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Cosmological BCS mechanism and the big bang singularity

Stephon Alexander'** and Tirthabir Biswas''
'Department of Physics, Institute for Gravitation and the Cosmos, The Pennsylvania State University,
104 Davey Lab, University Park, Pennsylvania 16802, USA

’Department of Physics and Astronomy, Haverford College, Haverford, Pennsylvania 19041, USA
(Received 12 October 2008; published 2 July 2009)

We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-
Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion
interaction arises in general relativity when fermions are covariantly coupled, we show that at early times
the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to
a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to
zero and results in a nonsingular bounce, at least in some special cases.

DOI: 10.1103/PhysRevD.80.023501

I. INTRODUCTION AND MOTIVATION

As is well known the standard big bang cosmology
(SBB) successfully predicts the observed large scale ex-
pansion, thermal properties, nucleosynthesis, and the cos-
mic microwave background in our universe. However, the
theorems of Hawking and Penrose prove that a curvature
singularity exists in the SBB at the ‘“birth” of the uni-
verse’s space-time. Cosmologists have had long held ex-
pectations that at the Planck time quantum gravitational
effects might resolve the singularity and provide a quantum
bridge that connects a collapsing phase to an expanding
one; otherwise known as a bouncing cosmology. The im-
plementation of the bouncing scenario in quantum theories
of gravity are still at the toy model stage, since a complete
description of quantum gravity is lacking. Given this fact,
we will argue that a nonsingular cosmology is possible
from the effects of fermions on space-time when the scale
factor starts becoming small.

Most modern approaches towards a unified quantum
theory of gravity, such as supergravity [1], or loop quantum
gravity (LQG) [2] have found the first order formalism of
gravity, where one treats the vielbein and connections as
independent variables, to be the natural starting point. It is
also well known that while passing from the first to the
second order formalism (by integrating out the torsion
field) the covariant coupling of fermions to gravity yields
a four-fermion interaction in these theories [1 ,3—7].1 Now,
the BCS theory of superconductivity states that if there
exists a weak attractive four-fermion interaction and a
Fermi surface, fermions will condense into a new ground
state with lower energy comprising of spin-0 Cooper pairs.
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'See [8], however, for a counterexample where even in the
presence of the Immirzi parameter, the fermions do not change
the classical equations.
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In the context of a homogeneous and isotropic cosmologi-
cal space—time,2 we will show that fermions indeed form
Cooper pairs. Moreover, the Friedman-Lemaitre-
Robertson-Walker (FLRW) scale factor (or the ‘““volume”
of the universe) plays the role as an effective coupling
constant such that at early times the correlations between
the fermions get stronger. As a result, we show that as we
approach the singularity an energy gap opens up, contrib-
uting negative energy which, as we shall explain shortly, is
one of the fundamental requirements for obtaining realistic
bounces in a spatially flat or open universe. We were also
able to explicitly show that at least when the usual (posi-
tive) matter energy density has an equation of state pa-
rameter, w < 1/3, the negative gap energy can drive the
expansion rate of the universe to zero, leading to a bounce
between the contracting and expanding phase. For this
mechanism to work, an a priori assumption that is required
is the existence of a finite nonzero density of the Dirac
fermions (i.e. we assume a particle/antiparticle asymmetry
from the very beginning). We employ robust methods of
effective field theory to demonstrate the nonsingular be-
havior of this cosmology. We note in passing that similar
ideas have been previously employed to resolve the black
hole singularity and information loss problems [9].

In contrast, previous attempts to resolve big bang singu-
larity (BBS) has mostly relied on introducing pathological
ghost fields [ 10—12] which either violate quantum unitarity
and/or leads to catastrophic instability [13]. In some other
bouncing and cyclic universe scenarios [ 14—16], one leaves
the singularity unresolved in the hope that “quantum grav-
ity” effects will eventually smooth out the singular big
crunch/bang transition. Although rigorous but involved no-
go theorems exist in the literature [17] as to why it is so
challenging to avoid the singularity in general relativity

>The interplay between inhomogeneities in the Fermi gas and
the metric, and especially its implications for CMB remains an
important open question.
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(GR), in the context of a flat® homogeneous isotropic
cosmology it is easy to qualitatively see this. One just
has to look at the Hubble equation

a\? 1
I—I2 = [ _ = .
(a) 3M§Zp’

which governs the evolution of the scale factor a(t) appear-
ing in the FLRW metric

(1.1)

ds* = —di* + a®(1)dx3. (1.2)

