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Parametrized post-Newtonian expansion of Chern-Simons gravity

Stephon Alexander and Nicolás Yunes
Center for Gravitational Wave Physics, Institute for Gravitational Physics and Geometry, Department of Physics,

The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 9 April 2007; published 27 June 2007)

We investigate the weak-field, post-Newtonian (PN) expansion to the solution of the field equations in
Chern-Simons (CS) gravity with a perfect fluid source. In particular, we study the mapping of this solution
to the parametrized post-Newtonian (PPN) formalism to 1 PN order in the metric. We find that the PPN
parameters of Chern-Simons gravity are identical to those of general relativity, with the exception of the
inclusion of a new term that is proportional to the Chern-Simons coupling parameter and the curl of the
PPN vector potentials. We also find that the new term is naturally enhanced by the nonlinearity of
spacetime and we provide a physical interpretation for it. By mapping this correction to the gravito-
electromagnetic framework, we study the corrections that this new term introduces to the acceleration of
point particles and the frame-dragging effect in gyroscopic precession. We find that the CS correction to
these classical predictions could be used by current and future experiments to place bounds on intrinsic
parameters of Chern-Simons gravity and, thus, string theory.

DOI: 10.1103/PhysRevD.75.124022 PACS numbers: 04.25.Nx, 04.80.Cc, 11.25.Wx, 95.55.Ym

I. INTRODUCTION

Tests of alternative theories of gravity that modify gen-
eral relativity (GR) at a fundamental level are essential to
the advancement of science. One formalism that has had
incredible success in this task is the parametrized post-
Newtonian (PPN) framework [1–6]. In this formalism, the
metric of the alternative theory is solved for in the weak-
field limit and its deviations from GR are expressed in
terms of PPN parameters. Once a metric has been obtained,
one can calculate predictions of the alternative theory, such
as light deflection and the perihelion shift of Mercury,
which shall depend on these PPN parameters. Therefore,
experimental measurements of such physical effects di-
rectly lead to constraints on the parameters of the alter-
native theory. This framework, together with the relevant
experiments, have already been successfully employed to
constrain scalar-tensor theories (Brans-Dicke, Bekenstein)
[7], vector-tensor theories (Will-Nordtvedt [8], Hellings-
Nordtvedt [9]), bimetric theories (Rosen [10,11]) and
stratified theories (Ni [12]) (see Ref. [13] for definitions
and an updated review).

Only recently has this framework been used to study
quantum gravitational and string-theoretical inspired ideas.
On the string-theoretical side, Kalyana [14] investigated
the PPN parameters associated with the graviton-dilaton
system in low-energy string theory. More recently,
Ivashchuk, et al. [15] studied PPN parameters in the con-
text of general black holes and p-brane spherically sym-
metric solutions, while Bezerra, et al. [16] considered
domain wall spacetimes for low-energy effective string
theories and derived the corresponding PPN parameters
for the metric of a wall. On the quantum gravitational
side, Gleiser and Kozameh [17] and more recently Fan,
et al. [18] studied the possibility of testing gravitational
birefringence induced by quantum gravity, which was

proposed by Amelino-Camelia, el al. [19] and Gambini
and Pullin [20]. Other non-PPN proposals have been also
put forth to test quantum gravity, for example, through
gravitational waves [21–28], but we shall not discuss those
tests here.

Chern-Simons (CS) gravity [29,30] is one such exten-
sion of GR, where the gravitational action is modified by
the addition of a parity-violating term. This extension is
promising because it is required by all four-dimensional
compactifications of string theory [31] for mathematical
consistency because it cancels the Green-Schwarz anom-
aly [32]. CS gravity, however, is not unique to string theory
and in fact has its roots in the standard model, where it
gives rise to a model-independent axion.

Chern-Simons gravity has been recently studied in the
cosmological context. In particular, this framework was
used to shed light on the anisotropies of the cosmic micro-
wave background (CMB) [33–35] and the leptogenesis
problem [34,36,37]. Parity violation has also been shown
to produce birefringent gravitational waves [28,30], where
different polarizations modes acquire varying amplitudes.
These modes obey different propagation equations because
the imaginary sector of the classical dispersion relation is
CS corrected. Different from [20], in CS birefringence the
velocity of the gravitational wave remains that of light.

In this paper we study CS gravity in the PPN framework,
extending the analysis of Ref. [38] and providing some
missing details. In particular, we shall consider the effect of
the CS correction to the gravitational field of, for instance,
a pulsar, a binary system or a star in the weak-field limit.
These corrections are obtained by solving the modified
field equations in the weak-field limit for post-Newtonian
(PN) sources, defined as those that are weakly-gravitating
and slowly-moving [39]. Such an expansion requires the
calculation of the Ricci and Cotton tensors to second order
in the metric perturbation. We then find that CS gravity
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leads to the same gravitational field as that of classical GR
and, thus, the same PPN parameters, except for the inclu-
sion of a new term in the vectorial sector of the metric,
namely

 g�CS�
0i � 2 _f�r � V�i; (1)

where _f acts as a coupling parameter of CS theory and Vi is
a PPN potential. We also show that this solution can be
alternatively obtained by finding a formal solution to the
modified field equations and performing a PN expansion,
as is done in PN theory. The full solution is further shown
to satisfy the additional CS constraint, which leads to
equations of motion given only by the divergence of the
stress-energy tensor.

The CS correction to the metric found here leads to an
interesting interpretation of CS gravity and forces us to
consider a new type of coupling. The interpretation con-
sists of thinking of the field that sources the CS correction
as a fluid that permeates all of spacetime. Then the CS
correction in the metric is due to the ‘‘dragging’’ of such a
fluid by the motion of the source. Until now, couplings of
the CS correction to the angular momentum of the source
had been neglected by the string theory community.
Similarly, curl-type terms had also been considered unnec-
essary in the traditional PPN framework, since previous
alternative gravity theories had not required it. As we shall
show, in CS gravity and thus in string theory, such a
coupling is naturally occurring. Therefore, a proper PPN
mapping requires the introduction of a new curl-type term
with a corresponding new PPN parameter of the type of
Eq. (1).

A modification to the gravitational field leads naturally
to corrections of the standard predictions of GR. In order to
illustrate such a correction, we consider the CS term in the
gravito-electromagnetic analogy [40,41], where we find
that the CS correction accounts for a modification of
gravitomagnetism. Furthermore, we calculate the modifi-
cation to the acceleration of point particles and the frame-
dragging effect in the precession of gyroscopes. We find
that these corrections are given by

 �ai � �
3

2

_f
r
Gm

c2r2

�
v
c
� n
��
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� n

�
i
;

��i � �
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�
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c
� n
�
ni �

vi

c

�
;

(2)

where m and v are the mass and velocities of the source,
while r is the distance to the source and ni � xi=r is a unit
vector, with � and � the flat-space scalar and cross prod-
ucts. Both corrections are found to be naturally enhanced
in regions of high spacetime curvature. We then conclude
that experiments that measure the gravitomagnetic sector
of the metric either in the weak-field (such as Gravity
Probe B [42]) and particularly in the nonlinear regime,
will lead to a direct constraint on the CS coupling parame-

ter _f. In this paper we develop the details of how to
calculate these corrections, while the specifics of how to
actually impose a constraint, which depend on the experi-
mental setup, are beyond the scope of this paper.

