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We show how a radiation dominated universe subject to space-time quantization may give rise to inflation as
the radiation temperature exceeds the Planck temperature. We consider dispersion relations with a maximal
momentum~i.e., a minimum Compton wavelength, or quantum of space!, noting that some of these lead to a
trans-Planckian branch where energy increases withdecreasingmomenta. This feature translates into negative
radiation pressure and, in well-defined circumstances, into an inflationary equation of state. We thus realize the
inflationary scenario without the aid of an inflaton field. As the radiation cools down below the Planck
temperature, inflation gracefully exits into a standard big bang universe, dispensing with a period of reheating.
Thermal fluctuations in the radiation bath will in this case generate curvature fluctuations on cosmological
scales whose amplitude and spectrum can be tuned to agree with observations.

DOI: 10.1103/PhysRevD.67.081301 PACS number~s!: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

In spite of the success of the inflationary universe sce-
nario @1# in solving some of the mysteries of standard cos-
mology and of providing a mechanism which explains the
origin of density fluctuations on cosmological scales, a
mechanism which to date has passed all of the observational
challenges, we still do not have a convincing realization of
inflation based on fundamental physics. Moreover, the usual
realizations of inflation based on weakly coupled scalar mat-
ter fields ~see e.g.@2,3# for comprehensive reviews! are
plagued by important conceptual problems@4#. Thus, it is of
great interest to explore possible realizations of inflation
based on new fundamental physics. In particular, since infla-
tion may occur at energy scales close to the Planck scale, it is
of interest to consider the implications of the recent devel-
opments in our understanding of physics at the Planck scale
for inflation.

Space-time noncommutativity is one of the key new ideas
which follows from recent developments in string and matrix
theory @5#. It is thus of great interest to explore the compat-
ibility of noncommutative space-time structure with inflation
~see@6,7# for ideas on how to solve some of the problems of
standard cosmology without inflation in noncommutative ge-
ometry!. Noncommutativity, and space-time quantization, in
general lead to deformed dispersion relations~see e.g.@8#!. It
has been shown@9–11# ~see also@12,13#! that this can have
important consequences for the predictions of inflation.
These authors demonstrated that the short distance cutoff
given by modifying the usual commutation relations

@x,p#5 i\~11bp2! ~1!

changes the perturbation spectrum due to quantum fluctua-

tions. Implicit in this approach is the necessity of an inflaton
field generating a de Sitter phase.

In this Rapid Communication, we go one step further and
identify dispersion relations for ordinary radiation which
lead to inflation, without the need to introduce a new funda-
mental scalar field. Thermal fluctuations then replace quan-
tum fluctuations as the seeds of cosmic structure, similar to
what happens in thewarm inflationscenario@14#.

The dispersion relations derived from the noncommuta-
tive structure of space-time have the property that there is a
maximum momentum~corresponding to a minimum Comp-
ton wavelength or quantum of space!. Typically all trans-
Planckian energies get mapped into this maximal momen-
tum. However it is also possible to write down deformations
for which trans-Planckian energies get mapped into all mo-
menta smaller than this maximal momentum. In the latter
case for a given momentum there are two energy levels, one
sub-Planckian the other trans-Planckian. Along the trans-
Planckian branch as one decreases the momentum of a par-
ticle its energy increases.

This unusual feature implies that as we expand a box with
radiation thermally excited into the trans-Planckian branch,
and thereby stretch the wavelength of all particles and de-
crease their momenta, their energies actually increase. In-
creased bulk energy as a result of expansion is the hallmark
of negative pressure. We follow the thermodynamical calcu-
lation in detail, with a mixture of analytical~as developed in
@7#! and numerical methods, to show that it is possible to
generate an inflationary high energy equation of state for
thermalized radiation subject to space-time noncommutativ-
ity. We identify a class of dispersion relations for which this
occurs. We also find dispersion relations for which the equa-
tion of state corresponds to ‘‘phantom’’ matter@15#.
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II. MODIFIED DISPERSION RELATIONS,
THERMODYNAMICS AND INFLATION

We start by recalling that noncommutativity leads to de-
formed dispersion relations, but whereas space-space non-
commutativity must introduce anisotropic deformations,
space-time noncommutativity preserves isotropy. Hence in
the latter case, for massless particles, the dispersion relations
may be written

E22p2c2f 250 ~2!

where c is a constant reference speed, identified with the
low-energy speed of light. We explore dispersion relations of
the form

f 511~lE!a. ~3!

