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ON THE INTERPRETATION OF WHITNEY NUMBERS

THROUGH ARRANGEMENTS OF HYPERPLANES, ZONOTOPES,

NON-RADON PARTITIONS, AND

ORIENTATIONS OF GRAPHS

by

curtis greene and thomas zaslavsky

Abstract. The doubly indexed Whitney numbers of a finite, ranked partially

ordered set L are (the first kind) w;; = 2{/i(x', xj): x', xJ G L with ranks i, j] and

(the second kind) W:j = the number of (x1, x') with x' < xJ. When L has a 0

element, the ordinary (simply indexed) Whitney numbers are Wj = w0j and W¡ = WQj

= W:j. Building on work of Stanley and Zaslavsky we show how to interpret the

magnitudes of Whitney numbers of geometric lattices and semilattices arising in

geometry and graph theory. For example: The number of regions, or of ^-dimen-

sional faces for any k, of an arrangement of hyperplanes in real projective or affine

space, that do not meet an arbitrary hyperplane in general position. The number of

vertices of a zonotope P inside the visible boundary as seen from a distant point on a

generating line of P. The number of non-Radon partitions of a Euclidean point set

not due to a separating hyperplane through a fixed point. The number of acyclic

orientations of a graph (Stanley's theorem, with a new, geometrical proof); the

number with a fixed unique source; the number whose set of increasing arcs (in a

fixed ordering of the vertices) has exactly q sources (generalizing Rényi's enumera-

tion of permutations with q "outstanding" elements). The number of totally cyclic

orientations of a plane graph in which there is no clockwise directed cycle. The

number of acyclic orientations of a signed graph satisfying conditions analogous to

an unsigned graph's having a unique source.

Introduction. Wherever there is a finite matroid or geometric lattice, there are

Whitney numbers. This article concerns their enumerative interpretation.

The coefficients of the chromatic polynomial of a graph, for one example, are

Whitney numbers of the graphic matroid. Stanley found for the sum of their

magnitudes an unconventional interpretation: it is the number of acyclic orienta-

tions [23]. The Whitney numbers in question are those of the first kind; for a finite

matroid M they are defined as the coefficients of its characteristic polynomial, thus

Wj(M) = 2 {i*(0 , x): x closed in M, r(x) = j}.

(Here /x denotes the Möbius function of M.)
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98 CURTIS GREENE AND THOMAS ZASLAVSKY

Another example: Let M be the linear dependence matroid of a set % of

hyperplanes arranged in Euclidean or projective space. The sum of the magnitudes

Wj+ is the number of regions ( J-dimensional cells) into which % dissects the space

(times | if projective) [24]. Dualizing, let M be the affine dependence matroid of a

finite set S in Euclidean space. Then 2wy+ is the number of non-Radon bipartitions

of S: partitions into the two sides of some affine hyperplane [24].

Still another example: Let M be a regular (" unimodular") matroid. The sum of

the magnitudes w¡+ is the number of row equivalence classes of totally unimodular

representation matrices for M in which no minimal dependent set of columns sums

to zero [7, Proposition 4.5].

A generalization that includes all the examples: The sum is the number of acyclic

orientations of an oriented matroid (defined in [4]) [15,18]. It is also the number of

regions of an arrangement of topological hyperplanes; one can see this by combining

with Las Vergnas' oriented matroid enumerations the correspondence between

oriented matroids and arrangements of topological hyperplanes [12, §IV], or alterna-

tively, independently of oriented matroids, by [26, §3] (see also [25, §2]).

Another sum of Whitney numbers is the beta invariant

ß(M) = (-l)r(M)ZjwJ(M)

j

of Crapo [10]. This for a projective arrangement of hyperplanes equals the number

of regions not touching a particular one of the hyperplanes [24]. This interpretation

carries over exactly to oriented matroids, although the statement has apparently not

appeared in the literature. It extends as well to arrangements of topological hyper-

planes, either through their correspondence with oriented matroids, or by [26, §3],

although no topologically complete proof on the latter line has yet been formulated

(see the remarks in [26, p. 276]). Considering the hyperplane arrangement represent-

ing a graph we are led to interpret ß as the number of acyclic orientations in which a

fixed node p is the only source and a fixed adjacent node q is the only sink.

Alternatively ß is the number of acyclic orientations that become totally cyclic when

a fixed edge e is reversed—an interpretation that generalizes to oriented matroids

[16,17]. Berman has independently obtained the same result for planar graphs

through another approach based on internal and external activities [3], extended

(with modifications) to oriented matroids by Las Vergnas [17, §3].

But the terms in these sums—the Whitney numbers themselves—have not been

interpreted. It is our main purpose to show how to attach to each Whitney number

magnitude w* a geometric or graphical meaning in the several contexts of the title.

We emphasize geometrical thinking and obtain as many results as we can, including

interpretations of basepointed and doubly indexed Whitney numbers of the first

kind, the various sums, and also the Whitney numbers of the second kind Wj(M),

the number of rank y flats, whose meaning is relatively evident. We interpret the dual

Whitney numbers of a graph in terms of totally cyclic orientations, and some of the

Whitney invariants of a signed graph. The proofs are short because the facts are, on

the whole, simple; what we contribute is for the most part the right viewpoint, the

explicit statement, and the telling instance.
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INTERPRETATION OF WHITNEY NUMBERS 99

1. Abstract preparation. Whitney numbers can be defined on any ranked partially

ordered set.1 The rank function on P we denote by r; the lowest rank is 0; the rank

of P is r(P) = max{r(x): x E 7*}. Writing x\ y' for elements of 7^ of rank i and 7"

for the set of all such elements, we define the doubly indexed Whitney numbers of the

first kind,

wu(P)=   21  p{x',xJ),
.ï'..Y'E/,

and of the second kind,

WIJ(P)=   22  Uxi,xJ)=#{(xi,xj):xi<xJ}.
x'.x'ep

The usual Whitney numbers are the simply indexed ones:

w](P) = w0j(P),        W;(P)=W0j(P).

If P has 0 and 1, we define the Mobius invariant ¡i(P) = /x(0,1) = wr{P)(P).

The partially ordered sets of interest to us are first of all L(M), the geometric

lattice of closed sets in a matroid M, and secondly for any point b of M the

semilattice

L(M,b) = {.v EL(W):i?jt),

the semilattice of the basepointed matroid (M,b). (We shall assume throughout that

0 is closed in all matroids; otherwise some special definitions are necessary.)

The beta invariant of L(M) was defined in the introduction. An extremely useful

fact from [24, Proof of Theorem D] is that for any matroid of rank r > 1 we have

(1.1) ß(L(M)) = (-iy-l2 Wj(L(M,b)).

7 = 0

Another important fact is that the value of wj(L(M, b)) is independent of b. This is

a consequence of Weisner's Theorem [22, p. 351], which implies that

w; (l(m,b)) = w;+](l(m)) - w;+x(l(m,b)).

Thus we may write

Wj"(L(M)) = the common value of Wj(L(M, b)) for all b in M.

Consequently,

(1.2) w/ (L(M)) = w¡'_x(L(M)) + w/+ (L(M)).

On the other hand the quantities wij(L(M, b)) for i > 0 are not in general indepen-

dent of b.

Some more notation: the contraction P/x is {y E P: y > x}. The interval [x, z] is

{y E P/x: y «£ z}. The poseí truncation operator T applied to a ranked poset

removes the top rank; the lattice truncation operator T removes the elements covered

by 1 in a lattice.

' In this paper all posets, sets of hyperplanes or points, graphs, etc., are finite.
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100 CURTIS GREENE AND THOMAS ZASLAVSKY

2. Fundamentals of arrangements. A Euclidean arrangement of hyperplanes is a set

S of hyperplanes in the real affine space Ed together with the associated dissection of

the space into cells of various dimensions. We consider the cells to be relatively

open, so they have no points in common. For the number of £-cells ( /c-dimensional

cells) we write fk($).

A flat (of S) is a nonvoid intersection of members of S (including Ed = Pi 0).

We write L(5) for the set of all flats ordered by reverse inclusion and ak(&) for the

number of &-flats (/c-dimensional flats). The set L(&) is a ranked poset having rank

function

r(x) — d — dim x

and having total rank

r(&) = r(L($)) = d —   min   dimx;
xez.(S)

it has a zero (0 = E''), and it has Whitney numbers. It is a geometric lattice if (and

only if) S is central, that is Hi S ¥= 0 ; in general it is the semilattice of a basepointed

matroid (see below).

Clearly

(2.1) ak(&)=Wd_k(L(&)).

A more subtle link between arrangements and semilattices is

Theorem A [24]. For a Euclidean arrangement of hyperplanes & in EJ we have

A(S)=   2 w;_w(l(S)).  d
j=d-k

If r(&) = d, then & has vertices; thus it has bounded cells and possibly bounded

regions. Although S cannot have any bounded cells if r(&) < d, it is true that all

flats of maximum rank r(&) (relative vertices) are translates of each other [24, Lemma

2D1]; if we section S by any affine subspace s of dimension r(&), transverse to the

relative vertices, we get an arrangement &s in 5 combinatorial^ isomorphic to £ but

with all dimensions reduced by d — r( S ). A cell of S that becomes bounded in &s we

call relatively bounded. Let bk(&) be the number of relatively bounded &-cells.

Theorem C [24]. For a Euclidean arrangement & in Ed we have

bk(&) = (-iy^ 2 ^-k,j{L{S)). □
j=d-k

Suppose we write L($) for L(&) U {Î}, where Î is a special element added on

top. Then L(&) is a ranked lattice (not usually geometric) with rank r(&) + 1. Let

r — r(&) for brevity. Theorem C can be restated as

(2.2) MS) = (-ir+V*,+,(¿(S))
(this is [24, Corollary 2.2]).

