yn1- are independent and span a copoint do. 
Let y,, , y7 be points such that for each i, 

(1) y, V y, v - * i -V Yi+ y V .. * *VY-l is a copoint, say di. 
(2) do $ d1 l .. * *dk. 

Then A =k=o dJ=ylV ... VY-1 

PROOF. Immediate, by induction on k. 

LEMMA 3. Suppose Cl,. * Cm are circuits with the property that for 
each i=2,* , n there exists an element yiE C -U-j- Cj. Then 
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I973] A MULTIPLE EXCHANGE PROPERTY FOR BASES 47 

PROOF. List the elements of Ul Ci in order, beginning with C1, C2, 
etc. Then there are at least m distinct elements which depend on their 
predecessors. 

THEOREM. Let X and Y be bases of a geometry G. Then for any subset 
Ac X, there exists a subset Bc Y with the property that (X-A) U B and 
(Y-B)uA are both bases of G. 

PROOF. Let X={x1, . , xj} and Y={y1, ,y.}. We proceed by 
induction on the size of A. Assume that the theorem holds if IAI=k, 
and suppose now that A= {x1, , X+1. By assumption, we can ex- 
change x1, , xk for some subset of Y, which we denote by Yl, - - - I Yk, 

Thus 
X = Yl, Yk, Xk,1xx , xn and 

y = 
Xl I 

.. 
I Xk, Yk+11.. I Yn 

are both bases. The idea of the proof is as follows: we attempt to exchange 
Xk+1 for one of the y's in Y'. If this is impossible, we exchange certain y's 
in X' for y's in Y' until it becomes possible. The proof consists of showing 
that an appropriate sequence of switches can always be found. 

Technically, it turns out that we cannot always switch y's in such a 
way that both sets remain bases. In our proof, we require only that the set 
X' Xk+1 have rank n-I at each step. We use the following notation: 

X = Ux uU , Us = {Xk+l, , Xn}, UY = {Y1, , Yk}, 

Y' = V1y u Vy = {Xl, , Xk}, VY = {Yk+1, , Ynl} 

do = V (X' - xk+1) (the copoint obtained by removing Xk+1 from X'), 

CO = c(x+l, Y') (the circuit obtained by adding Xk+l to Y') 

= Xk+1 U C?XU CoyI CoX C X COy C:y, 

Ci = c(yi, Y') (defined for yi E U_) 

=YiUC U Cy C X, CA Y. 

If there exists a y E CO with y$do, then we can stop immediately for, 
by Lemma 1, X'-Xk+1 uy and Y'-yux-X+1 are both bases. So from now 
on we assume that y?do for all y E C?. 

We define an admissible sequence of exchanges ("admissible sequence" 
for short) to be a sequence of pairs 
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48 CURTIS GREENE [June 

satisfying the following conditions: 
(i) y e UYt,, Y e Vy-Co, i=1,... ,p. 

(ii) For i= 1, * * ,p, V (X'-xk+l-yl -yiuyU u U.y1) is a co- 
point, hereafter denoted by dl2...i. 

(iii) For i=1, ... ,p, Y'-Y. -yiIuy1u uyi is a basis, hereafter 
denoted by Y1'2 .... 

(iv) doodl$d12$ ..$d12... 

Thus admissible sequences are sequences of exchanges of elements in 
Uy for elements in Vy -Co which preserve a copoint-basis pair and have 
the property that each new copoint so obtained is distinct from the previous 
one. Condition (iv) is equivalent to requiring that y4$do and y'+l$d,... 
fori=1 , p-I. 

We define 
Q = {d d = di..., for some admissible sequence} u Idol 
S = {yc E Uy I there exists an admissible sequence ending in (yi, y1)}, 

and 
T= Uy-S. 

Thus T is the set of elements in Uy which are never switched in any 
admissible sequence. It may of course be empty. 