Here, i labels the different components of matter present in
the universe. Now, in the bouncing universe construction
the scale factor goes through a minimum, where a, or
equivalently the Hubble expansion rate, H, must vanish.
This means that some of the matter components must have
negative energy, a property hard to realize in conventional
matter. Ghost fields have negative kinetic energies and can
mediate a bounce and therefore have been used in previous
literature. One may wonder whether ordinary scalar fields
with negative potential energy can work? Unfortunately,
having a negative energy component is not sufficient for a
bounce, the negative energy component has to precisely
cancel the positive matter component at the bounce and
then redshift away faster than it, to leave the total energy
density positive. In other words, one requires violation of
not only the weak energy condition (p < 0) but also the
null energy condition (p + p < 0) [17]. As a consequence
the energy density has to increase with expansion of the
universe. It is easy to check that ordinary scalar fields
cannot achieve this.

The reason why an attractive four-fermion coupling can
give rise to a consistent bouncing scenario is because, first,
the interaction energy between fermions gives rise to a
negative contribution to the energy density (binding energy
between Cooper pairs). Second, this energy density de-
pends on the “gap” which in turn, depends rather non-
trivially on the scale factor (or volume of the universe) via
the chemical potential. It turns out that this rather non-
trivial volume dependence can violate the null energy
condition temporarily as needed to have a bounce. On
hind sight, the fact that fermions can violate the energy
conditions probably should not come as a real surprise,
even ‘‘classically” fermionic condensates are known to
violate energy conditions and give rise to bounces [20].

We should point out that in the context of effective field
theory there have been some successful efforts in con-

?Although our analysis is not specific to a flat universe and
readily applies to open or closed universes, for simplicity and
phenomenological reasons (WMAP and other measurements
strongly constrain the flatness [18]) we specialize to the flat
case. However, we point out that in a closed universe setting the
presence of the spatial curvature itself can allow for a resolution
of the big bang singularity [19], but obviously such a resolution
mechanism will not work for a general manifold, such as an open
or a flat universe which makes it somewhat less appealing.
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structing toy models involving higher derivative actions
which can evade the problem of ghosts (for instance,
involving nonlocal modifications of gravity [21], or ghost
condensation mechanism [22]) but preserve some of the
useful ghostlike properties of higher derivative theories to
resolve the BBS. (For a more detailed review of various
bouncing scenarios, the readers are referred to [23].)
However, the mechanism that we propose is not a toy
model, and has a much more generic scope as it essentially
only relies on having covariant coupling of fermions to
gravity and the presence of a Fermi surface.

A third requirement to achieve a bounce intriguingly
turns out to be the presence of the Immirzi parameter
(associated with Holst’s generalization of the Einstein-
Hilbert action) which also seems to play a key role in the
nonperturbative quantization of gravity [2]. For instance, in
LQG, the quantization of the area operator, and the exis-
tence of bouncing cosmologies [24] depend crucially on
the Immirzi parameter. What is also suggestive is that, like
in LQG, we have to rely on a completely nonperturbative
effect, the formation of a BCS gap to evade the big bang.

This paper is organized as follows: In Sec. II we present
the first order formalism of GR and derive the four-fermion
interaction. In Sec. III we develop the cosmological BCS
theory and derive the effective potential for the cosmologi-
cal energy gap. In Sec. IV we analyze a special case in
details to show how and when singularity resolution can
occur. Finally we conclude and provide future outlook in
Sec. V.

II. FOUR-FERMION INTERACTION FROM GR

The goal of this section is to summarize the first order
formalism of GR in the presence of fermions and derive the
four-fermion interaction necessary for BCS condensation
[5,6]. Let us consider a four-dimensional manifold M and
introduce two independent fields: the tetrad, e/,, an ortho-
normal coordinate basis for each point on the manifold,
and a spin connection A, ,;” which connects (parallel trans-
ports) the tangent spaces at different points of the manifold.
Note that small-case Latin letters starting from m, n ...
denote space-time indices, while capital Latin letters start-
ing from 7, J ... denote internal Lorentz indices. One can
then associate a four-dimensional metric g,,, via
(2.1)

— I ,J
Emn = €m€n M1

where the Minkowski metric is to be viewed as the metric
of the internal space. Internal indices are raised and low-
ered with the Minkowski metric, while space-time indices
are raised and lowered with the space-time metric. Using
the connections, one can define the covariant derivatives of
mixed tensors via usual rules such as

D m knl =

Dknt T Apnkpr + Ayr’ kg,

ml

where A,,,” = elelA,,,’. (2.2)
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D,, is known as the generalized covariant derivative. As is
evident, we use the tetrad and its inverse e/ to convert
internal indices to space-time indices and vice versa. The
requirement that the spin connection be torsion free is
simply A, .7 = 0.

