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Commensurate and Incommensurate Structures in a Nonequilibrium System

Mary Lowe and J. P. Gollub
Department of Physics, Havexford College, Has. erford, Pennsylvania l9041, aud Department of Physics,

University of Pennsylvania, Philadelphia, Pennsylvania 19104

and

T. C. Lubensky
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 21 June 1983)

A layer of nematic liquid crystal that has undergone an electrohydrodynamic instability
(and contains nonequilibrium structures with period l p) is subjected to a spatially periodic
electric field with periodicity l, . The competition between these two length scales is
found to result in novel ordered phases similar to those found in equilibrium condensed-
matter systems. A simple model is proposed that accounts for most of the observations.

PACS numbers: 64.70.Ew, 47.20.+m, 61.30.Gd

When a periodic structure is modulated by a
spatially periodic perturbation having a different
length scale, a variety of ordered phases may re-
sult: commensurate phases in which the structur-
al periodicity is rationally related to that of the
perturbation, incommensurate phases character-
ized by a regular array of dislocations, and
chaotic phases. ' These structures have been de-
tected experimentally in a number of condensed
matter systems, including adsorbed krypton on
graphite, ' magnetically ordered systems' such as
CeSb, and smectic liquid crystals. ' The basic
phenomenon of interest, competing periodicities,
has been the subject of much recent theoretical
work. '

In this Letter we describe the experimental dis-
covery of commensurate phases and novel two-
dimensional incommensurate structures in a no»-
eq~~ilibriu»~ system consisting of an oriented
nematic liquid-crystal layer containing electro-
hydrodynamic (Williams) domains. In the pres-
ence of a uniform electric field applied trans-
verse to the layer, the director field (local direc-
tion of the rod-shaped molecules) becomes spa-
tially periodic with a period l0 that is roughly
twice the layer thickness d. This well-known
phenomenon' is associated with the formation of
microscopic convection rolls similar to those re-
sulting from the Rayleigh-Benard instability. By
applying in addition a spatially perioclic electric
field with periodicity l, , we find that a variety of
ordered states can be produced, including one-
dimensional commensurate phase-locked patterns
and two-dimensional incommensurate patter ns
consisting of regular lattices of kinks. This sys-
tem provides an opportunity to study ordered
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FIG. l. (a) Schematic diagram of the interdigitated
electrode whose 120 fingers provide a spatially periodic
electric field. (b) Configuration of the cell.

states resulting from competing periodicities in
a situation where the important parameters (such
as the ratio l, /l aond the strength of the periodic
perturbation) can be more easily varied than is
generally the case in condensed matter systems.
We also propose a simple theoretical model,
based on the minimization of a Liapunov function-
al, that accounts for the main features of our ob-
servations.

The experimental configuration is shown in Fig.
l. A layer of nematic liquid crystal (MBBA) oc-
cupies the gap between two transparent conduc-
tive In,O, electrodes. In order to impose a spa-
tially periodic voltage across the layer, the low-
er electrode is photolithographically separated
into two interdigitated regions A and B. By main-
taining the two regions at different potentials V„
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FIG. 2. (a) At the lower left, where the electrode is
not interdigitated, the unperturbed Williams domains
(roll size L p/2 = 65 p m) are seen. At the upper right,
the spatially periodic potential produces a one-dimen-
sional commensurate or phase-locked structure (see
text) . (b) Two-dimensional Fourier spectrum (logarith-
mic intensity scale) of the pattern at the upper right of
(a). The x direction is defined to be perpendicular to
the electrode fingers (toward the lower right), and the
q„direction (arrow) is along the row of bright spots.

and l'~ with respect to the upper grounded elec-
trode, a spatially periodic electric field (with
periodicity l, = 200 pm) is applied across the lay-
er. (To prevent electrolysis, 50-Hz ac voltages
are actually used. )

In the absence of a spatially periodic perturba-
tion, the director orientation is perpendicular to
the electrode fingers and in the layer plane. This
alignment is achieved by an oblique Sio evapora-
tion onto both plates. ' As a result, the electro-
hydrodynamic rolls are parallel to the electrode
fingers, so that one might expect the problem to
be basically one dimensional.

The patterns are observed by transmission
microscopy with use of light polarized in a plane
containing the director orientation. The unper-
turbed Williams domains are visible in the lower
left half of Fig. 2(a) as a set of dark lines result-
ing from light refraction. There are two rolls
per period ~0 of the unperturbed structure. Pat-

terns are studied by means of a vidicon camera
connected to a digital imaging system. Digitiza-
tion with a resolution of 320&240 pixels and 8-bit
accuracy allows us to compute numerically Four-
ier spectra of the optical intensity field with reso-
lution better than 1%.

The patterns were studied as a function of roll
size I,/2 over the range 40 to 140 pm (by vary-
ing the layer thickness), while keeping I, fixed at
200 p, m. The average voltage (V„+V~)/2 was
set to 6.6 V (rms), about 10% higher than the
threshold V, for appearance of the Williams do-
mains. For each of many values of the layer
thickness, the steady-state patterns were studied
for V„—V~ equal to 0.0, 0.2, and 0.6 V. In the
discussion below, we focus on phenomena occur-
ring in the range I,/2 between 65 and 116 pm and
V„-V, =0.6 V.