On any affine subspace s, & induces an arrangement

&s = {h PI s: h G S, h ^ s, h n s ¥= 0 }.
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INTERPRETATION OF WHITNEY NUMBERS 101

The restriction of S over s is the subarrangement

&(s)= {hE&:hDs};

it is central if s ¥= 0. If x is a flat, then

L(&x) = L(S)/x   and   L(&(x)) = [0, x]L(S).

If at the other extreme g is a subspace in (relatively) general position with respect to

&, meaning that it is parallel to the relative vertices and meets each flat in the

smallest possible dimension (hence it meets precisely the flats x satisfying dim x >

r(&) — dim g, and then dim(g n x) = dim g — r(x)), then

(2.3) L(Sg) = Td-dim*L(&).

A projective arrangement of hyperplanes is a nonvoid set & of hyperplanes in the

real projective space P'', together with the associated dissection of Pd. The notations

ak(&) and fk(&) are as before, but 0 is not excluded as a flat or cell: a flat is any

intersection of hyperplanes, so L(&) is always a geometric lattice with rank function

as before. We have thus

(2.4) ak(&)=W^k(L(&))

and the theorem:

Theorem B [24]. For a projective arrangement of hyperplanes in Pd and for

k > d — r(&) we have

r(&)

(2-5) W)={    1    w¡_kJ(L(&)),
L j=d-k

and we have fd_r^&Y(&) = 1.    D

This result follows from Theorem A by regarding & as the image of a central

arrangement & in Ed+ ' ; each opposite pair of k + 1-cells of & becomes a A:-cell of &,

except for the smallest cell Pie. The lattices L(&) and L(&) are canonically

isomorphic, whence their Whitney numbers are the same. What this construction

means in general is that one can deduce results about & from Euclidean arguments

about k.

In the other direction, any Euclidean arrangement S in Ed has a projectivization:

the arrangement Sp in Pd obtained by adjoining to S the ideal hyperplane oo.

Evidently Sp and S have the same number of regions. What is more surprising is

that the bounded regions of S can be counted in Sp.

Theorem D [24]. A Euclidean arrangement S has ß(L(&p)) relatively bounded

regions.    D

Conversely we call an affinization of a projective arrangement & any Euclidean

arrangement obtained by regarding one of the hyperplanes in & as the infinite

hyperplane. The semilattice of the affinization by h we denote by L(&, h).

A projective arrangement & induces an arrangement &s and determines a restric-

tion &(s) for any projective subspace s; and for x G L(&) the lattices of these
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102 CURTIS GREENE AND THOMAS ZASLAVSKY

arrangements are as with Euclidean arrangements. If g is a subspace in (relatively)

general position with respect to 62, meaning that g D D 62 and g meets each flat x in

the smallest possible dimension (which is max[dim g — r(x), dim D62]), we have

(2.6) L(&g) = 7v~dim*L(t2).

It is worth noting that all results about cells in projective arrangements extend to

oriented matroids and all Euclidean results extend to basepointed oriented matroids.

(Thus they apply to arrangements of topological hyperplanes.) The possibility of

such extension is made clear by Las Vergnas' development of the enumeration

theory of reorientations of an oriented matroid [15-18]. The extensions of most of

our results have not been worked out precisely; the task is straightforward, but since

the details tend to become quite technical, we restrict ourselves here to "real"

situations.

3. Euclidean arrangements. We begin by interpreting in two ways the "upper"

Whitney numbers w,+ (L(S)) of a Euclidean arrangement S. That allows us to

interpret ¡i+ (0, x) for any flat x E L(&) by applying the theorems to &(x), whose

lattice is the interval [0, x] in L(S).

Theorem 3.1. Let & be a Euclidean arrangement in Ed with rank r. Let g be a

general hyperplane with respect to &. Then g meets all but exactly w* ( L( $ )) regions of

S and all but exactly w¿_k r(L($)) of its k-cells.

Proof. Compare Theorem A for 6; and for 6) in the light of (2.3).    D

The second theorem requires & to be central.

Theorem 3.2. Let & be a central arrangement in Ed with rank r. Let g be a

hyperplane general with respect to &. Then the induced arrangement & has ju+ (0, 1) =

wr+ (L(&)) relatively bounded regions and w¿_k r(L(&)) relatively bounded k — l-cells.

Proof. Apply (2.3) to S and (2.2) to &g.    D

Corollary 3.1. Let & be a Euclidean arrangement with rank d and let k > 0. Also

let g be a hyperplane general with respect to & except for containing one or more

vertices vx,...,v . If g moves slightly parallel to itself, it meets besides all the k-cells it

originally met exactly 2* = xw¿ kd(L(tñ(vm))) new ones.

Proof. The /c-cells met by g correspond to k l-cells of r/> The k - l-cells that

appear as g moves away from vm are those bounded by hyperplanes through vm. So

apply Theorem 3.2. That suffices if q = 1 ; otherwise we must know there is no

multiple counting. But if there were, a multiply counted ¿-cell would have had (say)

both vm and v¡ as vertices and the segment between them as an edge; thus g would

have contained a line of &, contrary to generality.    □

Corollary 3.2. Let & be a Euclidean arrangement of rank d. Let gd = Ed Z) gd_,

D • • ■ D g0 D g_x = 0 be a chain of affine subspaces of the indicated dimensions,

general with respect to $. Then for each I = d, d — 1,... ,0, the number of k-cells of&

that meet g/ but not g¡_x is equal to w¿_k¡(L(&)).
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INTERPRETATION OF WHITNEY NUMBERS 103

Proof. Apply (2.3) to get L(&g\ Then apply Theorem 3.1 to &g/.    D

Corollary 3.3. Let & and g; be as in Corollary 3.2. The number of k-cells of& met

by g, is 2j<,w]Lkj(L(&)); the number missed by g, is 2j>lwdtkJ(L(S)).    D

The preceding results can serve as the basis for generalizing to higher dimensions

the method of sweep lines and sweep planes exploited so successfully by Wetzel and

his associates in [1,§3; 14; 2, §4], etc. We plan to treat this topic fully elsewhere, but

the next theorem and the perturbation method of Corollary 3.1 suggest the ap-

proach.

In this theorem we carry further the term-by-term analysis of equations like

fd(&) = S/H'/XT^S)), as in Corollary 3.2. We show how to break up the regions

counted by each w* (L(&)) into blocks of sizes tx+(0, xd) for vertices xd; and

similarly for cells of other dimensions.

Theorem 3.3. Let S be an arrangement of rank d in Ed. Take a hyperplane g0,

general with respect to &, such that all the vertices of$ lie on one side of g0 and no two

vertices are equidistant from it, and number the vertices vx, v2,...,v in order of

distance from g0. For 1 < m < q let gm be a translate of g0 lying between vm and vm+x,

and let gq be a translate of g0 lying beyond vq(so vx.vm are the vertices between g0

and gm). Then for m— l,2,...,q, /x+ (0, vm) is the number of regions and wdh_kd

([0, vm]) is the number of k-cells met by gm but not by gm_,.

Proof. When S is central, q = 1 and the theorem is true by Theorem 3.1: for g0

and g, between them meet every A:-cell.

In general the cells in question, say Cx.Ç, are just those that have vm as a

vertex and have no edge meeting g„,_,. If we discard all hyperplanes not in &(vm),

then Cx,...,Cj become enlarged to cones at vm; but they are still distinct and do not

meet g„,_,. Moreover all other /c-cells of &(vm) do meet g„,_,. So we apply the

central case to complete the proof.    D

This theorem interprets fi+(0, x) for x E L(&) as follows:  Fix a chain of

subspaces as in Corollary 3.2, but chosen so in each 6    the relative hyperplane

g/_io = g/-i satisfies the criteria of Theorem 3.3. Then apply Theorem 3.3 to S

withg/.K, = g,_, and withg,_, ,.g,_x q suitable translates.

Thus we have interpreted the Whitney numbers of the first kind. The interpreta-

tion of the second kind is relatively trivial (cf. (2.1)), but it is curious that Corollary

3.2 for regions (k = d) has an exact analog for flats obtained by changing

wf(L(&)) to Wi(L(&)). One wonders whether there is an interesting extension to the

doubly indexed numbers Wil(L(&)).

In Corollary 3.1 we perturbed a fairly general hyperplane through v. Now suppose

we shift one of the hyperplanes of a central arrangement like &(v).

Theorem 3.4. Let % be a central arrangement in Ed and let h E %. Let h* be h

perturbed by translation from its initial position and let %* be the perturbed arrange-

ment, with or without h also. Then

bd(%*) = bd_x(Xh.)=ß(L(%)),

regardless of the choice of h.
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104 CURTIS GREENE AND THOMAS ZASLAVSKY

Proof. The idea is to go over to Pd~x, in which we regard h as the ideal

hyperplane. Removing h leaves a Euclidean arrangement, isomorphic to %h„ to

which Theorem D can be applied. Since %* (without h) is a cone over %h», and h

introduces no more bounded regions, the rest follows.    D

Corollary 3.4. With notation as in Theorem 3.4, let also r = r(%) and d — r < k

< d. Then

bk{%„.) = (-ir"-*'      2      w;_x_kJ(L(%,h))
j=d-\-k

and

bk(%*) = bk(X„.) + bk_x(%h.).

Proof. The corollary is valid for regions by Theorem 3.4 and (1.1).