The casea51 was proposed in@16# and its implications
considered in@7#, and leads to a density dependent equation
of statew5p/r (p andr denoting pressure and energy den-
sity, respectively! which diverges like log(lr). We also recall
that for this model the color temperature~i.e., the peak of the
thermal spectrum! saturates atTc'1/l. In the caseaÞ1,
the high energy equation of statew(r→`) turns out to be a
constant, and this leads to much simpler cosmological sce-
narios. Depending ona we obtain a realization of varying
speed of light~VSL: @17,18#!, inflation, or phantom matter
@15#. We prove this feature by following the thermodynami-
cal derivations described in@7#.

As shown in@7# the deformed thermal spectrum is given
by

r~E!5
1

p2\3c3

E3

ebE21

1

f 3 U12
f 8E

f U ~4!

~note the modulus in the last factor, to be taken whenever the
Jacobian of the transformationdE/dp is not positive defi-
nite!. This leads to

r~E!5
1

p2\3c3

E3

ebE21

u11~12a!~lE!au

„11~lE!a
…

4
. ~5!

We see that the peak ofr(E) scales likeT for a,2/3, as
illustrated in Fig. 1. Fora.2/3 the peak saturates atE
51/l, but there is a wide tail up toE5T for values in the
range 2/3,a,1 ~see Fig. 1!. For a.1 the spectrum be-
comes double peaked, with peaks located atlE;1 for lT
@1. The shape of the spectrum becomes temperature inde-
pendent sincer(E) acquires the form of a temperature inde-
pendent function of energy multiplied byT ~see Fig. 1!.
Since the ambient speed of light is given byc5dE/dp
5c(E)5c(Tpeak) we see that only models witha,1 can be
implemented as VSL models. Fora.1 hotter radiation
means more photons with the same maximal energy, and
hence with the same speed. Only fora,1 does hotter radia-
tion mean more energetic and faster photons, opening doors
to VSL.

Next we examine whether or not denser radiation means
hotter radiation. To answer this question we integrater(E)

to obtain a high-temperature Stephan-Boltzmann law relating
r and T. We find a power-law of the formr}Tg, with an
asymptotic value forg which varies from 4~for a50) to 1
~for all a>1). The transition from low to high temperature
behavior for different values ofa is plotted in Fig. 2. The
conclusion is that in all cases denser radiation corresponds to
hotter radiation.

Finally the equation of state follows from~see@7#!

p5
1

3E r~E!dE

12
f 8E

f

. ~6!

Given that the denominator of the integrand is a constant at
low and high energies, we may expect that the high energy
equation of state is a constant approximated by

w~r→`!'
1

3~12a!
. ~7!

Of course, this formula assumes that the peak ofr(E) is
located at super Planckian energies, where the denominator
assumes its high energy constant value. This does not always
happen~e.g. fora>1), so a numerical integration of Eq.~6!
is necessary. We present the result in Fig. 3, where we also
plot the approximation~7!.

We see that in the regime where VSL may be realized
(a,1) we do not have inflation, but fora.1 we have

FIG. 1. The thermal spectrum for different temperatures fora
50.5,0.7,4. Fora50.5, the peak of the spectrum scales like the
temperature. Fora50.7, although the peak does not vary much
with the temperature, the tail of the spectrum extends to regions
which scale with the temperature. Fora54 we obtain a double
peaked spectrum whose amplitude scales likeT ~we have divided
all amplitudes byT for convenience!, so that the shape does not
depend on temperature.
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negative pressures. Numbers 1,a1,a2 can be found such
that for 1,a,a1 noncommutative radiation atT@1/l be-
haves like phantom matter (w,21). For a1,a,a2 we
have standard inflationary expansion, with21,w,21/3,
for temperaturesT@1/l.