The remainder of this paper deals with the details of the
calculations discussed in the previous paragraphs. We have
divided the paper as follows: Sec. II describes the basics of
the PPN framework; Sec. III discusses CS modified grav-
ity, the modified field equations and computes a formal
solution; Sec. IV expands the field equations to second
order in the metric perturbation; Sec. V iteratively solves
the field equations in the PN approximation and finds the
PPN parameters of CS gravity; Sec. VI discusses the
correction to the acceleration of point particles and the
frame-dragging effect; Sec. VII concludes and points to
future research.

The conventions that we use throughout this work are
the following: Greek letters represent spacetime indices,
while Latin letters stand for spatial indices only; semi-
colons stand for covariant derivatives, while colons stand
for partial derivatives; overhead dots stand for derivatives
with respects to time. We denote uncontrolled remainders
with the symbol O�A�, which stands for terms of order A.
We also use the Einstein summation convention unless
otherwise specified. Finally, we use geometrized units,
where G � c � 1, and the metric signature ��;�;�;��.

II. THE ABC OF PPN

In this section we summarize the basics of the PPN
framework, following Ref. [6]. This framework was first
developed by Eddington, Robertson, and Schiff [1,6], but it
came to maturity through the seminal papers of Nordtvedt
and Will [2–5]. In this section, we describe the latter
formulation, since it is the most widely used in experimen-
tal tests of gravitational theories.

The goal of the PPN formalism is to allow for compari-
sons of different metric theories of gravity with each other
and with experiment. Such comparisons become manage-
able through a slow-motion, weak-field expansion of the
metric and the equations of motion, the so-called PN
expansion. When such an expansion is carried out to
sufficiently high but finite order, the resultant solution is
an accurate approximation to the exact solution in most of
the spacetime. This approximation, however, does break
down for systems that are not slowly-moving, such as
merging binary systems, or weakly gravitating, such as
near the apparent horizons of black hole binaries.
Nonetheless, as far as solar system tests are concerned,
the PN expansion is not only valid but also highly accurate.

The PPN framework employs an order-counting scheme
that is similar to that used in multiple-scale analysis [43–
46]. The symbol O�A� stands for terms of order �A, where
�� 1 is a PN expansion parameter. For convenience, it is
customary to associate this parameter with the orbital
velocity of the system v=c � O�1�, which embodies the
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slow-motion approximation. By the Virial theorem, this
velocity is related to the Newtonian potential U via U	
v2, which then implies that U � O�2� and embodies the
weak-gravity approximation. These expansions can be
thought of as two independent series: one in inverse powers
of the speed of light c and the other in positive powers of
Newton’s gravitational constant.

Other quantities, such as matter densities and deriva-
tives, can and should also be classified within this order-
counting scheme. Matter density �, pressure p and specific
energy density �, however, are slightly more complicated
to classify because they are not dimensionless.
Dimensionlessness can be obtained by comparing the pres-
sure and the energy density to the matter density, which we
assume is the largest component of the stress-energy ten-
sor, namely p=�	�=� � O�2�. Derivatives can also be
classified in this fashion, where we find that @t=@x � O�1�.
Such a relation can be derived by noting that @t 	 viri,
which comes from the Euler equations of hydrodynamics
to Newtonian order.

With such an order-counting scheme developed, it is
instructive to study the action of a single neutral particle.
The Lagrangian of this system is given by

 L � �g��u�u��1=2 � ��g00 � 2g0ivi � gijvivj�1=2; (3)

where u� � dx�=dt � �1; vi� is the four velocity of the
particle and vi is its three velocity. From Eq. (3), note that
knowledge of L to O�A� implies knowledge of g00 to O�A�,
g0i to O�A� 1� and gij to O�A� 2�. Therefore, since the
Lagrangian is already known to O�2� (the Newtonian
solution), the first PN correction to the equations of motion
requires g00 to O�4�, g0i to O�3� and gij to O�2�. Such
order counting is the reason for calculating different sec-
tors of the metric perturbation to different PN orders.

A PPN analysis is usually performed in a particular
background, which defines a particular coordinate system,
and in an specific gauge, called the standard PPN gauge.
The background is usually taken to be Minkowski because
for solar system experiments deviations due to cosmologi-
cal effects are negligible and can, in principle, be treated as
adiabatic corrections. Moreover, one usually chooses a
standard PPN frame, whose outer regions are at rest with
respect to the rest frame of the universe. Such a frame, for
example, forces the spatial sector of the metric to be
diagonal and isotropic [6]. The gauge employed is very
similar to the PN expansion of the Lorentz gauge of
linearized gravitational wave theory. The differences be-
tween the standard PPN and Lorentz gauge are of O�3� and
they allow for the presence of certain PPN potentials in the
vectorial sector of the metric perturbation.

The last ingredient in the PPN recipe is the choice of a
stress-energy tensor. The standard choice is that of a per-
fect fluid, given by

 T�� � ��� ��� p�u�u� � pg��: (4)

Such a stress-energy density suffices to obtain the PN
expansion of the gravitational field outside a fluid body,
like the Sun, or of compact binary system. One can show
that the internal structure of the fluid bodies can be ne-
glected to 1 PN order by the effacement principle [39] in
GR. Such effacement principle might actually not hold in
modified field theories, but we shall study this subject
elsewhere [47].

With all these machinery, on can write down a super-
metric [6], namely
 

g00 � �1� 2U� 2�U2 � 2��W � �2�� 2� 	3

� 
1 � 2���1 � 2�3�� 2�� 1� 
2 � ���2

� 2�1� 
3��3 � 2�3�� 3
4 � 2���4

� �
1 � 2��A;

g0i � �
1

2
�4�� 3� 	1 � 	2 � 
1 � 2��Vi

�
1

2
�1� 	2 � 
1 � 2��Wi;

gij � �1� 2�U��ij;

(5)

where �ij is the Kronecker delta and where the PPN
potentials �U;�W;�1;�2;�3;�4;A; Vi;Wi� are defined
in Appendix A. Equation (5) describes a supermetric the-
ory of gravity, because it reduces to different metric theo-
ries, such as GR or other alternative theories [6], through
the appropriate choice of PPN parameters
��;�; �; 	1; 	2; 	3; 
1; 
2; 
3; 
4�. One could obtain a
more general form of the PPN metric by performing a
post-Galilean transformation on Eq. (5), but such a proce-
dure shall not be necessary in this paper.