At this juncture we should briefly discuss the relation
between internal and space-time quantities. Riemannian
fields, like the metric or the Einstein tensor, live on some
substructure of the base manifold M, such as the tangent
or cotangent spaces, and thus, have a fixed dimension (that
of M). Alternatively, gauge fields live in an internal vector
space, which is independent of the base manifold and could
in principle be infinite dimensional. A fiber bundle is then
simply the union of the base manifold and the internal
space, where each fiber is a copy of the vector space
corresponding to a particular space-time point. Such fiber
bundles have an associated structure group or Lie group,
which qualitatively glues all fibers together. In the context
of the first order formalism it is convenient to view m, n . ..
as associated with the cotangent/tangent spaces, while
I,J ... with internal vector indices associated with the
Lie group SO(3, 1).

With the generalized covariant derivative and spin con-
nections, we can now define the generalized curvature
tensors. This is done through the failure of commutativity
of the generalized covariant derivatives. One defines

Rmnlj = a[mAn]]J + [Amr An]ljr (233)
= Rmnpq = a[mAn]pq + [Am; An]pq! (2.3b)

where the commutator is short-hand for
(A, A,l]/ = Am,KAnKJ - An,KAmKJ. 2.4)

Note that if the connection is metric compatible and torsion
free (i.e., if it is the Christoffel connection), then the
curvature tensor is simply the Riemann tensor.

Let us now rewrite the Einstein-Hilbert action in terms
of these new variables. Note, however, that we wish to
work with the trace of the generalized curvature tensor, and
not the Ricci scalar, since these two quantities are not
necessarily equivalent. The Einstein-Hilbert action is given
by the well-known expression

M? M,
Sp = 7’7 /d“x«/—gR = TP fd“xee’,”e?PlEJKLRmnKL,

with Pl ., = sllsl) (2.5)
where E simply stands for “Einstein-Hilbert.”” The second
relation can be derived using the identity

R =167 5" R,,, ", (2.6)

q

We note in passing that, in the absence of fermions, the
field equations for the connection gives rise to the com-
patibility (or zero torsion) condition:

PHYSICAL REVIEW D 80, 023501 (2009)

D[me;’] =0 2.7)
which means that A, ,” are nothing but the Christoffel
symbols determined in terms of the metric and one recov-
ers Einstein’s GR. This statement remains true even when
one includes Holst’s modification to (2.5):

1J A 0 N 7
Py = Pk = 0x0 — 5 €.

2y (2.8)

One can check that once one imposes the compatibility
condition (2.7), the additional term in Holst’s action, Sy
[which has Py rather that Py in (2.5)], vanishes and there-
fore does not effect the classical equations of motion.

However, things dramatically change when one includes
the covariant coupling of free fermions to GR in the
presence of the Holst term:

S=S,+5S, (2.9a)

Sp —% [ d*x=glipy'e" D, +cc.). (2.9b)

Sp corresponds to the Dirac action with massless fermi-
ons,*, where c.c. stands for complex conjugation, ¢ is a
Dirac spinor, and y/ are 4 X 4 gamma matrices defined via

0 o . > = F
I .

(2.10)

where & are just the usual 2 by 2 sigma matrices. With
these definitions it is easy to check that the gamma matri-
ces obey the following anticommuting algebra:

{ye, vit = —2m1. (2.11)
In (2.9b) we have also defined
- 0 1
i=vtw=ui(] o)} en

Note that a tetrad based formalism is essential for the
inclusion of fermions in the theory, since Dirac spinors live
naturally in SU(2). Therefore, the covariant derivatives
associated with the Dirac action are not the usual
SO(3, 1) covariant derivatives, but instead are given by
Dmlr// =0 — (1/4)Am”’)/1’yj b

Let us now find the structure equations of the fermion-
extended theory. In general, one can break up the connec-
tion into symmetric and antisymmetric pieces:

Al = old + Cl, 2.13)
where w?/ is the torsion-free spin connection satisfying the
compatibility condition (2.7) and C%/ is the so-called ““con-
torsion” tensor. The idea is to integrate out the contorsion
tensor which then will lead us to the more familiar second