For k < d every relatively bounded k-cell is a region of some /c-dimensional flat

x E L(%*). If x > h*, the cell is a relatively bounded k-cell of %h.. If x> h, there

can be no relatively bounded /c-cells in x. The remaining case is that in which

y — h* v x plays the role of h* in the arrangement %*; thus by Theorem 3.4 we

have bk(%*) = bk_x(%v). From this we conclude the second formula of the

corollary.

Also by Theorem 3.4, since any y E L(%h.)d~]~k has the form x V h* for a

unique x G L(%, h)d~x~k, we have

bk(%y) = bk+x(%x) = (-ird+k      1      w;_(d_x_k)(L(%, h)/x).
j=d-\-k

Summing over all y, equivalently over all x, gives the first formula of the corollary.

D

In the extreme case k = d — r we have

bd_A%*) = bd_r(%) + 1 = Wr_x(L(%)) + 1

provided %* contains h, or h is not an isthmus of L(%).

Suppose S is a central arrangement with center z = PlS and g is a general

hyperplane (parallel to z, recall). Then we can count bounded regions of S U {g} in

two ways: by Theorem 3.1, or by taking h to be the translate of g passing through z

and applying Theorem 3.4 to & U {h}. Comparing the two answers yields a

geometrical proof of the identity

(3.1) tl+(L(&))=ß(L(&U {h})).

The algebraic proof is that, since g is general, the matroid of L($ U {h}) is the

general rank-preserving one-point extension of that of L(&). Thus w-(L(S)) =

Wj"(L(& U {h})) foij < r and we get (3.1) from (1.1).

We conclude by giving the generalization of Theorem 3.1 and Corollary 3.1 to

arbitrary hyperplanes g. The proof this time is abstract, following the lines of [24, pp.

50-52].
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INTERPRETATION OF WHITNEY NUMBERS 105

Theorem 3.5. Let & be a Euclidean arrangement in Ed, let g be a hyperplane in Ed,

and let

M= {t EL(&):t Eg},    N0= {t GL(S):/ng= 0}.

Then g meets all but exactly ¿Z,^N n+ (0, /) + 21teM\i+ (0, t) regions of & and all but

exactly

2    { 2 ß+(s,t) + 2 2 v+{s,t)\
s£H&)\M *■ re/v0 i6M '

dim s = k

of its k-cells.

Proof. Let L, = L(& U {g}) and

C= {/ EL(ê)\M:t ngGL(S)},    7V = L(S)\(MU C).

Thus 7V0 Ç N. The number of regions of & met by g equals /,,_,(£), so the number

missed is

(*) Ä(S)-/rf-,{sf)=   2  m+(o,0-   S   <(g,í)
re/.(f.) reníp

by Theorem A. Now [0, ?]/(t>) s [g, / V g]L¡ for f G N\N0, and L,/g = L(&g) =

MU {f Vg: t G N\N0}. Also

2^(0,0= 2 mí,(0-0= 2 [/i+(o,0 + /ií,(g,0]
(Ef (EM fSAÍ

by Corollary (a) to Proposition 4 in [22, §5] (as explained in [24, Corollary 4C5]) and

the deletion-contraction law jx£(0, /) = /^(g, t) + /x+(0, r) (cf. [5] for instance).

Thus (*) equals the desired expression.

The number of &-cells missed is obtained by summing the number in each ft-flat

s<£g.    D

If & is central and g does not contain the center, Theorem 3.5 simplifies, for then

M = 0. If g does contain the center, then contrariwise N0= 0.

4. Projective arrangements. We start by observing that Corollary 3.1 has an analog

for projective arrangements. This interprets ju+(0, v) if we take k — d, q — 1, and

p = 0.

Corollary 4.1. Let tí be a projective arrangement in Pd with rank d + 1 and let

k > 0. Let g be a hyperplane that contains the vertices vx,... ,v but no line ofâ. If g is

shifted slightly so it contains only vx,...,v (wherep may be 0), then it meets, besides

all the original k-cells, exactly 2qm=p+\Wd_k d(L(&(vm))) new ones.

Proof. We need consider only the case/? = 0; as in the proof of Corollary 3.1 it

suffices to treat the case q — 1. Since only local effects matter if g is moved but

slightly, we can throw to infinity a distant hyperplane of Pd (not necessarily in 62)

and in the resulting affine space appeal to Corollary 3.1.    G

Now we interpret the w£ (L(62)).
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106 CURTIS GREENE AND THOMAS ZASLAVSKY

Theorem 4.1. Let & be a projective arrangement of rank r and let k > d — r. Let

also g be a general hyperplane with respect to 62. Then g meets all but exactly

w+_kr(L(&)) of the k-cells of&.

Proof. The number of &-cells g meets is the number of k — l-cells of 62 . Since g

is general, whence 7_.(6Eg) = ÎL(â), that number is

fk-^g)=\\l kW;-k,(fL(â)) + wJ_k,r^(fL(â))\.

Now wu(TL) = wu(L) if j < r - 1 and w¡r_x(TL) = wir(L) + wir_x(L) if i < r -

1. By Rota's sign theorem [22] we deduce

/*-i(«,)=T    2    ^kjL(&))-wd+_kjL(&)),
L j=d-k

whence g misses exactly wd_kr(L((£)) of the Ac-cells.    D

Corollary 4.2. Let &be a projective arrangement of rank d + 1 and let 0 < k < d.

Let gd = Pd D gd_ | D • • • D g0 D g., = 0 be a chain of subspaces of the indicated

dimensions, general with respect to 62. Then for each I = d,..., 1,0, the number of

k-cells of & that meet g¡ but not g¡_, is equal to

2   wrd_k(L(&)/xd-k).
xJ-k(El.(d)

Proof. Let us rewrite Theorem 4.1 by (1.2): the quantity there is

2    w:+x(L(&)/xd-k)=    2    K+(W)/x"-k)-
xJ-k<Ei.(.&) xd *e/.(tf)

The k-cells of & that meet g, correspond exactly to the k — (d — /)-cells of 6?^,. The

lattice of the latter is Td~](L(&)), whose rank is /+ 1. So by Theorem 4.1 the

number we seek is

2{<^+l.l+ÁfJ-'(L(&))/xd-k):xd-k E fd~'(L(&))}

provided d — k < I + 1. Then the range of xd~k is L(&)d~k. Furthermore k — d +

1 < / + 1, so the summand simplifies to w'k'_d+ll+ x(L(d)/xd~k), as desired.

But if d — k > / + 1, the summand is identically 0, as required for the corollary.

□

There is, of course, a refinement of Corollary 4.2 analogous to Theorem 3.3.

Corollary 4.3. Let 62, k, and g¡ be as in Corollary 4.2. Then (with congruences

modulo 2) the number of k-cells met by g¡ is

2    *;_,,, (7.(62))
j<IJ=l

and the number missed by g¡ is

1    w;_,,,(L(62)).
j>i,j=i
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Proof. A matter of summing as suggested by the previous corollary and simplify-

ing by means of ( 1.2).    D

The Whitney numbers of the second kind interpret by an analog of Corollary 4.2

as with Euclidean arrangements.

5. Zonotopes. A zonotope is the vector sum of a finite number of closed line

segments in the real linear space Rd; it is a convex polytope. We may suppose

without loss of generality that all the segments 5,,... ,S„ are centered on the origin;

then Sm is the convex hull of its endpoints zm and -zm. We write Z = {zx,...,zn},

and P(Z) — Sx + ■ ■ ■ +Sn for the zonotope. We assume for simplicity that all

segments are nonzero and nonparallel. We write f(P(Z)) for the number of /-faces

(that is, /-dimensional faces) of P(Z), including P(Z) but not 0; the faces are

considered to be relatively open. The zone of a segment Sm is the union of all faces

parallel to it.

We write Rd for the ambient space to stress that all subspaces are linear: they pass

through the origin. Let F be a face. The apex of F is the linear space parallel to it:

that is, it is aff F translated to go through 0. The (closed) cone of F is obtained by

first translating P(Z) to P(Z)F, in which 0 lies in the translate of F; then

cone(F) = [pos 7>(Z)F] U [-pos P(Z)F],

where pos means positive span. Thus apex(F) is in a sense the apex of cone(F). We

also define the open cone:

cone°(F) = relint[pos P(Z)F] U relint[-pos F(Z)F] U {0}.

The lattice of flats of P(Z) is the set L(Z) of linear subspaces spanned by Z,

ordered by inclusion. It is a geometric lattice of rank r — dim Z and is the lattice of

the linear dependence matroid of Z. It also has the following interpretation: For a

face F let

Z(F) = {zmEZ:Sm\\F};

we take this to mean Z(V) = 0 for a vertex Fand Z(P(Z)) = Z Then P(Z(F)) is

a translate of F; and furthermore,

(5.1) L(Z)= {lin Z(F): Fis a faceof7>(Z)}.

So the Whitney numbers of the second kind Wj(L(Z)), the number ofy'-dimensional

subspaces spanned by Z, have an interpretation in P(Z).