The supermetric of Eq. (5) is parametrized in terms of a
specific number of PPN potentials, where one usually
employs certain criteria to narrow the space of possible
potentials to consider. Some of these restriction include the
following: the potentials tend to zero as an inverse power of
the distance to the source; the origin of the coordinate
system is chosen to coincide with the source, such that
the metric does not contain constant terms; and the metric
perturbations h00, h0i and hij transform as a scalar, vector,
and tensor. The above restrictions are reasonable, but, in
general, an additional subjective condition is usually im-
posed that is based purely on simplicity: the metric pertur-
bations are not generated by gradients or curls of velocity
vectors or other generalized vector functions. As of yet, no
reason had arisen for relaxing such a condition, but as we
shall see in this paper, such terms are indeed needed for CS
modified theories.

What is the physical meaning of all these parameters?
One can understand what these parameters mean by cal-
culating the generalized geodesic equations of motion and
conservation laws [6]. For example, the parameter � mea-
sures how much space-curvature is produced by a unit rest
mass, while the parameter � determines how much ‘‘non-
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linearity’’ is there in the superposition law of gravity.
Similarly, the parameter � determines whether there are
preferred-location effects, while 	i represent preferred-
frame effects. Finally, the parameters 
i measure the
amount of violation of conservation of total momentum.
In terms of conservation laws, one can interpret these
parameters as measuring whether a theory is fully conser-
vative, with linear and angular momentum conserved (
i
and 	i vanish), semiconservative, with linear momentum
conserved (
i and 	3 vanish), or nonconservative, where
only the energy is conserved through lowest Newtonian
order. One can verify that in GR, � � � � 1 and all other
parameters vanish, which implies that there are no
preferred-location or frame effects and that the theory is
fully conservative.

A PPN analysis of an alternative theory of gravity then
reduces to mapping its solutions to Eq. (5) and then deter-
mining the PPN parameters in terms of intrinsic parameters
of the theory. The procedure is simply as follows: expand
the modified field equations in the metric perturbation and
in the PN approximation; iteratively solve for the metric
perturbation to O�4� in h00, to O�3� in h0i and to O�2� in
hij; compare the solution to the PPN metric of Eq. (5) and
read off the PPN parameters of the alternative theory. We
shall employ this procedure in Sec. V to obtain the PPN
parameters of CS gravity.

III. CS GRAVITY IN A NUTSHELL

In this section, we describe the basics of CS gravity,
following mainly [29,30]. In the standard CS formalism,
GR is modified by adding a new term to the gravitational
action. This term is given by [29]

 SCS �
m2

pl

64�

Z
d4xf�?RR�; (6)

where mpl is the Planck mass, f is a dynamical field that is
prescribed externally [48] with units of squared mass (or
squared length in geometrized units), R is the Ricci scalar
and the star stands the dual operation, such that

 R?R � 1
2R	����

	���R����; (7)

with ����� the totally-antisymmetric Levi-Civita tensor
and R���� the Riemann tensor.

Such a correction to the gravitational action is interest-
ing because of the unavoidable parity violation that is
introduced. Such parity violation is inspired from CP
violation in the standard model, where such corrections
act as anomaly-canceling terms. A similar scenario occurs
in string theory, where the Green-Schwarz anomaly is
canceled by precisely such a CS correction [32], although
CS gravity is not exclusively tied to string theory. Parity
violation in CS gravity inexorably leads to birefringence in
gravitational propagation, where here we mean that differ-
ent polarization modes obey different propagation equa-

tions but travel at the same speed, that of light
[29,30,36,47]. If CS gravity were to lead to polarization
modes that travel at different speeds, then one could use
recently proposed experiments [17] to test this effect, but
such is not the case in CS gravity. Birefringent gravita-
tional waves, and thus CS gravity, have been proposed as
possible explanations to the CMB anisotropies [36], as
well as the baryogenesis problem during the inflationary
epoch [33].

The magnitude of the CS correction is controlled by the
externally-prescribed quantity f, which depends on the
specific theory under consideration. When we consider
CS gravity as an effective quantum theory, then the cor-
rection is suppressed by some mass scale M, which could
be the electroweak scale or some other scale, since it is
unconstrained. In the context of string theory, the quantity
f has been calculated only in conservative scenarios, where
it was found to be suppressed by the Planck mass. In other
scenarios, however, enhancements have been proposed,
such as in cosmologies where the string coupling vanishes
at late times [49–59], or where the field that generates f
couples to spacetime regions with large curvature [60,61]
or stress-energy density [28,47]. For simplicity, we here
assume that this quantity is spatially homogeneous and its
magnitude is small but non-negligible, so that we work to
first order in the string-theoretical correction. Therefore,
we treat _f as an independent perturbation parameter [62],
unrelated to �, the PN perturbation parameter.

The field equations of CS modified gravity can be ob-
tained by varying the action with respect to the metric.
Doing so, one obtains

 G�� � C�� � 8�T��; (8)

where G�� is the Einstein tensor, T�� is a stress-energy
tensor and C�� is the Cotton tensor. The latter tensor is
defined via

 C�� � �
1�������
�g
p 
f;���	���D	R��� � �D�f;�?R��

�
���;

(9)

where parenthesis stand for symmetrization, g is the deter-
minant of the metric, Da stands for covariant differentia-
tion and colon subscripts stand for partial differentiation.

Formally, the introduction of such a modification to the
field equations leads to a new constraint, which is compen-
sated by the introduction of the new scalar field degree of
freedom f. This constraint originates by requiring that the
divergence of the field equations vanish, namely

 D�C�� �
1

8
�������
�g
p D�f�

?RR� � 0; (10)

where the divergence of the Einstein tensor vanished by the
Bianchi identities. If this constraint is satisfied, then the
equations of motion for the stress-energy D�T�� are un-
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affected by CS gravity. A common source of confusion is
that Eq. (10) is sometimes interpreted as requiring that R?R
also vanish, which would then force the correction to the
action to vanish. However, this is not the case because, in
general, f is an exact form (d2f � 0) and, thus, Eq. (10)
only implies an additional constraint that forces all solu-
tions to the field equations to have a vanishing R?R.

The previous success of CS gravity in proposing plau-
sible explanations to important cosmological problems
prompts us to consider this extension of GR in the weak-
field regime. For this purpose, it is convenient to rewrite the
field equations in trace-reversed form, since this form is
most amenable to a PN expansion. Doing so, we find

 R�� � C�� � 8��T�� �
1
2g��T�; (11)

where the trace of the Cotton tensor vanishes identically
and T � g��T

�� is the four dimensional trace of the stress-
energy tensor. To linear order, the Ricci and Cotton tensors
are given by [29]

 R�� � �
1

2
�h�� �O�h�2;

C�� � �
_f

2
~�0	�

����h���;	 �O�h�2;

(12)

where ~�	��� is the Levi-Civita symbol, with convention
~�0123 � �1, and �� � �@2

t � �ij@i@j is the flat-space
D’Alambertian, with ��� the Minkowski metric. In
Eq. (12), we have employed the Lorentz gauge condition
h�	;	 � h;�=2, where h � g��h�� is the four dimensional
trace of the metric perturbation.