Hence whena1,a,a2, we have a scenario in which the
Universe is always filled with radiation, but in the Planck
epoch ~or more precisely whenT@1/l) radiation drives
power-law inflation. As a result of expansion this inflationary
radiation cools down, sincew,21 implies thatr drops
with expansion, andr}T implies thatT decreases too. When
the radiation temperature drops below the Planck tempera-
ture its equation of state reverts to that of normal radiation.
Then, the Universe enters a standard radiation dominated
epoch. Our inflationary scenario does not have a graceful
exit problem, and we have no need of a reheating period.1

The critical casea5a1, however, does not benefit from a
graceful exit. It drives exponential inflation, but the radiation
equation of state is that of a cosmological constant (w5
21). As a resultr and T stay constant, and the Universe
never exits the de Sitter phase to enter a radiation dominated
phase.

The cases 1,a,a1 are more complex and will be ex-
amined further elsewhere. For these models there is a critical
rc such thatw(rc)521; for r,rc we havew.21 and
for r.rc we have w,21. If the Universe starts off
trans-Planckian (r.rc) and expanding, we have
a}(2t)2/3(11w), that is hyperinflation. However as the
Universe expands it gets denser and hotter~sincew,21,
andr}T), eventually reaching infinite density att50: per-
haps this possibility may be used to realize the pre-big-bang
scenario@19#. The only regular universe within this case has
an infinite de Sitter past withr5rc . However in this model
de Sitter space is unstable. Any small nudge and it either
plunges into an eternal Planck epoch withr.rc ~with a
possible pre-big-bang exit! or it decays into a standard radia-
tion epoch.

To obtain a heuristic explanation for the origin of negative
pressures fora.1, note that the pressure may be inferred
from the change in the energy inside a box when its size is
increased:

p5(
s

ns S 2]Es

]V D ~8!

where s labels states,ns their occupation numbers, andV
5L3 the volume of a box of sideL. The momenta are given
by p5(2p\/L)n, wheren is a triplet of quantum numbers
indexing the states. Hence as the volume increases the mo-
menta of all states decreases, since their Compton wave-
lengths are stretched proportionally toL. Usually this trans-
lates into a decrease in the energy: hence the positive
pressure of a gas. However for a high temperature gas living
in noncommutative space witha.1 the energy of the domi-
nant branch of the dispersion relation~the higher energy
branch! is a decreasing function of the momentum. Hence a
larger box is reflected in longer Compton wavelengths for

1The viability of our scenario demands that the mode interactions
in the expanding phase are sufficiently strong to maintain thermal
equilibrium. In the absence of a fundamental theory which gives
rise to our modified dispersion relation, a quantitative analysis of
this issue is outside of the realm of this paper.

FIG. 2. The high-energy Stephan-Boltzmann lawr}Tg, for dif-
ferent values ofa and different temperatures. The thick line denotes
the casea51 studied in a previous work. We see that in all cases
hotter radiation translates into denser radiation, although in general
1,g,4.

FIG. 3. The high energy equation of state for different values of
a. We also plotted~dashed line! the approximation mentioned in
the text. The shaded region delimits the values ofa for which one
may have inflationary expansion.
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these states, and consequently smaller momenta, but now
this implies a larger energy. Thus, by expanding a box of
noncommutative radiation, the system gains energy, which
corresponds to negative pressure.