“The inclusion of a mass term does not affect the conclusions
of this paper, but we leave it out to avoid cluttering.
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order formulation of gravity where the connections are just
the metric dependent Christoffel symbols. This can be
achieved simply by imposing the structure equations ob-
tained by varying the action with respect to the connection.
Following [5] and using the identity

YK = —ieKhysy, +29/VyM,214)
we can express the contorsion tensor in terms of the axial
fermion current, J! 1= Jysy' ¢,

m y2 1 I 1
e]'Cpyx = 47G —GIJKLfs - ;771[1]51(] -

¥+ 1\2
(2.15)

From the above expression for the contorsion tensor it is
clear that C,,;x is a nonpropagating field, its field equations
do not have any derivatives on it. Thus ““integrating it out™
is not only equivalent to reinserting its expression (2.15) in
the full action classically, but also quantum mechanically.
Thus the four-fermion contact interaction term that we are
going to generate in going from the first to second order
formalism is quantum mechanically an exact result. This is
a key difference from the “‘effective’ contact interaction
that one obtains in non-Abelian gauge theory where the
mediating gauge fields do indeed propagate, and therefore
the contact term is only a low energy approximation.

Substituting (2.15) in Holst’s action we find that the
action can be written as [5]

S = Sg[w] + Splw] + Sy (2.16)

The first and the second terms are the standard Einstein-
Hilbert and Dirac action involving the Christoffel connec-
tions. However, crucially one obtains a third interaction
term, given by’

3 v? Js gL
Sint = EWG()/Z - 1)[d4er51J§ = [d“xe%.

(2.17)

Such four-fermion interactions were already observed in
Einstein-Cartan theory [y?> — oo limit in (2.17)], although
they are suppressed by a power of Newton’s constant (a
factor of 1/k here). In order to form a condensate of
fermions the Planck suppression will have to be tran-
scended, and this happens when the universe contracts to
Planck densities, as we shall discover in the next section.

III. COSMOLOGICAL BCS THEORY

In this section the starting point of our discussion is the
general relativistic action (2.16) derived in the previous
section, but we want to study it in a condensed matter

>The sign difference in front of the four-fermion term as
compared to what was derived in [5,6] is simply because our
metric has the opposite signature.
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framework, i.e. not in vacuum but in the presence of a
gas® of fermions. In this case, one has to add the contribu-
tion of the chemical potential (u) to the effective action,
which at zero temperature reads [26,27]

Js1Jl
el
(3.1

M ]
S = [d“xe*l[TpR — iy Dy — pwipy'y +

We note in passing that, although here we consider four-
fermion coupling arising from covariant coupling of fer-
mions to gravity via the torsion constraint, an effective
gauge mediated contact interaction term [26] can also lead
to similar mechanisms, and could be interesting to pursue
in the future.

Our aim is to study in detail the possibility of a cosmo-
logical BCS-like condensation of the fermions first sug-
gested in [28] and to consider its implications towards the
resolution of the big bang singularity. As discussed in the
Introduction, to have a resolution of BBS, we have to
ensure that the Hubble expansion rate can vanish. As a
first approximation then it becomes sufficient to look at the
condensation mechanism on a flat Minkowski background
i.e. ignoring the space-time dynamics; one can readily
convince oneself that corrections due to expansion of the
universe are expected to be O(H/u) and therefore are
suppressed near a possible bounce when H — 0.

Let us therefore focus on the Minkowski space-time
action:

S = jd‘*x[—i&ymaw — uihyoy + JS}’&#] (3.2)

Technically it is simpler to work in terms of two compo-
nent Weyl fermions, {4, where the left-handed fermion
sector is denoted by F (it contains the left-handed fermion
and right-handed antifermion) and the left-handed antifer-
mion sector is denoted by A (it contains the left-handed
antifermion and right-handed fermion). Let us first look at
the free part of the action:

5 — ] dLi(¢FHama, ¢ + MM, 00
T — gt

A simple and physically transparent way to understand
the condensation mechanism is to introduce auxiliary sca-
lar (gap) fields, which are proportional to the fermionic
bilinears. The so-called “‘gap equation” is then derived by
integrating out the fundamental fermionic degrees of free-
dom. As is wellknown [26,27], in these integrals the con-
tribution of the gap is inversely proportional to the energy
of the fermions. Now each of the {’s describe two physics

(3.3)

