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without vacuum feedthroughs
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It is well known that substrate temperature during thin
film deposition can dramatically affect film morphology.
Cooled substrates are also useful for making films in meta-
stable phases1 and for making amorphous films. However,
provisions for heating or cooling are often initially omitted
from deposition systems because of the added cost and com-
plexity. We describe a simple way of retrofitting systems to
allow substrate cooling to 124 K or heating to 130 °Cwithout
the use of any vacuum feedthroughsand for a modest cost.
Our implementation is for bell-jar evaporators, though
simple variations will work for virtually any system which
pumps to a suitable vacuum in two hours.

It is essential to delay substrate cooling until the deposi-
tion chamber is suitably evacuated; otherwise condensation
will form, ruining the deposited film. Similarly, it is essential
to delay substrate heating to avoid excess oxidation.

Our system includes two copper pieces: a ‘‘hot/cold’’
block and a separate substrate block, which remains near
room temperature until desired. The hot/cold block is heated
or cooled outside the deposition system. It is then transferred
to the deposition system, where it is held magnetically above
the substrate block while the chamber is pumped down. At
this point the magnetic hold of the hot/cold block is released,
it falls into contact with the substrate block, and substrate
heating or cooling begins. This type of mechanical control of
heavy objects with external magnets has only become prac-
tical within the last 15 years, with the advent of high energy
product rare earth magnets.2

Tests of several geometries resulted in the final design
shown in Fig. 1. The substrate block is a 3.2-mm-thick piece
of oxygen-free, high-conductivity~OFHC! copper~width: 5
cm, length: 14 cm!. Two OFHC arcs~cut from a used gasket
for a 25.4 cm CF flange! are silver soldered to the edges of
the block to provide added stiffness.3 This assembly is sus-
pended from convenient support points within the deposition
chamber by lengths of 0.8-mm-diam stainless steel wire
~Loos and Co., Wire Division, Pomfret CT! which are at-
tached to holes at the ends of the arcs.

The hot/cold block is made from a 10.9 cm37.8 cm33.8
cm piece of copper, with a shallow hole in the middle of the
top surface. A thin-wall stainless tube~1.3 cm o.d., 0.25 mm
wall, with vent slots! is seated in this hole.@The difficulty of
soldering such a large piece of copper, led us to use Stycast
2850FT epoxy for this joint~Emerson and Cuming, Woburn,
MA !; using catalyst 43 as the curing agent extends the tem-
perature range well above 150 °C#. The top end of the stain-

less tube is attached to a set of two NdFeB disk magnets,
each 12.7 mm thick and 51 mm in diameter~Magnet Sales,
Culver City, CA!, which are held securely together by their
magnetic interaction. The tube is mechanically attached to
the magnets, using readily available components: we epoxy a
set-screw collar to the end of the tube, then tie four 1.0-mm-
diam stainless steel wires around the tube below the collar,
and thread them under a hose clamp which is tightened
around the magnet.~All stainless hose clamps are available
from ABA of America, Rockford, IL.! This arrangement,
though unconventional, is easy to setup and works very well.
To prevent the magnets from directly contacting the bell jar,
a layer of 1.5-mm-thick teflon is epoxied to the top surface
of the magnets, extending slightly beyond their diameter.
The deposition system we used for testing has a base pres-
sure of 231026 Torr when empty, and this same base pres-
sure was achieved during our tests.

For cooling mode, the bell jar, implosion shield, and hot/
cold block are setup adjacent to the deposition system as
shown in Fig. 2. The hot/cold block assembly is suspended at
the top of the bell jar by magnetic attraction to a second pair
of disk magnets on the top of the implosion shield. The hot/
cold block itself is thus suspended within an open-topped
styrofoam container. The magnetic force is easily able to
support the 2.9 kg hot/cold block despite the 2 cm magnet
separation imposed by the intervening bell jar and implosion
shield.~In fact, the hot/cold block can even be retracted after
it is dropped, for separations up to 5 cm.!

To minimize condensation on the hot/cold block, air is
expelled from the bell jar by flowing He gas from below.
The styrofoam container is then filled with liquid nitrogen
through a flexible tube attached to a pressurized storage
dewar. While the block cools~;15 min!, a very light flow of
He is sufficient to avoid formation of frost. Then the implo-
sion shield / bell-jar / hot/cold block assembly is lifted free
of the liquid nitrogen, lowered over the deposition system,
and pumping is commenced. At this point, the hot/cold block
is suspended above the substrate block by the magnets. In-
evitably, a small amount of frost does form on the hot/cold
block ~though none on the substrate block! as the chamber is
pumped down. However, the vapor pressure of ice4 at our
base temperature of 124 K is only 10211 Torr.

Once the desired vacuum level is achieved, the exterior
magnets are removed, allowing the hot/cold block to drop
onto the substrate block and begin cooling it. If desired, after
deposition, the hot/cold block can be retracted by replacing
the exterior magnets on the top of the implosion shield.

For substrate heating, a similar procedure is used, excepta!Electronic mail: wsmith@haverford.edu
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the hot/cold block is externally heated by resting on a copper
plate which is brought to the desired temperature by a hot
plate. Our thermometry limited us to tests below room tem-
perature. However, there should be no difficulty in heating
the block to 150 °C, and even higher if the joint between the
block and the stainless tube were made with silver solder.
~Although the magnets are somewhat isolated from the heat
applied to the block, magnets made from SmCo would be
better for such high temperatures since NdFeB loses magne-
tization if heated to 150 °C.!