The rest of the proof consists of showing that there exists some admis- 
sible sequence which leads to a situation in which Xkl can be exchanged. 
More precisely, we show that for some sequence there exists y E Co with 
the property that 

X'-xk+l-Y -I -yp Uyl *yp Uy 

and 
YI'2P Y- -y U X+1 

are both bases. To verify this, assume the contrary-that is, no admissible 
sequence leads to the situation just described. We complete the proof with 
a series of seven observations, leading to a contradiction: 

(1) y _ d forallyeCy- andall deQ. 

PROOF. We have already shown that y ? do for all y E Co. Suppose 
now that d=dl2... P. Then CO=c(xk+l, Y')=c(xk+l, Y2 ...), since condi- 
tion (i) guarantees that no yi removed from Y' is in CO. This means that 
the elements exchangeable for xk+1 in Y' and Y2... , are identical. If there 
exists y e Co with y$d1d then X'-xk?l-yl- -yuyjU .u 

y.,uy and Y12..-,-yUXk+l are both bases. Since this was assumed not 
to occur, the conclusion follows. 

(2) Lety, E T. Theny < dfor ally E C' and all de Q. 
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PROOF. It is clear that y<do for all y E C , since otherwise (yj, y) is 
an admissible sequence of length one. (Note that y$do implies y 0 CO, 
so that (i) is satisfied.) If d=dl2...,, we may suppose that y<d' for all 
ycE Cj and d'=do, d*, dd12...(p_). As before, Cj=c(yj, Y')= 
C(yj, Y12...- ), since y'$do and y ~+jdl.d for i= 1, p ,p-1, and so 
every yi removed is outside of Cj (by the inductive hypothesis). If there 
exists y E C' with y$d2 then (yi'Y'l) . * ,* X 5 (yj y) is an 
admissible sequence, contradicting the assumption that yj E T. (Again, 
y ? CO since y<d12...p for all y E Co , by (1).) This completes the proof. 

(3) Let 13=AdeQ d. Then y?:! for every y E Y which appears among 
the circuits CO and Ci,, yi E T. 

PROOF. This is an immediate consequence of (1) and (2), and the 
definition of T. 

We pause briefly at this point to sketch the idea behind the rest of the 
proof. We will show that (3) is impossible because too many x's "depend" 
on the y's in f3. In fact, the remaining steps show that adding certain x's 
to ,9 results in a flat of dimension<n which spans all the x's, contradicting 
the fact that X is a basis. 

(4) =V (X - Xk+1 S). 

PROOF. By Lemma 2, d0Ad1A. *Adl2.P=V (X'-xk+1-y1--Y.P) 
for any admissible sequence (YlYl), * * *, (y.P yp,). The result follows 
immediately from this. 

(5) Let 

cx = U( c ) Co, c = c) CouT5 

Rx=VX-CX and oc=VCXVVCyVVRX. 

Then (i) r(oa)<?ICxl+lCyl+lRxj-ITI-1=jCyl+k-ITI and (ii) 
r(ocAfl > |ICy I 

PROOF. To verify (i), we observe that the set S= CO u U yieT Cj has 
rank <ISi-ITi-1, by Lemma 3. Since a is obtained by adding the set 
Rx to S, the inequality follows. Inequality (ii) follows immediately from 
(3) and the fact that Cy is independent. 

(6) r(a v )< n -1. 

PROOF. By the submodular inequality, r(ocv/)<r(c) +r(O)-r(oaAO). 
But r(/)=n-k-l+ITI, and substituting the results of (5) gives the 
inequality r(oav)<)(ICyl+k-ITI)+(n-k-1 +ITI)-ICyl=n-1. 

(7) This is impossible. 

This content downloaded from 165.82.168.47 on Fri, 12 Apr 2013 13:29:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


50 CURTIS GREENE 

PROOF. cx contains xk+,1 since it contains CO, and also every x E Vx. 
fi contains every x E Ux except xk+,, by (4). Hence ocvfl contains every 
x e X, and so must have rank n. 

This contradiction shows that some admissible sequence must lead to a 
"switchable" y, and the proof is complete. 
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