SPerhaps it is better to call the system a Fermi liquid [25]
rather than a Fermi gas, as they are interacting. Also, in principle
there could be several species of fermions, but for simplicity we
will only consider one.
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degrees of freedom, corresponding to the positive and
negative helicity states —id.¢{ = &.p¢ = +|p|{. Thus
we see that the positive helicity state for ¢ and the
negative helicity state for £ (i.e. the left- and right-handed
fermions) correspond to energies E = *||p| — u| (the
positive and the negative sign corresponds to “‘particle”
or “hole” like excitations around the Fermi surface, re-
spectively). Thus, close to the Fermi surface the energy of
these fermionic states can vanish and thereby contribute
significantly to the gap energy. On the other hand, the
antifermionic states corresponding to negative helicity
and positive helicity states for /¥ and (4, respectively,
always have nonvanishing energies ~|p| + u and hence
their contribution towards the gap is suppressed (see, for
instance, [26] for a discussion on this point). In the follow-
ing analysis therefore we are only going to focus our
attention on the fermionic states and couplings between
them.

A simple way to project out the antiparticle states, as
advocated in [26], is to first go into the momentum basis:

Jd'p
Q2m)*

{(x) = fpeipx where £, = fd‘lx{(x)e”'l’x,

(3.4)

Then for a given momentum mode choose a reference
frame where the momentum is aligned along the positive
z axis to compute the different terms in the action, and
covariantize the final result. It is easy to see that the free
action becomes

[ dx Ly = )4 P (p0 + )0k + CRT (00 — €,)28]

where €, = |p| —u (3.5)
where ¢ and ¢® are now single component fermions
corresponding to the left- and right-handed fermionic
states. When p is along the direction of the positive (nega-
tive) z axis they are the upper (lower) and lower (upper)
components of /¥ and {4, respectively.

The four-fermion term simplifies as the following: First,

Py = (TG + AT (e
+ et
= 2n,, T e .

The second equality stems from the fact that we are only
interested in coupling between ¢ and {#, or more pre-
cisely between /~ and Z® [all other terms when projected
onto fermionic states will be of the form ({%¢1E)? or
(ZRZTR)2 which must vanish due to anticommutavity].
This further enables us to consider only the diagonal "
matrices (the off-diagonal ™’s only contain couplings
between fermionic and antifermionic states):

PHYSICAL REVIEW D 80, 023501 (2009)
TS = o[ = FtGOZF (At GO A
+ IFEGF At g3 + -]
— 4Lt LR 2R
= 4T ERT.

Having found the desired left-right coupling, one can now
introduce the auxiliary fields (A, A*), so that we can
rewrite the four-fermion coupling as

fd4 (gLTgR)(gLTZR)T fd“x[A*{”fR + AgREgL

M2
——AA*|.
o]

(3.6)

It is clear that the auxiliary field, A ~ /LT Z®, and a non-
zero value for it would signal a cosmological BCS-like
condensation. In order to find such a nontrivial value for A,
one can now take recourse to a mean-field approximation
where A is treated as a constant gap.

To obtain the “gap equation” (or the effective theory of
A) we have to integrate out the fundamental degrees of
freedom, the fermions. In the momentum basis the fermi-
onic action looks like

[d4x£fer=f 2 )4[55*(19 +617) +§§’r(p
— €)ZF + AL R 4 AZRT L)

(3.7

Or, in matrix notation

+e€ A

[d4x£fer = f 2 )4 (é’LT’ {51-)< ! 0 )

P~ €

Zp

_ 4 Lt +RYt é'le
= d p({ > SPp )A[J R .

$p
As usual in the path integral when one integrates over all
the fermionic variables {,’s, one ends up with a fermionic

determinant. In general for a fermionic path integral we
have (see [26,27], for instance)

Z= [DZeiS = [D{exp[i[d“p{JMpr]
N e"pf (;1‘7‘54

where { in general can be an N component spinor and M,
is an N by N matrix. The effective action S (in quantum

(3.8)

tr(InM ,), (3.9)

field theory literature this is often referred to as I'yy) is
defined in terms of the path integral via
Z = e'Ser, (3.10)

Thus for our path integral we obtain the following effective

023501-5
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Lagrangian for A (for a more detailed derivation see [27]):
d*p
Qm)*