Theorem 5.1. Let P(Z) be a zonotope. The number of distinct sets of intersection of

j zones not the intersection of fewer zones is equal to WÁL(Z)).    D

Each segment Sm is dually a hyperplane hm; thus we have a central arrangement 62

in the dual space R^* which carries over to a projective arrangement 62 = {hx,... ,hn]

in P''-1. (Noted by Coxeter [9]. See also [19] for this duality and references.) The

/-faces of P(Z) correspond one-for-one to the d — /'-cells of 62 and (when i < r)

two-for-one to the d — i — l-cells of 62. Thus one gets enumerative properties of
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P(Z) by dualizing those of arrangements. That is the topic of this section. First of

course is

Theorem 5.2 [24, Corollary 6.3]. We have

f{p{z))=2w-(L(z)).   n
j-i

A face is in the zone of Sm iff it corresponds to a cell of the induced arrangement

&h . Thus (when /' < r) the number f(P(Z), Sm) of /'-faces not in the zone of Sm is

twice the number of d — /' — l-cells in the affinization of 62 by hm. By L(Z, zm) we

denote the semilattice L(Z)\(L(Z)/zm). From Theorem A we get

Theorem 5.3. For 0 « z < r we have

fl(P(Z),Sm) = 22w+(L(Z,zm)).    □
j=i

Because the correspondence of faces to cells preserves incidence while reversing

order, two closed faces intersect if and only if the corresponding cells of ¿2 intersect.

Thus a closed face corresponds to a cell bounded in the affinization of &by hm iff it

does not meet the closed zone of Sm. From Theorems D and C we deduce

Theorem 5.4. If n > 0, the number of opposite pairs of vertices of P(Z) not in the

closed zone of Sm equals ß(L(Z)). The number of opposite pairs of closed i-faces not

meeting the closed zone of Sm equals 2,-wJ (L(Z, z,)).    □

Another way to view Theorem 5.4 is this: Let v be a point on lin z„, and very far

from P(Z). Looking down from v at P(Z), we can see one vertex of each opposite

pair. Those inside the visible part of P(Z) are the ones not in the zone of Sm. So

their number is ß(L(Z)). Similarly the faces counted in Theorem 5.4 are the ones

whose vertices are interior to the visible region of P(Z).

A line / in Rd corresponds to a hyperplane h(l) in Pd. The line is parallel to a facet

iff h(l) contains the corresponding vertex. Therefore what corresponds to a general

hyperplane with respect to 62 is a line parallel to no facet; we call this a general line

with respect to P(Z). A vertex whose closed (or, open) cone does not contain /

corresponds to a region (respectively, closed region) meeting h(l). Thus an /-face F,

of P(Z) whose open cone does not contain / corresponds to a closed d — i — 1-cell of

62 meeting h(l). An F, such that either / <2cone(F,) or / Ç apex(F,) corresponds to a

d — i — 1-cell meeting h(l). (Notice that any / C apex(F) is parallel to F.) We say

that a subspace t of Rd is external to F, if / n cone(F,) = 0.

Now from Corollary 4.1 we have our first new result.

Theorem 5.5. Let P(Z) be a zonotope, where Z spans Rd, and let 0 =£ / < J. Let I

be a line that is parallel to facets F(l),... ,F<<?) but not to any subfacet. Suppose I is

perturbed so it is parallel only to Fm,...,F{p) ( where p may ,be 0) and to no subfacet.

Then the number of i-faces F, to which I is external is increased by

2    2    vC-MW»))).    D
m=p+ 1
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Remember that L(Z(F)) = [0, Z(F)] in L(Z) for any face F This gives an

interpretation of p+ (0, Z(F)) for a facet Fr_, by setting /' = 0, q - 1, and FiX) = F.

Corollary 5.1. Let F be a facet of P(Z), where Z spans Rd, and I a line parallel to

F but to no other proper face. Suppose I is perturbed so it is parallel to no proper face.

Then the number of vertices to which I is external is increased by 2/i+ (0, Z(F)).    □

From Theorem 4.1 we can interpret ju+(0,1) and the other "upper" Whitney

numbers of L(Z).

Theorem 5.6. Let P(Z) be a zonotope and i < r = dim Z. Let I be a general line

with respect to P(Z). Then the number of opposite pairs of i-faces of P(Z) to which I is

not external is exactly w*r (L(Z)).    D

Another way of saying that a general line / is not external to F is to say that any

translate of / meeting F also meets the interior of P(Z).

Corollary 5.2. Let P(Z) be a zonotope and i < r — dim Z. Let t0 — 0 C tx C

• • • C tr = lin Z be a chain of subspaces of the indicated dimensions. Then the number

of opposite pairs of i-faces of P(Z) to which tm_x, but not tm, is external equals

2     w¡'J¡-m(L(Z)/x').    D
.v'e/.(Z)

Corollary 5.3. Let P(Z), i, and tm be as in Corollary 5.2. With congruences

modulo 2, the number of opposite pairs of i-faces to which tm is external equals

2 w?j (HZ)).

The number to which tm is not external equals

2 w,)(L(Z)).    D

This corollary generalizes to lower-dimensional subspaces the observation that the

translates of a general hyperplane support exactly two,opposite vertices and no

higher faces.

There is an appealing interpretation of ß(L(Z)) deduced from Theorem 3.4.

Theorem 5.7. Let P(Z) be a zonotope in Rd with dim Z < d and let zm G Z.

Suppose the segment Sm is rotated slightly towards the perpendicular to lin Z, into a

new position S* C lin(Sm,(lin Z)-1). Let P(Z*) be the zonotope generated by the

perturbed segment set {SX,...,S*,...,S„} (optionally including Sm as well), and let v

be a point on (lin Z)x far from P(Z). Then the number of vertices visible from v and

interior to the visible part of P(Z*) is equal to ß(L(Z)), regardless of the segment

chosen to be rotated.

Proof. Without loss of generality we may assume lin Z = {x G Rd: xd = 0}. Let

a be the affine hyperplane a - {x E Rd: xd — 1}.

Dualizing P(Z) and P(Z*), we get central arrangements 62 and â* in Rd. Then

% = ¿2a is a central Euclidean arrangement in a with rank d — 1, and h(z* ) n a is a
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translate of h(zm) n a. so %* = &* is the perturbed arrangement in Theorem 3.4.

That gives the number of bounded regions in ¿2*.

Let z0 be a normal to lin Z and Zq = Z* U {z0}. The dual projective arrangement

62* with h(z0) thrown to infinity is a Euclidean arrangement isomorphic to 62*. Now

the remarks preceding Theorem 5.4 allow us to interpret the bounded regions of 62*

as the opposite pairs of vertices of P(Z%) not in the closed zone of z0; by the

comment after Theorem 5.4 we have the theorem.    D

There is a duality for zonotopes corresponding to matroid duality, under which a

¿/-dimensional zonotope with n zones corresponds to an n — ¿/-dimensional zonotope

with the same number of zones. For this see [19 or 20, §7]. The proposition dual to

Theorem 5.2 with i' — 0 is

Theorem 5.8. The number of points 2"e,z,, where all e, = ± 1, that lie in the interior

of P(Z) is equal to 2,-w+ (7/(Z)), where L±(Z) is the lattice of the dual of the

matroid of Z.

The proof is straightforward, given the zonotope duality theory in [19,20].    D

6. Non-Radon partitions. A non-Radon partition of an affine set S C Ed is a

partition of S into the two parts on either side of a hyperplane not meeting S. (One

such is the partition {0,5}.) A partition of 5 into two parts not separable by a

hyperplane is a Radon partition. A recent survey of the subject is [11].

One can dualize by regarding 5 as a subset of Pd with a distinguished hyperplane

(called oo ) that avoids s. The dual is an arrangement of hyperplanes 62 in Pd; oo

becomes a distinguished point lying in some region Rx. A separating hyperplane of

5 becomes another point, in a region R say; the induced partition of 5 corresponds

to the partition of â given by h ~ h' iff h and h' do not separate R from Rx. Thus

the non-Radon partitions of 5 are in one-to-one correspondence with the regions of

62. Each region corresponds to an equivalence class of 5-avoiding hyperplanes in Ed

under the relation k ~ k' if k can be moved continuously to k' without touching any

point of 5.

Let L(S) be the lattice of affine subspaces generated by the points in 5; it is the

lattice of the affine dependence matroid of 5. From Theorem B we conclude:

Theorem 6.1 ([24, Corollary 6.2], also in [6]). Let S be a nonempty set of n

points in Ed. The number of non-Radon partitions of S is

\lw;{L(S)) = lw¡'+{L(S)).
j j

The number of Radon partitions is 2"~ ' - 2jW"+ (L(S)).    D

Let us choose a distinguished "basepoint" b G 5 and regard the corresponding

hyperplane h(b) as the infinite; thus 62 becomes the projectivization of a Euclidean

arrangement S = (£\{h(b)}. A bounded region of & corresponds to an equivalence

class of 5-avoiding hyperplanes k such that k cannot be continuously shifted into a

position containing b without first passing through another point of 5. Let us call
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such a k barred from b. From Theorem D we have

Theorem 6.2. Let S Q Ed and let b E 5. Then the number of non-Radon partitions

produced by hyperplanes barred from b is equal to ß(L(S)).    D

In order to interpret the vv,"+ (7.(5)) we need another definition. An affine

subspace / has general position with respect to 5 if for every x G 7,(5), / and x span

the largest possible space and are not parallel.

Theorem 6.3. Let S span Ed, let b E S, and let t_x = 0 C r0 C t, C ■■■ Etd = Ed

be a chain of affine subspaces in general position with respect to 5. Then for

I = 0,1,... ,d, the number of non-Radon partitions of S produced by hyperplanes

kD //_,, but not by any hyperplane k D t¡, is equal to wd*¡ (L(S)).

Proof. Let gd_, _, be the dual of t¡ in Pd. A region /? of 62, the dual arrangement

of 5, meets gd-x-¡ if and only if 62 corresponds to a separating hyperplane k D t¡.