When I,/2 is within about 5% of &,/3, we find
[upper right portion of Fig. 2(a)] a one-dimen-
sional phase-locked commensurate state in which
there are three rolls per period of the potential;
the rolls are parallel to the electrode fingers.
The brightness of the rolls is modulated with
period /„indicating a variation of the roll ampli-
tude or the roll size or both.

In Fig. 2(b) we display the corresponding two-
dimensional Fourier spectrum. It is most simply
described in terms of rotated coordinates q„and
q, (see caption). Most of the intensity is along
the q„direction in Fourier space, with the strong-
est peak (1) having its first moment at q/2&

=150.5 + 1 cm ' and a linewidth of 4 cm '. This
wave number corresponds to a perturbed roll
size of 66.5 y. m =1,/3. We find that the position
of this peak remains fixed even as the unper-
turbed roll size l,/2 is varied by about 5%. The
peak nearest the origin (2) is located at q/2v
=1/l» and corresponds to modulation of the struc-
ture by the perturbation. The power on the q, ~

(vertical) axis is instrumental.
For roll sizes in the range 84—116 pm we did

not observe one-dimensional patterns, although
it is possible that they would be induced for larg-
er perturbations. Instead, we found that the
favored structure for V& —V& =0.6 V is a two-
di»tensional lattice, as shown in Fig. 3(a). The
rolls are oriented predominantly along a line
making an angle 0 =19' with respect to the elec-
trode fingers (y axis). They are modulated by a
regular lattice of kinks induced by the variation
of the potential along x.

The corresponding power spectrum is shown in
Fig. 3(b). In addition to the row of peaks along
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FIG. 3. (a) Two-dimensional pattern in the presence
of a periodic perturbation, where the unperturbed roll
size is $0/2 = 91 pm. The system has a regular array
of kinks. (b) Corresponding spectrum, showing that
much of the power is off the q„axis. Peaks are num-
bered in order of decreasing area.
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the q„direction, there are other rows parallel to
it. The peak with the largest integrated area (1)
is located at an angle 0 below the q„.axis and cor-
responds to an optical intensity variation that is
not orthogonal to the electrode fingers. This off-
axis peak is somewhat broader than those in Fig.
2 in the azimuthal direction (about 7 cm "). We
believe that irregularities in the lattice of kinks
cause small spatial variations in the orientations
of the rotated rolls, thus broadening the line.
The next largest peak is the one nearest the ori-
gin (2), and is a response due to the perturbation
at q/2& = I/I, . More than 60Vo of the total area
lies under these two peaks. All peaks in the spec-
trum lie on a two-dimensional reciprocal lattice
spanned by two basis vectors. Peak 3, for exam-
ple, is located at twice the wave vector of peak 1
minus twice the wave vector of peak 2.

We characterize the two-dimensional patterns
in Fig. 4 by plotting the wave number q of the
dominant off-axis peak as a function of the wave
number 2qo corresponding to the unperturbed roll
size. The solid line represents the condition q
=2@0. The fact that the points lie close to the

80 90 F00 i 10 120 1 50

2q /27r (cm )

FIG. 4. Variation of the wave number q of the domi-
nant off-axis peak with the unperturbed roll wave num-
ber 2qp The solid line is the equation q = 2q o.

line means that the off-axis peak corresponds
approximately to a rotation of the unperturbed
pattern. However, q is not exactly 2p„indicat-
ing that the wave number is affected by the per-
turbation even away from lock-in. The smooth
variation of one of the two basis vectors with q,
supports the view that these modulated states are
incommensurate.

We believe that it is possible to account qualita-
tively for there observations by introducing a
Liapunov functional F that is minimized in the
stable state. This approach is similar to that
adopted by Cross' and others for understanding
convective patterns. We decompose F into three
parts:

F =I'"a+F s+F
The first term describes the tendency to form
rolls with wave number q, =2m/lo. It is identical
to the functional used' to study Rayleigh-Benard
convection:

where P is a scalar amplitude from which all rel-
evant dynamical variables can be obtained, &

= (V —V,)/V„gis a coupling constant, and C is a
parameter with units of (length)'. The second
term describes the alignment effect produced by
surface treatment. It favors roll alignment along
they axis:

where $,, is a parameter having units of length.
Finally, the last term represents the effect of
the periodic perturbation:

F& = —Q Iil'& U„Re[exp(—i»~q, x)g" ],
n, m
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where U„~couples the /th harmonic of the per
turbation to the nth harmonic of the amplitude.
In the present case, the dominant term in the
above sum for the commensurate structure is
that with P = 3 and n =2, favoring lock-in at 2l,
=3lo.

A model very similar to this has been used by
Prost and Barois" to study equilibrium phases of
smectic liquid crystals with competition between
different length scales. For values of q, near
lock-in (e.g. , &t, =3&,/2), they find a one-dimen-
sional commensurate phase with Fourier intensi-
ties similar to those shown in Fig. 2. For qo
away from lock-in, they find either one-dimen-
sional or two-dimensional incommensurate struc-
tures (similar to those of Fig. 3), depending on
the value of g„'.

In summary, we have observed both one-dimen-
sional commensurate and two-dimensional incom-
mensurate structures in a nonequilibrium system
for which the important control parameters can
be easily varied. These results are clearly pre-
liminary and leave many questions unanswered.
More detailed experimental and theoretical stu-
dies are in progress.
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