To promote thermal contact between hot/cold block and
the substrate block, we place three 6 mm lengths of 1-mm-
diam indium wire in a triangular pattern on the sample block

before pumpdown. When the hot/cold block falls, the indium
is flattened, creating macroscopic contact areas. The sub-
strate block reaches a base temperature of 124 K within 25
min of dropping the hot/cold block, and remains close to this
temperature for at least 1 h.~We have made some measure-
ments with a more complex system, which does not use the
indium; instead, short inward-pointing arcs of copper are
added to the substrate block to serve as gripping ‘‘claws.’’
The ends of the hot/cold block are slightly bevelled so that it
wedges into place when dropped between the claws. This
more complex arrangement provides only marginally better
performance than the indium wire method.!

The theoretical base temperature is not as low as one
might assume based on a simple weighted average of the
initial temperatures of the two blocks, since the heat capacity
decreases at low temperatures. For a quantitative comparison
between the experimental base temperature and theoretical
expectations, we begin by calculating the initial thermal en-
ergy content of each block, relative toT50. This can be
done by integrating the heat capacity:

Q5nE
0

T

C~T8!dT8, ~1!

whereC is the molar heat capacity andn is the number of
moles.~Here, we ignore the distinction betweenCp andCV ,
which is small for solids.! For copper, the heat capacity is
well described by the Debye model:5

C59RS T

uD
D 3E

0

uD /T x4ex

~ex21!2
dx, ~2!

where R58.314 J K21 mol21 is the universal gas constant,
anduD is the Debye temperature (uD'343 K for Cu.! Thus,
Q can be evaluated numerically for the initial hot/cold
block temperature of 77.4 K (Qhot/cold51.283104 J) and the
initial substrate block temperature of 293 K (Qsubstrate52.11
3104 J).

FIG. 1. Drawing of substrate block~left! and hot/cold block~right!. Sub-
strates~not shown! are mounted on the bottom of the substrate block, which
hangs inside the deposition chamber, supported by four stainless steel wires
attached through the holes at the ends of the stiffening arcs shown here. The
hot/cold block is attached to a pair of strong permanent magnets by a thin-
wall stainless tube, as shown. The block is heated or cooled outside the
deposition chamber, then loaded into the chamber and suspended magneti-
cally above the substrate block. Once the chamber has been pumped down,
the magnetic hold is released, and heat transfer between the hot/cold block
and the substrate block begins.

FIG. 2. Schematic cross-sectional view of setup for cooling of hot/cold
block. The outermost gray line represents the implosion shield, the black
line represents the bell jar, and the dark stippled area represents a styrofoam
container filled with liquid nitrogen. The block is suspended within the
nitrogen by attraction to an external pair of magnets placed on the top of the
implosion shield. The bell jar is filled with helium gas during cooling to
minimize frost formation.

FIG. 3. Graph of molar thermal energy content~normalized by dividing by
uD) vs normalized temperature. Dots show the result of numerical evalua-
tion of Eqs.~1! and~2!; the line is a guide to the eye. This graph allows easy
calculation of the result of thermal equilibration for substances which are
well described by the Debye theory.
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For the convenience of other researchers designing simi-
lar systems, a graph of the results of the numerical evaluation
of Eq. ~1! is shown in Fig. 3. Note that the result of dividing
Q by uD is a universal curve which describes the molar ther-
mal energy content as a function of temperature for all ma-
terials which can be modelled with the Debye theory.

To these initial energies, we add the energy transferred to
the blocks during the pump and cool down, which totals
approximately 1.13104 J ~about 60% from radiation, 25%
from conduction down the magnet support tube, and 10%
from convection during the 30 s time interval between lifting
the hot/cold block out of the liquid nitrogen bath and initiat-
ing pump down!. The heat leak down the support wires is
negligible, and heat flow through the gas after pumping has
started is small, as is the thermal energy added during a
typical evaporation. Thus, when base temperature is
achieved~after 12 min of pumping prior to dropping and 25
min of additional pumping and cool down!, the total energy
content of the substrate block and hot/cold block is approxi-
mately 4.53104 J.

This value can be substituted into Eq.~1!, and the equa-
tion evaluated iteratively~or the solution determined graphi-
cally using Fig. 3! to find the corresponding temperature of
120 K, in good agreement with the experimental base tem-
perature of 124 K. The most important design criterion is a
maximum ratio of the mass of the hot/cold block to that of
the substrate block, so as to provide a small total heat content
spread throughout a large mass.

1See, for example, K. D. Leedy and J. M. Rigsbee, J. Vac. Sci. Technol. A
14, 2202~1996!.

2For a review of these materials, see J. F. Herbst, Rev. Mod. Phys.63, 819
~1991!.

3We have also tested designs which omitted the stiffening arcs. In all
designs, the hot/cold block must be supported by the substrate block,
which necessarily flexes under the load. The stiffening arcs minimize this
flexure, and so allow the use of a thin substrate block, which improves the
base temperature, as discussed in the conclusion.

4R. J. Donnelly, ‘‘Cryogenics’’ inA Physicist’s Desk Reference, 2nd ed.
~American Institute of Physics, New York, 1989!, p. 126.

5See, for example, M. A. Omar,Elementary Solid State Physics~Addison–
Wesley, Reading, Ma, 1975!, p. 84.
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