The Cotton tensor changes the characteristic behavior of
the Einstein equations by forcing them to become third
order instead of second order. Third-order partial differen-
tial equations are common in boundary layer theory [43].
However, in CS gravity, the third-order contributions are
multiplied by a factor of f and we shall treat this function
as a small independent expansion parameter. Therefore, the
change in characteristics in the modified field equations
can also be treated perturbatively, which is justified be-
cause even though _f might be enhanced by standard model
currents, extra dimensions or a vanishing string coupling, it
must still carry some type of mass suppression.

The trace-reversed form of the field equations is useful
because it allows us to immediately find a formal solution.
Inverting the D’Alambertian operator we obtain

 H �� � �16���1
� �T�� �

1
2g��T� �O�h�2; (13)

where we have defined an effective metric perturbation as

 H �� � h�� � _f~�0	�
��h���;	: (14)

Note that this formal solution is identical to the formal PN
solution to the field equations in the limit _f ! 0. Also note
that the second term in Eq. (14) is in essence a curl operator
acting on the metric. This antisymmetric operator naturally

forces the trace of the CS correction to vanish, as well as
the 00 component and the symmetric spatial part.

From the formal solution to the modified field equations,
we immediately identify the only two possible nonzero CS
contributions: a coupling to the vector component of the
metric h0i; and coupling to the transverse-traceless part of
the spatial metric hTT

ij . The latter has already been studied
in the gravitational wave context [29,30,47] and it vanishes
identically if we require the spatial sector of the metric
perturbation to be conformally flat. The former coupling is
a new curl-type contribution to the metric perturbation that,
to our knowledge, had so far been neglected both by the
string theory and PPN communities. In fact, as we shall see
in later sections, terms of this type will force us to intro-
duce a new PPN parameter that is proportional to the curl
of certain PPN potentials.

Let us conclude this section by pushing the formal
solution to the modified field equations further to obtain
a formal solution in terms of the actual metric perturbation
h��. Combining Eqs. (13) and (14) we arrive at the differ-
ential equation

 h�� � _f~�0	�
��h���;	 � �16���1

� �T�� �
1
2g��T�

�O�h�2: (15)

Since we are searching for perturbations about the general
relativistic solution, we shall make the ansatz

 h�� � h�GR�
�� � _f
�� �O�h�2; (16)

where h�GR�
�� is the solution predicted by general relativity

 h�GR�
�� � �16���1

� �T�� �
1
2g��T�; (17)

and where 
�� is an unknown function we are solving for.
Inserting this ansatz into Eq. (15) we obtain
 


�� � _f~�0	�
��
���;	 � 16�~�0	�

��@	��1
� �T��� �

1
2g���T�:

(18)

We shall neglect the second term on the left-hand side
because it would produce a second order correction.
Such conclusion was also reached when studying parity
violation in GR to explain certain features of the CMB
[35]. We thus obtain the formal solution

 
�� � 16�~�0	�
��@	��1

� �T��� �
1
2g���T� (19)

and the actual metric perturbation to linear order becomes
 

h�� � �16���1
� �T�� �

1
2���T�

� 16� _f~�k‘i��1
� ��i��T��‘;k �

1
2�i�����‘T;k�

�O�h�2; (20)

where we have used some properties of the Levi-Civita
symbol to simplify this expression. The procedure pre-
sented here is general enough that it can be directly applied
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to study CS gravity in the PPN framework, as well as
possibly find PN solutions to CS gravity.

IV. PN EXPANSION OF CS GRAVITY

In this section, we perform a PN expansion of the field
equations and obtain a solution in the form of a PN series.
This solution then allows us to read off the PPN parameters
by comparing it to the standard PPN supermetric [Eq. (5)].
In this section we shall follow closely the methods of
[6,63] and indices shall be manipulated with the
Minkowski metric, unless otherwise specified.

Let us begin by expanding the field equations to second
order in the metric perturbation. Doing so we find that the
Ricci and Cotton tensors are given to second order by
 

R�� � �
1
2
��h�� � 2h���;��

� � h;��� �
1
2
h

���2h���;���

� h��;�� � h��;��� �
1
2h
��
;�h��;� � h��;�h��;�

� h��;�h��;
� � 1

2�h
;� � 2h��;���h��;� � 2h���;����

�O�h�3; (21)

 

C�� � �
_f

2
~�0	�

�����h���;	 � h��;	��
�� �

_f
2

~�0	�
��

�
h���h���;	 � h��;	��

�� �
1

2
�2h����;	� � h�	;���

� ���h�� � 2h���;��
� � h;�

�� � 2Q̂R���;	

�
�

_f
4

~��	�
���2h

0
��;� � h�;

0��h

�;	��� � h��
�;	�

�

�
_f

2
h��~�0	������h���;	 � h��;	��

�� �
_f

2
~�0	������h���;	 � h��;	

����h�� �O�h�3: (22)

where index contraction is carried out with the Minkowski
metric and where we have not assumed any gauge condi-
tion. The operator Q̂��� takes the quadratic part of its
operand [of O�h�2] and it is explained in more detail in
Appendix B, where the derivation of the expansion of the
Cotton tensor is presented in more detail. In this derivation,
we have used the definition of the Levi-Civita tensor

 �	��� � ��g�
1=2~�	��� � �1�

1
2h�~�	��� �O�h�2;

�	��� � ���g��1=2~�	��� � ��1� 1
2h�~�

	��� �O�h�2:

(23)

Note that the PN expanded version of the linearized Ricci
tensor of Eq. (21) agrees with previous results [6]. Also
note that if the Lorentz condition is enforced, several terms
in both expressions vanish identically and the Cotton ten-
sor to first order reduces to Eq. (12), which agrees with
previous results [29].

Let us now specialize the analysis to the standard PPN
gauge. For this purpose, we shall impose the following
gauge conditions

 hjk;
k � 1

2h;j � O�4�; h0k;
k � 1

2h
k
k;0 � O�5�; (24)

where hkk is the spatial trace of the metric perturbation.
Note that the first equation is the PN expansion of one of
the Lorentz gauge conditions, while the second equation is
not. This is the reason why the previous equations where
not expanded in the Lorentz gauge. Nonetheless, such a
gauge condition does not uniquely fix the coordinate sys-
tem, since we can still perform an infinitesimal gauge
transformation that leaves the modified field equations
invariant. One can show that the Lorentz and PPN gauge
are related to each other by such a gauge transformation. In
the PPN gauge, then, the Ricci tensor takes the usual form

 R00 � �
1
2r

2h00 �
1
2h00;ih00;

i � 1
2h
ijh00;ij �O�6�;

R0i � �
1
2r

2h0i �
1
4h00;0i �O�5�;

Rij � �
1
2r

2hij �O�4�;

(25)

which agrees with previous results [6], while the Cotton
tensor reduces to

 C00 � O�6�; C0i � �
1
4

_f~�0kl
ir

2h0l;k �O�5�;

Cij � �
1
2

_f~�0kl
�ir

2hj�l;k �O�4�;
(26)

where r � �ij@i@j is the Laplacian of flat space [see
Appendix B for the derivation of Eq. (26).] Note again
the explicit appearance of two coupling terms of the Cotton
tensor to the metric perturbation: one to the transverse-
traceless part of the spatial metric and the other to the
vector metric perturbation. The PN expansions of the
linearized Ricci and Cotton tensor then allow us to solve
the modified field equations in the PPN framework.