The above effective action can actually be evaluated ex-
actly. Focusing on the first (nonperturbative) term which
was obtained by integrating out the fermions we find

d’p [2 2
) €, + A
A de,(e, + u)?
= [1 S e A

—A

2
Lo(A) = —if tind,) — - AA% G

‘E HOD(A) =

(3.12)

where in the last step we have performed the angular
integrations and we are considering modes (electrons or
holes with positive or negative €, respectively) around u,
A is the UV cutoff used to regulate the integrals. The above
integral is formally divergent. However, employing the
above cutoff regularization scheme, we first of all can
subtract the quartic divergence by requiring £,,,(A) to
vanish when A = 0, or in other words just subtract the A =
0 piece from L£,,(A).” Unfortunately, a logarithmic diver-
gence remains in the form of an undetermined mass pa-
rameter €,(= 2A) due to the presence of the four-fermion
interaction, an artifact of the intrinsically nonrenormaliz-
able torsion-gravity theory. Even on dimensional grounds
it is clear that such a cutoff must be present. In condensed
matter systems, this cutoff corresponds to the Debye fre-
quency related to the lattice spacing. It seems likely that in
case of gravity €, would similarly be related to the funda-
mental quantum (discretization) of space-time as for in-
stance observed in loop quantum gravity [2].

Putting everything together therefore, we have the final
effective potential given by

"The quartically divergent piece is nothing but the contribution
of the fermions to the vacuum energy. This is a specific illus-
tration of the famous ‘‘cosmological constant problem”:
Quantum loop contributions to the cosmological constant are
generally known to go as ~O(M?%) for a theory with a Planck
cutoff scale, but observations suggest that we are living in an
universe with a much smaller cosmological constant
~107"2M7}. This implies an incredible cancellation of a 120
orders of magnitude between the different contributions to the
vacuum energy. Since in this paper we are not trying to address
the cosmological constant problem, we take the usual approach
and assume that some unknown mechanism is indeed respon-
sible for such a cancellation/*‘renormalization” of the vacuum
energy down to its extremely small observed value, ~O(meV*).
Since the bounce in our model is governed by much higher
energy scales ~My, such a tiny cosmological constant will play
no role. If, on the other hand, the vacuum energy at the bounce
was large and only became small later, it can modify the nature
of the bounce. However as we shall see later, whether we have a
bounce or not only depends on the equation of state of matter, w,
and, in particular, as long as @ < 1/3 the big crunch/bang
singularity is resolved via the bounce. Since the cosmological
constant has an equation of state @ = —1, its existence does not
pose a problem for our mechanism.

PHYSICAL REVIEW D 80, 023501 (2009)
Vtot = _-Eeff(A)

_M:A ;[A_“ LR AZ(A_Z _ M) lné]
4 27216 2 4 '

(3.13)

This has one arbitrary parameter €, as promised, along
with the inverse coupling constant M,. It is clear that the
above potential has a minimum at say A = A, given by
2 2 _n,2
0 Vior =0=>M% =A_()2+ (Ao 22,“ )ln&.
A 2 T -

(3.14)

One can think of the above equation as specifying A, =
Ag(m). Tt is useful to check that we recover the usual
behavior of the gap in the weak coupling BCS limit
[26,27] when the fermion gas is dilute. For A < u, €,,
(3.14) tells us

A2 2
M; ) (3.15)

A =€, exp(ziﬂ2

the familiar exponentially suppression of the gap appears.

Returning now to the general discussion, we can also
calculate

AS

Vmin = Vtot(AO) = —[

2 2
4 5 ﬁ-’—ﬁln&
w

—u?| (.16
g y I ,U«:I()

However, the potential energy that we have calculated
includes the contribution from the chemical potential as
well. This is the “extra” u dependent term in the
Lagrangian (3.2); note that the number density, n, of fer-
mions is given by [27]
- as aV
n= fd4xe_1¢'yol,b = =-_1
oM op
In order to do cosmology, what we really need is the total
energy density which is therefore related to V,, via

(3.17)

Peap = Vit T . (3.18)

In particular, we need to know the dependence of the gap
energy density as a function of the scale factor/number
density. This is provided by the implicit relation between
the number density and the chemical potential (3.17):

n= —‘sz’LA‘Z)(1 —21nA0>.