Thus the theorem follows from Corollary 4.2.    D

Answering the question of Eckhoff [11, p. 170] on interpretation of the Whitney

numbers, we have

Corollary 6.1. The Whitney number wd+x(L(S)) = /x+ (L(5)) equals the number

of non-Radon partitions of S not produced by any hyperplane through a fixed point t0.

For 1= 0,1,...,d, the Whitney number wd^¡(L(S)) equals the number of non-Radon

partitions of S produced by hyperplanes k D t¡_x, but not by any hyperplane k D tl+x.

Proof. From Theorem 6.3 and (1.2).    D

The doubly indexed Whitney numbers are harder to interpret for Radon parti-

tions. Consider an imperfectly separating hyperplane: one that meets 5 in a set 50

and separates the remainder into 5, and 52. Thus we have an imperfect non-Radon

partition, into three parts of which 50 is distinguished: we call it the middle part. The

interpretation of Theorem B is

Theorem 6.4. Let S span Ed and let -1 < / < d be arbitrary. The number of

imperfect non-Radon partitions with i-dimensional middle is \J,¡w¡4\x  (5).

Proof. Again dualize to 62 in Pd\ it has rank d + 1. A hyperplane k whose middle

5 D k has dimension /' dualizes to a point in a cell of 62 of dimension d — (/' + 1);

conversely each d — (i + l)-cell determines an imperfect non-Radon partition with

middle dimension /'. Thus the theorem.    D

Perhaps it would be more interesting to study " imperfect Radon partitions", that

is tripartitions {50; 5,, 52} of 5 with 50 distinguished such that 5 n aff 50 = 50 but

no hyperplane containing S0 separates 5, from 52. The number of these where

dim 50 = / — 1 is

(6.1) n,(s)=   1   r-ii-ií'wJWs)).
TeL(S)' j=i

(Here T E L(S) is understood to be a matroid-closed subset of 5 rather than an

affine subspace.)
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7. Acyclic orientations of graphs. A remarkable result of Stanley suggests that

acyclic orientations of graphs can be treated through arrangements of hyperplanes.

Theorem 7.1 (Stanley [23]). Let Y be a graph with chromatic polynomial x(À).

Then T has exactly |x(~l)l acyclic orientations.

We deduce Stanley's theorem from Theorem A after establishing the notation and

the fundamental correspondences.

Say T has the node set N — {px, p2,... ,/>„} and the edge set F; we write etj for an

(unoriented) edge with endpoints p¡ and pj and (/', j) for ei} oriented from p¡ to p..

(There may be more than one edge ef., but that will cause no difficulty.) To e,

corresponds a hyperplane htj — {x E R": x¡ — x¡). The graphic arrangement corre-

sponding to T is

%[T] = {hij:eijEE}.

Let c = c(T) be the number of connected components of T. Then

r(%[T]) =n-c,

and indeed

Pi %[T] = {x E R": x,• = constant in each component of T) ;

in particular if T is connected then D9C[r] is the line xx = x2 = • • • = xn. Further

let L(T) be the lattice of polygon-closed subsets of F, equivalently the lattice of

partitions of T (partitions tr of N whose blocks induce connected subgraphs). This

lattice is naturally isomorphic to L(%[T]). The Whitney numbers w¡ appear in the

chromatic polynomial:

(7.1) x(a)= 2 M>(L(r))x"->.
7=o

For a set 5 C E we count among the components of 5 any isolated nodes. We

assume T has no loops; the case of loops is easily handled separately. A path is

directed or coherent if, for each consecutive pair of arcs, one enters and the other

leaves their common node. A coherent circle is a cycle.

Lemma 7.1. There is a one-to-one correspondence between the acyclic orientations of

T and the regions of%[T], given by

(7.2) R(a) = {x E R": x¡ < Xj ifetj is oriented (i, j) in a)

for each acyclic orientation a, and inversely

(7.3) a(R) = {(/', j): e(J E E andxj> x¡ifx E R)

for each region R.

Proof. Any x E R"\ U %[T] defines an orientation a(x) by a rule like (7.3);

clearly it is acyclic. Suppose x moves continuously in R: since at no time does x

cross a hyperplane htj E %[T], there is no time at which any edge reverses direction.

So a(R) is a well-defined acyclic orientation.
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Conversely given a we can show R(a) ¥= 0, whence it follows from the previous

paragraph that R(a) is a region. Writingp¡ <a pj if (i, j) E a (extended by transitiv-

ity), and extending this partial ordering of N to a total ordering, say pi < •••</>,,

we see that any x whose coordinates are ordered x¡ < ■ ■ ■ < x¡ belongs to R(a).

Clearly R(a(R)) = R and a(R(a)) = a.    D

Proof of Stanley's theorem. By the lemma T has f„(%[T]) acyclic orientations;

by L(%[T]) s L(T) and Theorem A this number is 2/v/ (L(T)) =|x(-l)| •    □

Lemma 7.2. There is a one-to-one correspondence between the acyclic orientations of

all contractions T/S where S E L(Y) has k components and the k-cells of%[T], given

by

C(a, 5) = [x ER": x E htJ ifeiJ E 5, x, < x¡ ifetj is oriented (i, j) in a]

for each acyclic orientation a of a contraction T/S, and inversely

5(C) = {<?,,: C ÇA,,},       «(C) = {(i,j):xi<xJifxEC)

for each cell C of %\T\    D

Corollary 7.1. The number of acyclic orientations of all contractions T/S in which

S G L(T) has k components is equal to J,jW^_k  (L(T)).    D

The worth of the hyperplanar approach to acyclic orientations is that one can get

other results by interpreting the geometry of selected regions. For instance from

Theorem D by way of Theorem 3.4 we have Theorem 7.2. A source is a node with

only outgoing arcs; a sink has only incoming arcs. We consider an isolated node to

be neither a source nor a sink.

Theorem 7.2. Let etj be an arbitrary edge in T. The number of acyclic orientations of

T in which p¡ is the only source and Pj is the only sink equals ß(L(T))—regardless of

the choice of edge e¡j.

Proof. If T is disconnected, both quantities are 0. So assume it is connected.

In Theorem 3.4 we set % = %[T], h = htJ, and h* = {x E R": Xj = x,, + 1}. A

region R of %[T] meets h* iff «(7?) orients etJ as (/', /'). It is relatively bounded in

%h. iff the only way for any coordinate xk to become infinite while x remains in R is

for 1xk to become infinite.

Suppose a(R) has a source p¡ ¥= p¡. Then x, is unbounded below in R, so we can

let x¡ -» -oo and all other xk -» + oo while holding "S,xk constant. Therefore R is not

relatively bounded in %h,. A similar argument applies if there is a sink besides/?.

On the other hand if pi is the only source and pj the only sink in a(R), then

x¡ < xk< Xj = x¡ + 1 for every x E R; therefore R is relatively bounded in %h,.

So by Theorem 3.4 we have the desired conclusion.    □

Corollary 7.2. Let e, be a fixed edge in T. The number of acyclic orientations of

contractions T/S in which e¡¡ £ 5 G L(T) and S has k components, such that p¡ is the

only source and Pj is the only sink, equals lljw'n'_kj(L(T, e,y)).

Proof. By Corollary 3.4 and arguing as in the preceding proof.    D
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Theorem 7.3. Let p¡ be an arbitrary node of T. The number of acyclic orientations in

which p¡ is the only source is equal to w*_x(L(T)) (which is ¡u+ (L(T)) if T is

connected, 0 otherwise)—regardless of the choice ofp¡.

Proof. We can assume T is connected. Then the subspace s = {x: x¡ = 0}

sections %[T] faithfully and g = [x: ?,k-tixk = -1} is a general hyperplane with

respect to S = %[r]s. By Theorem 3.1 then g misses exactly w+_x(L(T)) regions R

ofS.

If Pj is the sole source in a(R), then all xk > xt= 0 in R, so R does not meet g.

On the other hand if there is a source p, ¥= p¡, we can decrease x¡ at will until

1k^jXk < 0, then find a positive scalar multiple of x in g, all the while keeping x in

R. Thus the regions not meeting g are just those for which a(R) has the property of

the theorem.    D

Corollary 7.3. The number of acyclic orientations of all contractions T/S in which

S G L(T) has k components, such that />, is the only source, equals w*_k n_x(L(T)).

D

Comparing Theorem 7.3 for T to Theorem 7.2 for T + p0 (that is, T with an extra

nodep0 adjacent to all other nodes) leads to the conclusion

(7.4) wn+_x(L(T)) = ß(L(T+p0)).

For an acyclic orientation of T with its only source at /?, extends uniquely to an

acyclic orientation of T + p0 with its sole source and sink at p¡ and p0. And an

acyclic orientation of the latter type, restricted to T, has a source only at/?,.

One would expect there to be an interpretation of the other Whitney numbers

Wj+(L(T)) based on Corollary 3.2, but we have not found a chain of subspaces

whose geometry translates into graphically meaningful conditions.

What we do have is a purely graphical interpretation of the whole set of Möbius

functions fi+(0, 77) for 77 G L(T). We need the nodes to be in a fixed order, say

numerical order; and for B C N let min B denote the first member of B. Recall the

partial order <„ induced on N by an acyclic orientation a. For each a define a

partition 77(a) in this way: First set Tx = T; let /?, be the last source in Tx (in

numerical subscript order) and Bx the set of all nodes />■ of T, reachable by an

ascending path coherent in a. Next let T2 be the subgraph T : [N\BX] induced on

N\BX; repeat the construction on T2 to get /?, (the last source in T2) and B2. Let

r3 = r: [N\(BX U B2)], and continue until all the nodes are used up: until

Bx U B2 U • • • UBq = N. Then set

77(a) = {Bx,B2,...,Bq}.