V. PPN SOLUTION OF CS GRAVITY

In this section we shall proceed to systematically solve
the modified field equation following the standard PPN
iterative procedure [6]. We shall begin with the 00 and ij
components of the metric to O�2�, and then proceed with
the 0i components to O�3� and the 00 component to O�4�.
Once all these components have been solved for in terms of
PPN potentials, we shall be able to read off the PPN
parameters adequate to CS gravity.

A. h00 and hij to O�2�

Let us begin with the modified field equations for the
scalar sector of the metric perturbation. These equations
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are given to O�2� by

 r2h00 � �8��; (27)

because T � ��. Equation (27) is the Poisson equation,
whose solution in terms of PPN potentials is

 h00 � 2U�O�4�: (28)

Let us now proceed with the solution to the field equa-
tion for the spatial sector of the metric perturbation. This
equation to O�2� is given by

 r2hij � _f~�0kl
�ir

2hj�l;k � �8���ij; (29)

where we note that this is the first appearance of a Cotton
tensor contribution. Since the Levi-Civita symbol is a
constant and _f is only time-dependent, we can factor out
the Laplacian and rewrite this equation in terms of the
effective metric H ij as

 r2H ij � �8���ij; (30)

where, as defined in Sec. III,

 H ij � hij � _f~�0kl
�ihj�l;k: (31)

The solution of Eq. (30) can be immediately found in terms
of PPN potentials as

 H ij � 2U�ij �O�4�; (32)

which is nothing but Eq. (13). Recall, however, that in
Sec. III we explicitly used the Lorentz gauge to simplify
the field equations, whereas here we are using the PPN
gauge. The reason why the solutions are the same is that
the PPN and Lorentz gauge are indistinguishable to this
order.

Once the effective metric has been solved for, we can
obtain the actual metric perturbation following the proce-
dure described in Sec. III. Combining Eq. (31) with
Eq. (32), we arrive at the following differential equation:

 hij � _f~�0kl
�ihj�l;k � 2U�ij: (33)

We look for solutions whose zeroth-order result is that
predicted by GR and the CS term is a perturbative correc-
tion, namely

 hij � 2U�ij � _f
ij; (34)

where 
 is assumed to be of O� _f�0. Inserting this ansatz
into Eq. (33) we arrive at

 
ij � _f~�0kl
�i
j�l;k � 0; (35)

where the contraction of the Levi-Civita symbol and the
Kronecker delta vanished. As in Sec. III, note that the
second term on the left-hand side is a second order correc-
tion and can thus be neglected to discover that 
ij vanishes
to this order.

The spatial metric perturbation to O�2� is then simply
given by the GR prediction without any CS correction,
namely

 hij � 2U�ij �O�4�: (36)

Physically, the reason why the spatial metric is unaffected
by the CS correction is related to the use of a perfect fluid
stress-energy tensor, which, together with the PPN gauge
condition, forces the metric to be spatially conformally flat.
In fact, if the spatial metric were not flat, then the spatial
sector of the metric perturbation would be corrected by the
CS term. Such would be the case if we had pursued a
solution to 2 PN order, where the Landau-Lifshitz pseudo-
tensor sources a nonconformal correction to the spatial
metric [39], or if we had searched for gravitational wave
solutions, whose stress-energy tensor vanishes [30,36]. In
fact, one can check that, in such a scenario, Eq. (30)
reduces to that found by Refs. [29,30,36,47] as �! 0.
We have then found that the weak-field expansion of the
gravitational field outside a fluid body, like the Sun or a
compact binary, is unaffected by the CS correction to O�2�.

B. h0i to O�3�

Let us now look for solutions to the field equations for
the vector sector of the metric perturbation. The field
equations to O�3� become

 r2h0i �
1
2h00;0i �

1
2

_f~�0kl
ir

2h0l;k � 16��vi; (37)

where we have used that T0i � �T0i. Using the lower
order solutions and the effective metric, as in Sec. III, we
obtain

 r2H 0i �U;0i � 16��vi; (38)

where the vectorial sector of the effective metric is

 H 0i � h0i �
1
2

_f~�0kl
ih0l;k: (39)

We recognize Eq. (38) as the standard GR field equation to
O�3�, except that the dependent function is the effective
metric instead of the metric perturbation. We can thus
solve this equation in terms of PPN potentials to obtain

 H 0i � �
7
2Vi �

1
2Wi; (40)

where we have used that the superpotential X satisfies
X;0j � Vj �Wj (see Appendix A for the definitions.)
Combining Eq. (39) with Eq. (40) we arrive at a differential
equation for the metric perturbation, namely

 h0i �
1
2

_f~�0kl
ih0l;k � �

7
2Vi �

1
2Wi: (41)

Once more, let us look for solutions that are perturbation
about the GR prediction, namely

 h0i � �
7
2Vi �

1
2Wi � _f
i; (42)

where we again assume that 
i is of O� _f�0. The field
equation becomes
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i �
1
2

_f�r � 
�i �
1
2�

7
2�r � V�i �

1
2�r �W�i�; (43)

where �r � A�i � �ijk@jAk is the standard curl operator of
flat space. As in Sec. III, note once more that the second
term on the left-hand side is again a second order correc-
tion and we shall thus neglect it. Also note that the curl of
the Vi potential happens to be equal to the curl of the Wi
potential. The solution for the vectorial sector of the actual
gravitational field then simplifies to

 h0i � �
7
2Vi �

1
2Wi � 2 _f�r � V�i �O�5�: (44)

We have arrived at the first contribution of CS modified
gravity to the metric for a perfect fluid source. Chern-
Simons gravity was previously seen to couple to the
transverse-traceless sector of the metric perturbation for
gravitational wave solutions [29,30,36,47]. The CS correc-
tion is also believed to couple to Noether vector currents,
such as neutron currents, which partially fueled the idea
that this correction could be enhanced. However, to our
knowledge, this correction was never thought to couple to
vector metric perturbations. From the analysis presented
here, we see that in fact CS gravity does couple to such
terms, even if the matter source is neutrally charged. The
only requirement for such couplings is that the source is
not static, i.e., that the object is either moving or spinning
relative to the PPN rest frame so that the PPN vector
potential does not vanish. The latter is suppressed by a
relative O�1� because in the far field the velocity of a
compact object produces a term of O�3� in Vi, while the
spin produces a term of O�4�. In a later section, we shall
discuss some of the physical and observational implica-
tions of such a modification to the metric.