T (3.19)

r

Thus putting everything together we have

_ ant
pgap_vtot_lu‘alu
AZ 1342 A2 A
— 20220, 24 (20_4 2)1—0]. 3.20
4772[8 H (2 po) I (320

Using (3.14), (3.19), and (3.20), one in principle knows the
dependence of the energy density as a function of the
fermion number density, pga, = Pgap(n).
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IV. BEC AND BOUNCE

For the present paper, we are interested in homogenous
and isotropic FLRW type cosmology focusing on the re-
gime H < u, relevant for discussing nonsingular cosmo-
logical models. In particular, what we would like to
demonstrate is that in the presence of a fermion conden-
sate, the universe does not contract all the way to a singu-
larity where the energy densities go to infinity, but rather
bounces back at some finite energy density to an expanding
phase thereby resolving the singularity. Now, in a realistic
universe the matter content of the universe will be varied,
but for the purpose of illustration here we will assume that
the matter content of the universe, apart from the conden-
sate, is described by an ideal fluid, p,,, with an equation
of state parameter w:

= P = poa 21O .1

To check the robustness of the bounce mechanism we
should check whether or not the universe can bounce for
any equation of state parameter obeying the weak energy
condition, i.e. —1 = w = 1. In other words, we want to see
when the Hubble equation

Prot
2
3Mp

H2=—] (Poap T Prmat) = 4.2)
3M%, gap mat .

allows for a bouncing solution. In order to solve the above
equation we need to know how the energy densities evolve
as a function of the scale factor. For matter, since it is
treated as an ideal gas this is given by (4.1). For pg,,, one
does not have an explicit expression in terms of the scale
factor, but it is implicitly defined in the following way:
First of all we know that the number density of the fermi-
ons scale as inverse volume:

n=nga . 4.3)

Now, (3.14) implicitly determines Ay = Ag(u), so that
(3.19) can be thought of as relating the number density
and the chemical potential. In other words, (3.14) and
(3.19) let us determine the chemical potential and the gap
as a function of the number density. Since the energy
density is given in terms of the gap and the chemical
potential, (3.20) implicitly determines the energy density
in terms of the number density. Finally using (4.3) we, in
principle, can determine the energy density as a function of
the scale factor.

In order to demonstrate that the universe indeed boun-
ces, we have to show two things: (i) the total energy density
must vanish, p, =0, at some scale factor, say
a = ay.(ii) Also, d > 0 at a = a,, to ensure that we indeed
have a minimum (and not a maximum as happens in a
turnaround) for the scale factor. Differentiating the Hubble
equation we find that the latter condition is equivalent to
showing that dp/da is positive at the bounce point, in
violation with the null energy condition. In principle, one
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can scan the entire parameter space® {p,, , n, €,, M,}
numerically to determine when the singularity is resolved,
but this is a rather involved and challenging task which we
leave for the future. In this manuscript, we want to consider
a particular limit where the expressions simplify consid-
erably. Let us consider the strong coupling BEC (Bose
Einstein condensation) limit [27], M, — 0, and when A >
€,. In this case, (3.14) simplifies to give us a rather simple

relation between the chemical potential and the gap:
A3 =2u2 (4.4)

The expressions for the energy and the number density also
simplifies considerably:

A} A
n=nga = \/_2—272 lne—0 =Ay~a! 4.5)
3AY A
and gy~ — -0 In—C~ —a”4, (4.6)

)
87 €,

where in inferring the scale-factor dependence of the gap
and the energy density we have ignored the logarithms.
Thus approximately, the gap energy density behaves as
radiation with a negative sign. It is worth noting that
Casimir energy calculations are also known to lead to
similar negative radiation like behavior for massless mini-
mally coupled fields [29], as the case we are considering.

What the above behavior suggests is that as long as w <
1/3, i.e. the matter energy density blue shifts (during
contraction) slower than radiation, we will have a bounce,
see Fig. 1. Since p, is always positive, the matter energy
density will always dominate over the gap energy density,
but during contraction since the gap energy is blueshifting
faster as compared to matter, it will eventually catch up
with matter and precisely cancel it at the bounce point.
After the bounce, in the expanding phase the gap energy
will dilute faster than matter ensuring that p,, remains
positive. In our case, one finds that for

a\3(+w) a\—4
Prot =~ pbounce[(_) - <_) ]
ap ap

=1-3w,

a=ay,

4.7)

dp
e have —
W v da

and thus as argued before we satisfy the bounce criteria
when o < 1/3.