Theorem 7.4. We have 77(a) G L(T), and each 77 G L(T) is the image of exactly

/x + (0,77) acyclic orientations.

Given a we have p¡ — min Bm, /?, is the only source in T : Bm, and any edge with

endpoints in different blocks B¡ and Bm of 77(a) is oriented against the order of minimal

nodes (that is, from Bm to B¡ if i, < im, i.e., if I > m).

Conversely, given 77 the following construction yields its complete inverse image:

Orient each T: Bm acyclically so that min Bm is the only source, and orient each edge

between blocks against the order of minimal nodes.
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Proof. The construction of 77(a) assures that each T: Bm is connected, hence

77(a) G L(T). The other properties of 77(a) are obvious. Thus when constructing

orientations from 77(a), one of those constructed is a.

Conversely, if 77 is given and a is constructed as described, then the source of the

highest block Bx is the highest source in a, whence 77(a) has Bx for the highest block;

stripping away blocks in succession and reasoning in the same way we see that

77(a) = 77. We have therefore constructed the complete inverse image of 77.

Its size follows from the observation that (by Theorem 7.3) there are /¿+ (T : Bm)

ways to orient each T : Bm and, consequently,

/t+(o,,7)= n n+(r-Bj
Be*

ways to construct a.    □

We can restate the definition of the blocks Bm. Let Ta be the subgraph of

ascending arcs of a (ascending in the fixed ordering) and let /?,, p¡,... ,p¡ be the

sources of Ta in descending order. Then

Bm = {/? E N: p is reachable in Ta from/?,  but not from/?,_,/?,     j.

Corollary 7.4. Given a fixed ordering of N, the number of acyclic orientations of T

in which Ta has exactly q sources equals wf_ (L(T)).    D

Taking T = Kn we have a property of the retreating elements of a permutation

(a,, a2,...,a„) of {1,2.n), which are the a¡ such that ö,,...,a,_, > a,. We call

ax a retreating element.

Corollary 7.5 (Renyi [21]; cf. [8, Chapter VI, Exercise 10(3)]). The number of

permutations of {1,2,...,«} having q retreating elements equals \s(n,q)\, the un-

signed Stirling number of the first kind.    □

Rényi stated this result in reverse, for "outstanding" elements (éléments saillants).

Lastly we offer an interpretation of certain sums of Möbius functions that are not

in general Whitney numbers. For P,Q C N, let

E(P, Q) — {e G F: e has one end in P and the other in Q}.

Any bond (minimal cutset) of T has the form E(P, Pc), where Pc — N\P. We say

an orientation of T directs a bond if it orients every bond edge in the same sense.

A null potential is a function/: N -» R such that f(N) = 0, where

f(P)=  2 f(p)    forPQN.
peP

We say such a function orients bonds by majority rule: if E(P, Pc) is a bond with

f(P) ¥=f(Pc), we orient it from the side whose value of/is lower (hence negative) to

the higher (positive) side. If f(P) = f(Pc), we call E(P, Pc) neutral and do not

orient it. Clearly a bond is neutral if and only if/(F) = 0. A partition 77 G 7.(1") is

neutral if f(B) = 0 for every B E 77 (equivalently if every bond E(P, Pc) for which

{P, Pc) > 77 is neutral). The set N(f) of neutral partitions is a nonempty modular

filter in L(r).
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Theorem 7.5. Let f be a null potential on T, not identically zero. The number of

acyclic orientations of T directing no bond against its f-orientation is equal to

2wew</)M+(0, ■n).

Proof. We apply Theorem 3.5 to %[T] with g the hyperplane

i

Since %[T] is central and its center is not in g, M = 0. We must determine N0.

Consider the flat t corresponding to 77 G L(T). The points x G í are characterized by

x¡ — xB for/?, G B, so

g(x)=   2 f(B)xB.
Ben

Evidently t meets g if and only if some f(B) ^ 0. So the flats t E NQ are those

corresponding to 77 G N( f ).

Now pick a and suppose E(P, Pc) is a bond directed by a from P to Pc and

oriented oppositely by/; thus/(F) > 0. Take x E R(cx). If we subtract X > 0 from

each Xj corresponding to /?, G F, we do not remove x from R(cx), but we do decrease

g(x) by A/(F) > 0. Choosing À large enough makes g(x) < 0. Then multiplying by

a suitable scalar we obtain a point in g n R(cx).

Inversely suppose a directs no bond against its /-orientation. Equivalently in the

partial order <a on N we have /(/) > 0 for every order filter J. At this point we

need a decomposition rule for a nondecreasing function x: N -» R. Let zx > z2>

■ ■ ■ > zm be the values assumed by x. The set

/Ä = x'x({zx,...,zk}),    fork<m,

is a filter. Letting vk = zk — zk + x > 0 and ls be the characteristic function of

5 C N, we have

m-l

(7-5) x = 2Mlw +   2 vklJk.

Now since any x G F(a) is an increasing function on N, calculating g(x) by means

of (7.5) yields

g(x) = 0 + "2vkf(Jk).
k = \

But the right-hand side is nonnegative. So g cannot meet R(a).    D

Example 7.1. Digraph degrees. Let (A, 8) be a digraph on N and/(/?) be the net

indegree of/? in 5, that is

/(/?) = indegs(/>) - outdeg8(/?).

Then the/-orientation of a bond Er(P, Pc) is the direction in which a majority of

the arcs of Eà(P, Pc) go in 8; it is neutral if there is no majority.

For instance let A be the star consisting of all edges at one vertex /?, oriented

outward by 8. Then N(f) = {lr}, and the acyclic orientations counted in Theorem

7.5 are those in which/? is the only source. So we have Theorem 7.3 as a corollary.
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Or suppose A is a smaller star, consisting of all edges between/? and Q Ç N\{p),

directed outward by 8. Then N( f ) is the set of partitions having a block containing

{/?} U Q, and the enumerated acyclic orientations are those in which /?, but no

member of Q, is a source.

Example 7.2. Flows. A flow (or real voltage) on T is a mapping <p: F -» R, it being

understood that <p(e~x) = -<p(e), where e and e"1 mean the same edge transversed in

opposite directions. Its boundary 3tp, defined by

dcp(p) = the net inflow top,

is a null potential. Taking / = 3m in Theorem 7.5, the /-orientation of a bond is in

the "downhill" direction of flow. N(f) consists of the partitions of which each block

has no net inflow.

One could also take <¡p to be a flow on a different graph A on the same node set N.

8. Totally cyclic orientations of graphs. An orientation of a graph T is totally cyclic

if every edge belongs to a (directed) cycle. For a connected graph this means just

that the orientation is strongly connected. The numbers appropriate for counting

totally cyclic orientations are the Whitney numbers of the lattice 7/(1") of the

cographic matroid, whose closed sets are the complements of the isthmus-free

subsets of F. We wish to treat totally cyclic orientations geometrically; for that we

need the cographic arrangement of hyperplanes associated with T.

We assume in this section that T has no isthmi. By complicating our definitions

slightly we could allow isthmi, but we prefer to avoid the extra complexity.

We start the construction in R£, whose coordinates are x(e) for e E E with the

convention x(e'x) = -x(e) as in Example 7.2. Let

dx(P) = the net inflow to F =  2 dx(p) for PEN.
pep

The cycle space of T is u — {x E RE: dx = 0}. Writing 62 for the arrangement of

coordinate hyperplanes in R/:, we define the cographic arrangement of hyperplanes of

T to be the induced arrangement, ^[r] = 6?„, and we write h(e) for the hyper-

plane corresponding to e. Notice that this arrangement is central. A fact that is in

essence well known is that

(8.1) L(3C±[r]) = L-L(r).

Any region R of %± [T] (or for that matter of 62) determines an orientation t(R)

of T by the rule: pick x E R and choose the direction of e that makes x(e) > 0.

Lemma 8.1. The mapping R -» t(R) is a one-to-one correspondence between the

regions of%x [T] and the totally cyclic orientations of T.

Consider a region R. (We assume T has no isthmi.) We can orient T so all x(e) are

positive in R. If t(R) were not totally cyclic, there would be a bond E(P, Pc)

directed by t(R) from F to Fc. Since x G u, we would have dx(P) = 0. But all

x(e) > 0. So there is a contradiction.

Conversely let t be a totally cyclic orientation. Assign a positive number a(C) to

each cycle and let x(e) = 1a(C), summed over all cycles containing e. Since dx = 0,

we have found a region R, namely that containing x, for which t(R) — r.    □
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Now from Theorem A we have

Theorem 8.1. The number of totally cyclic orientations of an isthmus-free graph T is

equal to l¡w+ (L^(T)).    D

The nullity of 5 C F is

nul(5) = #S- c(N, 5).

We have dim u = nul(T).

Lemma 8.2. There is a one-to-one correspondence between the pairs (5, ts), where S

is an isthmus-free edge set in T of nullity k and ts is a totally cyclic orientation of 5, and

the k-cells of%± [T], given by

C(S, ts) = [x E u: x(e) = 0 for e £ 5, x(e) > 0 for e E S as oriented by ts) .

The lemma follows from (8.1) and Lemma 8.1.    D

Corollary 8.1. The number of totally cyclic orientations of all isthmus-free edge

sets in T of nullity nul(T) — /' is equal to E.w/t ( T/ (T)).    □

A circle C C E determines a vector xc G R¿ in the following way: Choose a

direction around C; then (for purposes of definition) orient each e E C to agree with

that direction and let xc(e) = 1 if e G C, xc(e) = 0 if e £ C. We see that xc E u.