C. h00 to O�4�

A full analysis of the PPN structure of a modified theory
of gravity requires that we solve for the 00 component of
the metric perturbation to O�4�. The field equations to this
order are

 �
1

2
r2h00 �

1

2
h00;ih00;i �

1

2
hijh00;ij

� 4��
�

1� 2
�
v2 �U�

1

2
��

3

2

p
�

��
; (45)

where the CS correction does not contribute at this order
(see Appendix B.) Note that the h0i sector of the metric
perturbation to O�3� does not feed back into the field
equations at this order either. The terms that do come
into play are the h00 and hij sectors of the metric, which
are not modified to lowest order by the CS correction. The
field equation, thus, reduce to the standard one of GR,
whose solution in terms of PPN potentials is

 h00 � 2U� 2U2 � 4�1 � 4�2 � 2�3 � 6�4 �O�6�:

(46)

We have thus solved for all components of the metric
perturbation to 1 PN order beyond the Newtonian answer,
namely g00 to O�4�, g0i to O�3� and gij to O�2�.

D. PPN parameters for CS gravity

We now have all the necessary ingredients to read off the
PPN parameters of CS modified gravity. Let us begin by
writing the full metric with the solutions found in the
previous subsections:
 

g00��1�2U�2U2�4�1�4�2�2�3�6�4�O�6�;

g0i��
7
2Vi�

1
2Wi�2 _f�r�V�i�O�5�;

gij��1�2U��ij�O�4�: (47)

One can verify that this metric is indeed a solution of
Eqs. (27), (29), (37), and (45) to the appropriate PN order
and to first order in the CS coupling parameter. Also note
that the solution of Eq. (47) automatically satisfies the
constraint ?RR � 0 to linear order because the contraction
of the Levi-Civita symbol with two partial derivatives
vanishes. Such a solution is then allowed in CS gravity,
just as other classical solutions are [64], and the equations
of motion for the fluid can be obtained directly from the
covariant derivative of the stress-energy tensor.

We can now read off the PPN parameters of the CS
modified theory by comparing Eq. (5) to Eq. (47). A visual
inspection reveals that the CS solution is identical to the
classical GR one, which implies that � � � � 1, 
 � 0,
and 	1 � 	2 � 	3 � �1 � �2 � �3 � �4 � 0 and there
are no preferred-frame effects. However, Eq. (5) contains
an extra term that cannot be modeled by the standard PPN
metric of Eq. (5), namely, the curl contribution to g0i. We
then see that the PPN metric must be enhanced by the
addition of a curl-type term to the 0i components of the
metric, namely
 

g0i � �
1
2�4�� 3� 	1 � 	2 � 
1 � 2��Vi

� 1
2�1� 	2 � 
1 � 2��Wi � ��rr� V�i; (48)

where � is a new PPN parameter and where we have
multiplied the curl operator by the radial distance to the
source, r, in order to make � a proper dimensionless
parameter. Note that there is no need to introduce any
additional PPN parameters because the curl of Wi equals
the curl of Vi. In fact, we could have equally parametrized
the new contribution to the PPN metric in terms of the curl
of Wi, but we chose not to because Vi appears more
frequently in PN theory. For the case of CS modified
gravity, the new � parameter is simply

 � � 2
_f
r
; (49)

which is dimensionless since _f has units of length. If an
experiment could measure or place bounds on the value of
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�, then _f could also be bounded, thus placing a constraint
on the CS coupling parameter.

VI. ASTROPHYSICAL IMPLICATIONS

In this section we shall propose a physical interpretation
to the CS modification to the PPN metric and we shall
calculate some GR predictions that are modified by this
correction. This section, however, is by no means a com-
plete study of all the possible consequences of the CS
correction, which is beyond the scope of this paper.

Let us begin by considering a system of A nearly spheri-
cal bodies, for which the gravitational vector potentials are
simply [6]

 Vi �
X
A

mA

rA
viA �

1

2

X
A

�
JA
r2
A

� nA

�
i
;

Wi �
X
A

mA

rA
�vA � nA�n

i
A �

1

2

X
A

�
JA
r2
A

� nA

�
i
;

(50)

where mA is the mass of the Ath body, rA is the field point
distance to the Ath body, niA � xiA=rA is a unit vector
pointing to the Ath body, vA is the velocity of the Ath
body and JiA is the spin-angular momentum of the Ath
body. For example, the spin-angular momentum for a
Kerr spacetime is given by Ji � m2ai, where a is the
dimensionless Kerr spin parameter. Note that if A � 2
then the system being modeled could be a binary of spin-
ning compact objects, while if A � 1 it could represent the
field of the sun or that of a rapidly spinning neutron star or
pulsar.

In obtaining Eq. (50), we have implicitly assumed a
point-particle approximation, which in classical GR is
justified by the effacement principle. This principle postu-
lates that the internal structure of bodies contributes to the
solution of the field equations to higher PN order. One can
verify that this is indeed the case in classical GR, where
internal structure contributions appear at 5 PN order. In CS
gravity, however, it is a priori unclear whether an analo-
gous effacement principle holds because the CS term is
expected to couple with matter current via standard model-
like interactions. If such is the case, it is possible that a
‘‘mountain’’ on the surface of a neutron star [65] or an
r-mode instability [66–68] enhances the CS contribution.
In this paper, however, we shall neglect these interactions,
and relegate such possibilities to future work [47].

With such a vector potential, we can calculate the CS
correction to the metric. For this purpose, we define the
correction �g0i � g0i � g

�GR�
0i , where g�GR�

0i is the GR pre-
diction without CS gravity. We then find that the CS
corrections is given by

 �g0i � 2
X
A

_f
rA

�
mA

rA
�vA � nA�i �

JiA
2r2

A

�
3

2

�JA � nA�

r2
A

niA

�
;

(51)

where the � operator is the flat-space inner product and
where we have used the identities ~�ijk~�klm � �il�jm �
�im�jl and ~�ilk~�jlm � 2�ij. Note that the first term of
Eq. (51) is of O�3�, while the second and third terms are
of O�4� as previously anticipated. Also note that _f couples
both to the spin and orbital angular momentum. Therefore,
whether the system under consideration is the solar system
(vi of the Sun is zero while Ji is small), the Crab pulsar (vi

is again zero but Ji is large) or a binary system of compact
objects (neither vi nor Ji vanish), there will in general be a
nonvanishing coupling between the CS correction and the
vector potential of the system.

From the above analysis, it is also clear that the CS
correction increases with the nonlinearity of the spacetime.
In other words, the CS term is larger not only for systems
with large velocities and spins, but also in regions near the
source. For a binary system, this fact implies that the CS
correction is naturally enhanced in the last stages of in-
spiral and during merger. Note that this enhancement is
different from all previous enhancements proposed, since it
does not require the presence of charge [28,47], a fifth
dimension with warped compactifications [60,61], or a
vanishing string coupling [49–59]. Unfortunately, the
end of the inspiral stage coincides with the edge of the
PN region of validity and, thus, a complete analysis of such
a natural enhancement will have to be carried out through
numerical simulations.