What is the meaning of the parametersa and l? Using
Eqs.~2! and ~3! we can derive

p5
E

c„11~lE!a
…

~9!

from which we see that fora51 there is a maximum al-
lowed momentumpmax51/(cl). Its corresponding Comp-
ton wavelength is therefore the minimum length that can be
physically probed, corresponding to the quantum of space.
Hencel is the parameter determining the size of the quan-
tum of space. Asp→pmax, the energiesE(p) span all pos-
sible super Planckian energies all the way up to infinity, if
a51. This changes dramatically ifa.1: then Eq.~9! also
shows that there is a maximum momentum; however in this
case super Planckian energies do not all get mapped into this
momentum—rather we find that for all allowed momentap
,pmax there are two energy levels, one sub-Planckian the
other super-Planckian. The functionp(E) acquires two
branches, along one of whichp decreases withE. Finally the
casea,1 does not contain a sharp maximum momentum—
merely a suppression of variation in momenta with energy
for momenta above a given threshold.

III. COSMOLOGICAL FLUCTUATIONS

In our inflationary Universe scenario, it is thermal fluc-
tuations which are responsible for generating the curvature
fluctuations which develop into the observed perturbations
on cosmological scales. A simple way to estimate the result-
ing spectrum~see@20# for a detailed analysis! is to assume
fractional thermal density fluctuations of order unity on the
thermal wavelength scaleT21. Random superposition of
these fluctuations leads to fractional mass fluctuations on
Hubble radius scaleH21 measured at the timet i(k) that a
particular wave numberk crosses the Hubble scale during
inflation

dM

M
„t i~k!…5AS H

T D 3/2

~10!

whereA is a positive constant smaller than 1. It is convenient
to express this result in terms of the physical scalesl
and mpl , and the numberN(k) of Hubble times between
t i(k) and the end of inflation~which roughly occurs
when T5l21). Application of the Friedmann equations
yields

dM

M
„t i~k!…5A~lmpl!

23/2e23N/(2p), ~11!

where p is the power with which the scale factora(t) in-
creases during the period of power law inflation.

In order to relate~10! with the fractional mass fluctuations
when the scale re-enters the Hubble radius at timet f(k), we
make use of the fact that fractional density fluctuations in-
crease betweent i(k) andt f(k) by a factor given by the ratio
of 11w at the respective times@21–24#. This factor is 2p.
In order to obtain a spectral slope consistent with the COBE
data, the powerp has to be sufficiently large. In this case,
requiring that the amplitude of the fluctuations agree with the
data requiresl21 to be a couple of orders of magnitude
smaller thanmpl , which from the point of view of string
theory is not unreasonable.

IV. DISCUSSION AND CONCLUSIONS

In summary, noncommutative space-time geometry leads
to modified dispersion relations. We have identified a class of
dispersion relations which change the high-temperature
equation of state of thermal relativistic matter into that of
inflationary matter. In this scenario inflation does not require
a different type of matter—standard radiation suitably heated
up will behave like the proverbial inflaton field. As inflation-
ary expansion proceeds, the radiation cools down until its
equation of state reverts to that of ordinary radiation and
consequently the Universe enters the standard hot-big-bang
phase.

In the proposed scenario, thermal fluctuations in the
radiation bath will generate the necessary density fluctua-
tions to explain the structure of the universe. As discussed in
detail in @20#, the predicted spectrum is not exactly scale-
invariant, as in power-law inflation. Given the improving
limits on the deviation of the spectral slope from exact scale-
invariance~see e.g.@25#!, this more tightly constrains the
parameter space of our scenario. Note, however, that the
spectral amplitude can quite easily be tuned to agree with
observations.

Note that the energy scale at which the modifications
to the dispersion relation become important will most likely
be comparable to the Planck scale of the underlying funda-
mental theory. Thus, inflation may well occur at energy
scales higher than that of conventional grand unified models.
Thus, there is the danger that in our scenario unwanted to-
pological defects such as monopoles and domain walls will
be produced. However, in the context of string theory moti-
vated effective field theories at the unification scale, it is not
required to have a unified gauge group~separateU(1) fac-
tors are rather common!. Thus, in this context one may well
have models which do not yield any unwanted topological
defects.
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