Note that choosing the opposite direction for C would negate xc.

If t is an orientation of T, we write tp for the orientation obtained by reversing e.

Lemma 8.3. The boundary hyperplanes of a region R of %±[T] are the h(e) for

which T(R)e is totally cyclic.    D

Theorem 8.2. Let e E E(T). The number of totally cyclic orientations ofT in which

e has a fixed orientation and every cycle passes through e is equal to ß(L±(T)).

First Proof (by duality). Assume T has more than one edge; the other case is

easy. The orientations are in bijection via the map t — tc with the acyclic orienta-

tions in which e has the opposite fixed orientation and its endpoints are the only

source and sink. The latter number is ß(L(T)) by Theorem 7.2, which equals

ß(L± (T)) by Crapo's duality theorem [10, Theorem IV].    □

Second Proof (by geometry). Taking e in its fixed orientation, we set h — h(e)

and h* = {x E u: x(e) = 1} in Theorem 3.4. Then ß(L^-(T)) counts the regions R

such that t(R) gives e the fixed direction and R D h* is bounded. If x E R D h*

and t(F) has a cycle C not containing e, then x + Xxc E R D h* for any X > 0, so

R D h* is unbounded.

Suppose, conversely, that R n h* is unbounded and {x + Xy: X > 0} is a ray in

7? n h*. Thus .y G u and^(e) = 0. Since ^ ^ 0, there must be a cycle of r(R) whose

edges have nonzero values of y. But no such cycle contains e. So r(R) does not fit

the requirements of the theorem.    D

To interpret /i(Lx (T)) we need an auxiliary item: a certain kind of orientation of

the circles of T. Let g0 be a hyperplane through the origin of RE, general with respect

to the coordinate arrangement 62. Then g = g0 Pi u is general through the origin with
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respect to %± [T], Choose a positive side of g and let y orient each circle C in such a

way that xc is on the positive side. (Reminder: y does not orient edges.) We call such

a way of orienting the circles linear. An intrinsic characterization is

Proposition 8.1. Let y be a circle orientation and xc, for each circle C, the vector

corresponding to the orientation by y. For y to be linear it is necessary and sufficient

that the only nonnegative linear combination 1bcxc = 0 is that with all bc = 0.

Proof. One can see that y is linear if and only if there is a hyperplane g*

separating all xc from 0. The latter exists if and only if 0 is not a positive

combination of any xc.    D

Here is an open question. Acyclic and totally cyclic orientations are each char-

acterized by a simple excluded configuration (cycles, and sources or sinks, respec-

tively). To what extent can linear circle orientations be characterized in the same

way? One forbidden configuration is a theta graph in which every two circles are

oriented oppositely on their common path. We believe this one exclusion is too weak

for a characterization, although we have no confirming example. Is there a short

sufficient list of forbidden configurations?

The support of a vector x E Rh is

suppx = {<?: x(e) =£ 0}.

Let t(x) be the orientation of suppx that makes all x(e) > 0.

Lemma 8.4. Each x E u is a positive combination of vectors xc belonging to cycles in

7(X).

Proof. We induct on #suppx. By Corollary 8.1 r(x) is a totally cyclic orienta-

tion of suppx. Let C be a cycle passing through an edge of minimal weight

a =\x(e)\¥^0. Then t(x — axc) agrees with t(x) where both are defined, and

x — axc is a positive combination of cycles. So we have the lemma.    D

As a byproduct we have the well-known fact that u is the linear span « = (xc: C

is a circle of T). Another conclusion is

Lemma 8.5. Let R be a region ofX-1 [T] and R its closure. Let x G u. Then x E R if

and only if x is a nonnegative combination of vectors xc belonging to cycles of t(R),

and x E R if and only if also the cycles with positive coefficient bc cover E.

Proof. The criterion for x E R is immediate from Lemma 8.4. That for x E R

follows by taking into account the support of x.    O

A corollary is that the edges of R are the rays (xc)+ = {Xxc: X > 0} for which C

is a cycle in t( R ).

Theorem 8.3. Let y be a linear circle orientation of T. The number of totally cyclic

orientations of T whose every cycle is oriented as prescribed by y equals n+ (7/ (T)).

Proof. Say y corresponds to the half space a ■ x > 0, Let g be the hyperplane

a-x — -1, general with respect to 3Cx[r]. According to Theorem 3.1, g misses

exactly ¡x+ (T/ (T)) regions.
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By Lemma 8.5, g meets a closed region R if and only if there is a point x = ~2bcxc

(summed over cycles of t(R)), where the xc are oriented to agree with t(F) and the

bc are nonnegative, for which

-1 = a ■ x = 2^c(a ' xc)-

This equation has a solution precisely when some a ■ xc < 0, in other words C is

oriented oppositely by t(F) and y. Since g is general, it meets R under the same

conditions. The theorem follows.    D

Corollary 8.2. Let T be a directed graph. Order the edges ofT in a fixed way. The

number of totally cyclic reorientations t ofT, such that in each cycle of 7 the lowest edge

is not reoriented, is equal to ju.+ (7/ (T)).

Proof. Let the edge ordering be ex < e2 < ■ ■ ■ < e]E]. The appropriate circle

orientation y is linear: it corresponds to choosing the coefficients ax, a2,...,a,E] of

the general hyperplane g so that ax » a2 ~» ■ ■ ■ » a|£|> 0.    D

So far we have not found how to extend Theorem 8.3 to interpret the Whitney

numbers of Möbius function values of 7/(1"). This is the main outstanding problem

in our approach to totally cyclic orientations.

A plane graph has a natural circle orientation y, in which every cycle is oriented

counterclockwise. That y is linear follows easily from Proposition 8.1. Now Theorem

8.3 gives us

Corollary 8.3. Let T be a graph embedded in the plane. The number of totally

cyclic orientations of T in which there is no clockwise cycle equals [i+ (L±(T)) if T is

isthmus free, 0 otherwise.    □

The circle orientation that yields this corollary depends first of all on embedding

T in the sphere, then on choosing a face F in which to puncture the sphere. This F

defines y and becomes the unbounded face of the plane embedding. However we

could determine y using one face and puncture a different one.

Corollary 8.4. Let T be a graph embedded in the plane and F a bounded face of

the embedding. Consider the totally cyclic orientations of T in which each cycle that

surrounds F is directed clockwise while each other cycle is counterclockwise. The

number of such orientations is ju+(7/(r)) ifT is isthmus free, 0 otherwise.

Proof. We regard T as embedded in the Riemann sphere. Let F0 be the face that

becomes unbounded in the plane. To define y we orient each circle of T so that,

viewed in the sphere, it wraps clockwise around F The corollary now follows from

Proposition 8.1 and Theorem 8.3.    D

We might ask whether Theorem 7.3 on acyclic orientations would yield interesting

results for plane graphs. It does indeed do so if one applies it to the dual graph. But

one gets the same results more simply by combining Corollaries 8.3 and 8.4 with the

following structural propositions.

Proposition 8.2. Let T be as in Corollary 8.3. Consider a totally cyclic orientation

of T in which no boundary of a bounded face is directed clockwise. Such an orientation

has no clockwise cycles. Moreover it directs the outer boundary of T counterclockwise.
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Proposition 8.3. Let T and F be as in Corollary 8.4. Consider a totally cyclic

orientation of T in which no boundary of a bounded face other than F is directed

clockwise and the outer boundary is not directed counterclockwise. In each such

orientation a cycle is directed clockwise if it surrounds F, counterclockwise if it does not.

Moreover the boundary of F is directed clockwise.

Proofs. We work through the dual graph T* by means of a standard correspon-

dence between orientations t of T and t* of T*. Given t, if e* is the edge of T*

corresponding to e E E(T), then t* orients e* so it crosses e from left to right as one

looks along e in the forward direction. (Notice that (t*)* = t"1, the reverse of t.) It

is well known that t* is acyclic if (and only if) t is totally cyclic. For completeness

we give the easy proof. Suppose t* has a cycle C*. Then the dual edge set C Ç E(T)

constitutes a cut set separating (say) X from Y — N(T)\X such that every edge in C

is directed from X to Y. Clearly no e E C can belong to a cycle in t. Hence t is not

totally cyclic.

Let t be one of the totally cyclic orientations considered in Propositions 8.2 and

8.3. A node/?* of T* is a source if and only if the boundary of its corresponding face

F of T is directed clockwise (for F ^ the unbounded face F0 ) or counterclockwise

(for F = F0). Since t* is acyclic it must have a source/?*, whose corresponding face

can only be F0 in Proposition 8.2, F in Proposition 8.3. Thus the outer boundary, or

the boundary of F, are as described.

Suppose t has a clockwise cycle C. Then the dual edge set C* is directed outward

from the nodes of T* lying inside C. Since t* is acyclic, one of these nodes p* must

be a source. Since the corresponding face is bounded, we must be in the case of

Proposition 8.3 and the face is F. Hence C surrounds F. On the other hand suppose

C is a counterclockwise cycle of t. Then C* is directed into the set of nodes within

C, so there is a source /?* of t* outside C. In Proposition 8.3, /?* must correspond to

F; hence C does not surround F.    D

9. Acyclic orientations of signed graphs. A signed graph 2, consisting of a graph T

and a sign labelling a: E -» {± }, has a matroid G(2) and hence a geometric lattice

of flats L(2), whose Whitney numbers w¡j (7,(2)) count the acyclic orientations of

2 just as for ordinary graphs. Because ordinary graphs are essentially the same as

all-positive signed graphs, one can expect to find signed-graphic generalizations of

the results of the two previous sections. But the generalizations are not always

straightforward extensions, and they seem to be consistently harder to prove. We

have only found the analog of Stanley's theorem and interpretations of the Möbius

and beta invariants.