In the presence of a source with the vector potentials of
Eq. (50), we can write the vectorial sector of the metric
perturbation in a suggestive way, namely

 g0i �
X
A

�
7

2

mA

rA
viA �

X
A

mA

6r2
A

�vA � v
�eff�
A �i

�
1

2

X
A

niA
mA

rA
v�eff�
A � nA � 2

X
A

�
J�eff�
A

r2
A

� nA

�
i
; (52)

where we have defined an effective velocity and angular
momentum vector via

 viA�eff� � viA � 6 _f
JiA
mAr2

A

; JiA�eff� � JiA � _fmAv
i
A;

(53)

or in terms of the Newtonian orbital angular momentum
LiA�N� � rA � pA and linear momentum piA�N� � mAviA

 LiA�eff� � LiA�N� � 6 _f�nA � JA�i; JiA�eff� � JiA � _fpiA:

(54)

From this analysis, it is clear that the CS corrections seems
to couple to both a quantity that resembles the orbital and
the spin-angular momentum vector. Note that when the
spin-angular momentum vanishes the vectorial metric per-
turbation is identical to that of a spinning moving fluid, but
where the spin is induced by the coupling of the orbital
angular momentum to the CS term.
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The presence of an effective CS spin-angular momen-
tum in nonspinning sources leads to an interesting physical
interpretation. Let us model the field that sources _f as a
fluid that permeates all of spacetime. This field could be,
for example, a model-independent axion, inspired by the
quantity introduced in the standard model to resolve the
strong CP problem [69]. In this scenario, then the fluid is
naturally ‘‘dragged’’ by the motion of any source and the
CS modification to the metric is nothing but such dragging.
This analogy is inspired by the ergosphere of the Kerr
solution, where inertial frames are dragged with the rota-
tion of the black hole. In fact, one could push this analogy
further and try to construct the shear and bulk viscosity of
such a fluid, but we shall not attempt this here. Of course,
this interpretation is to be understood only qualitatively,
since its purpose is only to allow the reader to picture the
CS modification to the metric in physical terms.

An alternative interpretation can be given to the CS
modification in terms of the gravito-electromagnetic
(GED) analogy [40,41], which shall allow us to easily
construct the predictions of the modified theory. In this
analogy, one realizes that the PN solution to the linearized
field equations can be written in terms of a potential and
vector potential, namely
 

ds2 � ��1� 2��dt2 � 4�A � dx�dt

� �1� 2���ijdxidxj; (55)

where � reduces to the Newtonian potential U in the
Newtonian limit [41] and Ai is a vector potential related
to the metric via Ai � �g0i=4. One can then construct
GED fields in analogy to Maxwell’s electromagnetic the-
ory via

 Ei � ��r��i � @t�
1
2A

i�; Bi � �r� A�i; (56)

which in terms of the vectorial sector of the metric pertur-
bation becomes

 Ei � ��r��i � 1
8 _gi; Bi � �1

4�r � g�
i; (57)

where we have defined the vector gi � g0i. The geodesic
equations for a test particle then reduce to the Lorentz force
law, namely

 Fi � �mEi � 2m�v� B�i: (58)

We can now work out the effect of the CS correction on
the GED fields and equations of motion. First note that the
CS correction only affects g. We can then write the CS
modification to the Lorentz force law by defining �ai �
ai � ai

�GR�, where ai
�GR� is the acceleration vector predicted

by GR, to obtain

 �ai � 1
8� _gi � 1

2�v� ���i; (59)

where we have defined the angular velocity

 ��i � �r� �g�i: (60)

The time derivative of the vector gi is of O�5� and can thus
be neglected, but the angular velocity cannot and it is given
by

 ��i � �
X
A

_f
mA

r3
A


3�vA � nA�niA � v
i
A�; (61)

which is clearly of O�3�. Note that although the first term
between square brackets cancels for circular orbits because
niA is perpendicular to viA to Newtonian order, the second
term does not. The angular velocity adds a correction to the
acceleration of O�4�, namely

 �ai � �
3

2

X
A

_f
mA

r3
A

�vA � nA��vA � nA�
i; (62)

which for a system in circular orbit vanishes to Newtonian
order. One could use this formalism to find the perturba-
tions in the motion of moving objects by integrating
Eq. (62) twice. However, for systems in a circular orbit,
such as the Earth-Moon system or compact binaries, this
correction vanishes to leading order. Therefore, lunar rang-
ing experiments [70] might not be able to constrain _f.

Another correction to the predictions of GR is that of the
precession of gyroscopes by the so-called Lense-Thirring
or frame-dragging effect. In this process, the spin-angular
momentum of a source twists spacetime in such a way that
gyroscopes are dragged with it. The precession angular
velocity depends on the vector sector of the metric pertur-
bation via Eq. (61). Thus, the full Lense-Thirring term in
the precession angular velocity of precessing gyroscopes is

 �i
LT � �

1

r3
A

X
A

JiA�eff� � 3niA�JA�eff� � nA�i: (63)

Note that this angular velocity is identical to the GR
prediction, except for the replacement JiA ! JiA�eff�. In CS
modified gravity, then, the Lense-Thirring effect is not only
produced by the spin-angular momentum of the gyroscope
but also by the orbital angular momentum that couples to
the CS correction. Therefore, if an experiment were to
measure the precession of gyroscopes by the curvature of
spacetime (see, for example, Gravity Probe B [42]) one
could constraint _f and thus some intrinsic parameters of
string theory. Note, however, that the CS correction de-
pends on the velocity of the bodies with respect to the
inertial PPN rest frame. In order to relate these predictions
to the quantities that are actually measured in the experi-
ment, one would have to transform to the experiment’s
frame, or perhaps to a basis aligned with the direction of
distant stars [6].

Are there other experiments that could be performed to
measure such a deviation from GR? Any experiment that
samples the vectorial sector of the metric would in effect be
measuring such a deviation. In this paper, we have only
discussed modifications to the frame-dragging effect and
the acceleration of bodies through the GED analogy, but
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this need not be the only corrections to classical GR
predictions. In fact, any predictions that depends on g0i
indirectly, for example, via Christoffel symbols, will
probably also be modified unless the corrections is fortu-
itously canceled. In this paper, we have laid the theoretical
foundations of the weak-field correction to the metric due
to CS gravity and studied some possible corrections to
classical predictions. A detailed study of other corrections
is beyond the scope of this paper.