A few remarks are now in order. First, we realize that in
the strong coupling BEC limit that we are considering here,
whether we will have a bounce or not only depends on w.
In general, however, the dependence will be much more
complicated and only future numerical exploration will be
able to provide a comprehensive answer. Let us next look at
the robustness of the mechanism in resolving the big

8 Actually there is a gauge redundancy in the set of parameters
since one can always rescale the scale factor.
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FIG. 1 (color online). Plot of the scale factor (red curve) and
the gap (green curve) as a function of time as the universe
bounces. This plot corresponds to w = 0, and €,, M, <K A,.

crunch/bang singularity. Usually it is believed that in a
contracting universe at high energy densities, the universe
will come to be dominated by radiation which goes as a~*
and has an equation of state @ = 1/3. Whether we can
have a bounce, or not, in this limiting case of w = 1/3
crucially depends on the loglike behavior of the gap en-
ergy. By inspection, one finds that because of the presence
of the logarithm in (4.5), A blueshifts slightly slower than
1/a, and again by inspection from (4.6) one deduces that
Poap ~ NA ~ a3A, and therefore blueshifts slightly
slower than radiation. This means that unfortunately in
the presence of pure radiation (if other forms of matter
are present, the situation may change), one cannot bounce
back. Although this is a drawback of the proposed mecha-
nism, according to string theory this may not necessarily be
a serious problem. According to string theory at high
enough energy densities, close to the string scale, the
thermal state of the universe is no longer describable by
massless radiation modes. Rather, one enters a stringy
“Hagedorn phase” where even the massive modes are
excited and are in thermal equilibrium [30]. In this phase,
the total matter energy density (now consisting of both
massless and massive modes) actually blue(red)shifts as
a~3, and therefore the presence of condensates can indeed
produce a bounce.

One may also be worried about the problem of
Mixmaster chaotic behavior near the bounce, as the anisot-
ropies are known to grow as a~© as the universe contracts.
Since p,,, blueshifts slower than anisotropies, our bounce
mechanism is indeed susceptible to this problem. However,
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recent work on cyclic cosmologies involving many boun-
ces have been shown to, at least, ameliorate the problem
[31].

Finally, what about the maximal energy density at the
bounce point, what parameters does it depend on? As
remarked earlier, since one can arbitrarily rescale the scale
factor, only a combination of the parameters ng, pg is
physical. In the special case when w = 0 (as one expects
in the Hagedorn phase) for the limiting regime under
consideration, one can check that

256 ppalt) _ 256 pf
277 n3(r) 277 g’

Phbounce —

(4.8)

To summarize, in our picture the universe starts out with
a dilute gas of fermions with an exponentially suppressed
gap (3.15). This would be completely overwhelmed by
finite temperature effects and we will just have a theory
of ordinary noninteracting fermions. However, as the uni-
verse contracts and the number density 7 increases, so does
the gap energy. (Increasing u is equivalent to decreasing
M,, or increasing the coupling of the four-fermion inter-
action. In this sense the volume or the scale factor controls
the strength of the interaction.) Eventually at extreme high
energy densities Cooper pairs are formed (superconducting
phase), and the negative interaction energy starts to cancel
the positive kinetic energy contributions more and more.
Finally when A = €,, we expect these Cooper pairs to
condense more and more in the new ground state and the
interaction energy can completely cancel the matter energy
density leading to the bounce.

V. CONCLUSION

In this paper we have presented a novel physical mecha-
nism which self-consistently resolves the initial big bang
singularity. The crucial ingredient relies on the transient
violation of the null energy condition during the bounce.
The interactions responsible for the negative gap energy at
the bounce are enhanced as the universe contracts to the
singularity. Typically, it is difficult to obtain a bounce
without the introduction of dangerous ghost states, but in
this mechanism the negative energy arises from the binding
energy associated with the bound state of the Cooper pair.
Moreover, the gap only becomes significant at early times
and consistently redshifts away at late times; in other
words, the late time cosmology is protected from the
negative energy contribution that generated the bounce.
In a special region of the parameter space we were explic-
itly able to obtain bouncing solutions in the presence of
matter provided its equation of state parameter was less
than one-third.

While our results are promising, a few developments are
in order. First, we have not included perturbations of the
condensate which is expected to affect the homogeneity
and isotropy both at early and late times; how robust is the
BCS bounce in the presence of inhomogeneities? Second,
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what would be the observational consequences of this
mechanism? How would inhomogeneities responsible for
large scale structure be seeded in this model? Since we
have a bounce, we should be able to employ the techniques
and physical picture in close semblance to the ekpyrotic
scenario. A plausible structure generating scenario might
arise from inhomogeneous excitations of the condensate,

PHYSICAL REVIEW D 80, 023501 (2009)

something we plan to investigate in the future. A promising
route would be to employ the techniques developed in [32]
to propagate perturbations (possibly generated by an ek-
pyrotic scalar field) across the gap-mediated bounce as the
gap only depends on the overall volume of the universe and
is not affected by fluctuations in the metric, a prerequisite
for the success of the mechanism advocated in [32].
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