To describe the matroid and lattice of 2 we need to define balance.1 A circle is

balanced if its sign product is + ; an edge set is balanced if every circle in it is

balanced. A circuit in G(2) is either a balanced circle or a pair of unbalanced circles

and a simple connecting path meeting each circle only at an endpoint. (If the circles

2 The material on the matroid and lattice is from [28], on orientation from [29]. Here we omit half edges

and free loops; for our purposes they are equivalent, respectively, to negative and positive loops (cf.

[28,29]).
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meet, they can do so only at one node; then the path has length 0.) Let b(S) be the

number of balanced components of 5 C E, counting isolated nodes, and n = #N as

usual. The rank function in G(2) is

rk(5) = n- b(S).

An edge set 5 is a flat if its unbalanced components form an induced subgraph of 2

and no balanced circle has all but one edge in 5. To make the empty set closed (and

our results correct as stated here), we assume 2 has no balanced loops.

One orients 2 by putting two arrows on each edge e, pointing in the same sense if

a(e) = +, the opposite sense otherwise. We describe an orientation v by attaching a

sign to each end of e: v(e, p) = + if e enters the endpoint /?, — otherwise. A cycle is

a (matroid) circuit with no terminus (source or sink).

The signed-graphic arrangement %[S] lies in R". The hyperplane corresponding to

an edge etj is h(eu): Xj = a(e¡J)x¡. Then L(%[S]) is naturally isomorphic to L(2),

as shown in [28, Theorem 8B.1]. The generalization to signed graphs of Lemma 7.1 is

easy to state but the proof is long, occupying the bulk of [29].

Lemma 9.1 [29, Theorem 4.2]. There is a one-to-one correspondence between the

acyclic orientations of'S. and the regions of%[S], given by

R(a) = {x E R": a(e,y, p,)x, + a(etJ, pj)xJ > 0foralletj E E)

for each acyclic orientation a, and inversely a(R) given by

«(*)(«,■>. Pi) = sSn[^ - °(eij)xj]*   if* G R>

for each region R.    D

Theorem 9.1 [30, Corollary 4.1 ]. The number of acyclic orientations of a signed

graph 2 equals 2,w/ (L(2)).

For a geometric proof, apply Theorem A to Lemma 9.1. A graphical proof

appears in [30].    □

For our interpretations of p. and ß we need another definition. A half-cycle at

p G N is an unbalanced circle with a simple path of length > 0 attached to it at one

end, oriented so that p is the only terminus.

Theorem 9.2. In a signed graph 2, choose an edge e and give it a fixed orientation.

The number of acyclic orientations of S giving e the fixed orientation, having no termini

outside the endpoints of e, and (if'S, is unbalanced) having a half-cycle at each endpoint

p of e with the same direction at p as e has, is equal to ß(L(S)).

Proof. We rely on machinery from [29], to which we refer for the definitions.

If 2 is balanced, Theorem 7.2 applies after switching 2 so it is all positive. If 2 is

disconnected (neglecting isolated nodes), then ß = 0 and there are no suitable

orientations. So we may assume 2 has no balanced components.

Let/?, and pj be the endpoints of e. (Possibly/?, = /?y.) By suitable switching we can

assume e is negative and extroverted. Then h(e) is the hyperplane x, + x¡ = 0; to

apply Theorem 3.4 we take

(*) hm:x, + xj=l.
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Let a be an acyclic orientation orienting e correctly. When is R(a) n h* bounded? If

a has a source (or sink) pk, not an endpoint of e, then xk is not bounded below (or

above) for x E R(a), so R(a) D h* is unbounded. Thus we suppose from now on

that e has no termini other than />, and p..

Now 2 is oriented by a, the lift of a. To have a lower bound on a coordinate xk,

there must be an arc entering epk. Tracing back in a directed path as far as possible,

we arrive at a source, which must be -/?, or -p . So every xek for k ¥= /', j is bounded

below (and similarly above) by one of x,+ , xj, xt , and xj. Therefore for R(a) n h*

to be bounded, it is necessary and sufficient that these four values be bounded in

R(ä) H s n h*. At this point the case /?, = pf becomes trivial, so we assume /?, ¥= p¡

from now on.

We have three equations in R(à) n s D h*:

X* + X+ = 1,        xj = -x,+ ,        xj = -x+ .

Other relations among these variables can only appear from directed paths among

±p¡ and ±pj. The possibilities are the following:

(1) A directed path from -/?, to +/?■ (or -pf to +/?,) gives no new constraints.

(2) A directed path from -/?, to +/?, (or -/? to +/?,) forces x,+ > 0, hence xy+ < 1

(orjcy+ >0andx,+ < 1).

(3) A directed path from +/?, to +/?• extends, using ë, to one from -/?. to +/?., so

it need not be considered separately.

We conclude that R(à) D s D h* = R(a) n //* is bounded if and only if both

possibilities in (2) occur. But existence of a directed path in 2 from -/?, to +p¡ is

equivalent to existence of a half-cycle into/?, in 2. Hence the theorem.    D

Suppose the nodes are ordered. We call /? an upward node if there is no directed

path entering /? with its other end at a higher node.

Theorem 9.3. Let S be a signed graph with no balanced components whose nodes are

linearly ordered. The number of acyclic orientations such that every upward node has an

entering half-eye le is equal to ¡x+ (7.(2)).

Proof. Say the nodes are in subscript order /?,, p2,... ,/?„, and ax, a2,...,an are

real numbers satisfying 0 < ax « a2 « • • • « an. We apply Theorem 3.1 with g given

by the equation 2,a,x, = -1. That is, we want to characterize the acyclic orienta-

tions a such that no x E R(a) has S,¡a¡x¡ < 0.

First we observe that an acyclic orientation that misses g can have no source. For

if, say, x E R(a) and /?, were a source, then x, could be decreased to make

2,a,x, < 0 while keeping x E R(a). Henceforth we assume a has no source.

Suppose a has an upward node/?, with no entering half-cycle. We show that 2,a,x,

can be made negative starting from an a: G R(a) by reducing xt and altering certain

other coordinates of x to keep the vector in R(a). Consider the sets Ae of nodes pk

for which there is a coherent path Pe(pk) with sign product e, entering/?,, and having

pk for its other endpoint. (For instance p¡E A+ .) We have A_¥" 0 because /?,

cannot be a source. In addition, A+ C\A_= 0 .To prove this we first show that any

path Pc(pk) is simple. If not, let Pj be the first repeated node in it and let P' be the
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initial segment of Pc(pk) up to the first repetition of p}. Then P' is a circle, coherent

except perhaps at />., with a tail of length > 0 extending to /?,. If the circle is

balanced, it is a cycle; if unbalanced, we have a half-cycle entering />,; but neither is

permitted. So Pe(pk) must be simple. Now if^+ nA_¥= 0, there are paths P+(pk)

and F_( pk ). Let /». be the first point at which they diverge and p¡ the first following

point of P+(pk) at which it meets F_(/?A). Then the segments of P+(pk) and

P_(pk) from pj to p, form a circle (?. If it is balanced, we can replace the segment of

F_( pk ) from pj to /?, by the segment of P+(pk) and repeat the argument. Eventually

we must find an unbalanced circle Q, which together with the common initial

segment up to /?y forms a half-cycle entering F,. But this is a contradiction. So A +

andA_ are disjoint.

Now we take x G R(cx) and modify it to z by setting

Z7  =

X iipjEA+,

Xj + X    if Pj E A_,

Xj if Pj $. A+ U A_

where X > 0. Let e = +1, -1, 0 in these respective cases. Consider a constraint

5z- + 8'zk > 0 imposed by an edge ejk. It is satisfied by x; therefore it is satisfied by

z unless Ôc + 8'ek > 0. If the latter holds, then (say) 8 — e , which implies that the

coherent path entering /?, with endpoint /?7 can be extended to pk. Hence e^ ¥= 0,

indeed ek = a(e A)e = -88'ej. But that says 8ej + 8'ek — 0, so z satisfies the edge

constraint. We conclude z G F(a).

Since /?, is an upward node, a, » a, for all p} E A+ VJA_ besides /?,. So if we let

X -» oo, 2/fl/Z, is dominated by -Xa, -» -oo. Taking X sufficiently large, we get

z G F(a) for which 1^^, < 0. Thus if a has an upward node without an entering

half-cycle, it does not have the geometry we want.

The remaining task is to prove that, if a does have a half-cycle entering each

upward node, then 2,a,x, > 0 for all x G R(et). If there is a directed path in 2 from

-/?, to +/?,, then x, = x,+ > 0 for all x G R(et). This is the case if /?, has an entering

half-cycle. If on the other hand /?y has no such half-cycle, it is not an upward node.

So there is a higher upward nodepfU) at the end of a path entering/^. Now consider

a node /?, with an entering half-cycle. For all j G/"'(/') we have Oj « a¡. We also

have x, > 0 and x} > ±x, (the sign depending on the path from/?, entering/?^) for all

x G R(a). So

atxi +    1    ajxj >
ye/-'(i)

2    (±aj)
jefa)

Because a: » a, for all/ < /, the bracketed expression is positive. We conclude that

2,a,x, > 0 for x G F(a).    D

Note. The basic results here date from 1975 and were announced in [13] and [27].

For the delay in preparing this article the authors apologize to their readers and to

each other.
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