VII. CONCLUSION

We have studied the weak-field expansion of the solution
to the CS modified field equations in the presence of a
perfect fluid PN source in the point-particle limit. Such an
expansion required that we linearize the Ricci and Cotton
tensor to second order in the metric perturbation without
any gauge assumption. An iterative PPN formalism was
then employed to solve for the metric perturbation in this
modified theory of gravity. We have found that CS gravity
possesses the same PPN parameters as those of GR, but it
also requires the introduction of a new term and PPN
parameter that is proportional to the curl of the PPN vector
potentials. Such a term is enhanced in nonlinear scenarios
without requiring the presence of standard model currents,
large extra dimensions or a vanishing string coupling.

We have proposed an interpretation for the new term in
the metric produced by CS gravity and studied some of the
possible consequences it might have on GR predictions.
The interpretation consists of picturing the field that
sources the CS term as a fluid that permeates all of space-
time. In this scenario, the CS term is nothing but the
dragging of the fluid by the motion of the source.
Irrespective of the validity of such an interpretation, the
inclusion of a new term to the weak-field expansion of the
metric naturally leads to corrections to the standard GR
predictions. We have studied the acceleration of point
particles and the Lense-Thirring contribution to the pre-
cession of gyroscopes. We have found that both corrections
are proportional to the CS coupling parameter and, there-
fore, experimental measurement of these effects might be
used to constraint CS and, possibly, string theory.

Future work could concentrate on studying further the
nonlinear enhancement of the CS correction and the mod-
ifications to the predictions of GR. The PPN analysis
performed here breaks down very close to the source due
to the use of a point-particle approximation in the stress-
energy tensor. One possible research route could consists
of studying the CS correction in a perturbed Kerr back-
ground [71]. Another possible route could be to analyze
other predictions of the theory, such as the perihelion shift
of Mercury or the Nordtvedt effect. Furthermore, in light of
the imminent highly-accurate measurement of the Lense-
Thirring effect by Gravity Probe B, it might be useful to
revisit this correction in a frame better-adapted to the
experimental setup. Finally, the CS modification to the

weak-field metric might lead to nonconservative effects
and the breaking of the effacement principle [47], which
could be studied through the evaluation of the gravitational
pseudo stress-energy tensor. Ultimately, it will be experi-
ments that will determine the viability of CS modified
gravity and string theory.

ACKNOWLEDGMENTS

The authors acknowledge the support of the Center for
Gravitational Wave Physics funded by the National
Science Foundation under Cooperative Agreement PHY-
01-14375, and support from NSF Grants No. PHY-05-55-
628. We would also like to thank Cliff Will for encouraging
one of us to study the PPN formalism and Pablo Laguna for
suggesting that one of us look into the PPN expansion of
CS gravity. We would also like to thank R. Jackiw, R.
Wagoner, and Ben Owen for enlightening discussions
and comments.

APPENDIX A: PPN POTENTIALS

In this appendix, we present explicit expressions for the
PPN potentials used to parametrize the metric in Eq. (5).
These potentials are the following:

 U�
Z �
jx� x0j

d3x0; Vi �
Z �0v0i
jx� x0j

d3x0;

Wi �
Z �0v0j�x� x

0�j�x� x0�i
jx� x0j3

d3x0;

�W �
Z
�0�00

�x� x0�i

jx� x0j3

�
�x0 � x00�i
jx� x00j

�
�x� x00�i
jx0 � x00j

�
d3x0d3x00;

�1 �
Z �0v02

jx� x0j
d3x0; �2 �

Z �0U0

jx� x0j
d3x0;

�3 �
Z �0�0

jx� x0j
d3x0; �4 �

Z p0

jx� x0j
d3x0;

A�
Z �0
v0i�x� x

0�i�2

jx� x0j
d3x0; X�

Z
�0jx� x0jd3x0:

(A1)

These potentials satisfy the following relations

 r2U � �4��; r2Vi � �4��vi;

r2�1 � �4��v2; r2�2 � �4��U;

r2�3 � �4���; r2�4 � �4�p;

r2X � �2U:

(A2)

The potential X is sometimes referred to as the super-
potential because it acts as a potential for the Newtonian
potential.
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APPENDIX B: LINEARIZATION OF THE COTTON
TENSOR

In this appendix, we present some more details on the
derivation of the linearized Cotton tensor to second order.
We begin with the definition of the Cotton tensor [29] in
terms of the symmetrization operator, namely

 C�� � �
1�������
�g
p 
�D�f���	���D	R���

� �D�f�
?R��j�j���: (B1)

Using the symmetries of the Levi-Civita and Riemann
tensor, as well as the fact that f depends only on time,
we can simplify the Cotton tensor to

 C�� � ��g��1 _f
~�0	���R���;	 � ~�0	�������	R
�
�

� 1
2�

0
�~��	���R��	��: (B2)

Noting that the determinant of the metric is simply g �
�1� h, so that ��g��1 � 1� h, we can identify four
terms in the Cotton tensor

 C��A � _f~�0	���
L̂R���;	�;

C��B � _f~�0	���h��
L̂R���;	�;

C��C � _f~�0	���
L̂����	�
L̂R
�
��;

C��D �
_f

2
~��	���
L̂�0

��
L̂R
��

	��;

C��E � _f~�0	���
Q̂R���;	�;

(B3)

where the L̂ operator stands for the linear part of its
operand, while the Q̂ operator isolates the quadratic part
of its operand. For example, if we act L̂ and Q̂ on �1� h�n,
where n is some integer, we obtain

 
L̂�1� h�n� � nh; 
Q̂�1� h�n� �
n�n� 1�

2
h2:

(B4)

Let us now compute each of these terms separately. The
first four terms are given by

 C��A � �
_f

2
~�0	������h���;	 � h��;

�
	��;

C��B � �
_f

2
h~�0	������h

��
�;	 � h��;

�
	��;

C��C � �
_f

4
~�0	����h���;	 � h

�
	;� � h�	;

���

� ���h�� � h�
�
;�
� � h��;

�� � h;���;

C��D �
_f

4
~��	����2h0

��;� � h�;
0��h


�;	�
� � h�


�;	�
�:

(B5)

The last term of the Cotton tensor is simply the derivative
of the Ricci tensor which we already calculated to second
order in Eq. (21). In order to avoid notation clutter, we shall
not present it again here, but instead we combine all the
Cotton tensor pieces to obtain

 

C�� � �
_f

2
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2
~�0	���

�
h���h���;	 � h��;	
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2
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�� � h��

�;	�

� �O�h�3 (B6)

where its covariant form is
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(B7)

For the PPN mapping of CS modified gravity, only the
00 component of the metric is needed to second order,
which implies we only need C00 to O�h�2. This component
is given by

 C00 �
_f

4
~�ijk0�2h

0
�i;‘� � hi‘;

0��h‘

k;j�0 � h0
k;j�

‘�

�
_f

2
h0‘~�0jk�‘���h0k;j � hik;j0

i� �O�h�3; (B8)

where in fact the last term vanishes due to the PPN gauge
condition. Note that this term is automatically of O�6�,
which is well beyond the required order we need in h00.
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