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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 55, ""UMBER 4 15 AUGUST 19i1 

Limited Expansion Gaussian Lobe Orbitals in Ab Initio Studies of Atoms and Molecules 

ERIK K. GRIMMELMA;';;';* AKD Jom; P. CHESICK 

Department of Chemistry, IIaverford College, IIaverford, Pennsylmnia 19041 

(Received 6 August 1970) 

Results of ab initio calculations for first-row atoms and ions and LCAO-MO calculations for methane, 
fluoromethane, difluoromethane, trifluoromethane, and ethylene are presented for basis sets consisting of 
groups of limited numbers of s-type Gaussians and simple Gaussian lobe p orbital representations. Param­
eters are presented for atoms and ions of elements beryllium through fluorine using a three-Gaussian ls­
core group, an additional Gaussian for the 2s orbital and a two-Gaussian lobe p orbital. When used in 
LCAO-MO calculations this atomic orbital representation appears to provide results for charge distribu­
tions, molecular geometries, valence shell MO energies, calculated HF dissociation energies, and excitation 
energies (for ethylene) comparable to results obtained using minimum STO basis sets. A method for isolating 
the core orbitals from the LCAO variation process is applied and discussed for the molecular calculations. 

I. INTRODUCTION 

Gaussian functions have been frequently employed 
in SCF-LCAO-MO calculations simply in large basis 
sets,! used in groups with more limited parameter 
variation,2 and used as a basis for expansion of STO 
functions to facilitate integral evaluation over a 
"pseudo-STO" basis.3 

It is well known that a minimum STO basis, with 
carefully selected exponents, can yield molecular 
geometries to 1 % or 2%, and can provide at least 
semiquantitative information regarding energy levels 
and charge distributions. This has lead us in this 
work to explore the usc of simplified Gaussian lobe 
pair representations within the framework of the 
minimum basis SCF-LCAO-MO treatments. Preuss4 

and Whitten;; initiated the usc of Gaussian lobe pairs 
to supplant spherical harmonics with radial functions; 
however, the speed of integral evaluation with such 
Gaussian lobe p representations is partly countered 
by the number of such lobe pairs which were employed 
to provide atomic functions of ncar hf quality. Ease 
of integral evaluation using Gaussian functions has 
led to recent efforts to examine the effects of using 
limited numbers of Gaussians in ways which would 
allow cancellation of errors due to poor core functions. 
. -\ previous paper6 has reviewed efforts along these 
lines and reported calculations for two-, three-, and 
four-electron atomic and molecular species. Good 
values were obtained for calculations of ionization 
potentials, dissociation energies, and bond lengths, 
even though imperfect core functions lead to inaccurate 
total system energy values. Frost7 has used single 
spherical Gaussian functions with adjustable center 
locations as bond and inner-shell orbitals for atoms 
and molecules. With complete parameter optimization, 
he is able to come to within 5%-20% of the experi­
mental values for bond lengths and angles although 
energies and energy differences are very poor. 

This paper continues the search for useful ways to 
use relatively small numbers of Gaussian functions in 

atomic and molecular calculations. It was hoped to be 
able to retain the convenience of integral evaluation 
using s-type Gaussian functions without having to 
employ the large representations of Whitten et al. 
It was thought that the lobe representations offered 
unexplored opportunities for use in calculations where 
rough energy differences, molcular geometries, and 
charge distributions are desired. It was a question of 
prime importance to determine conditions for cancella­
tion of energy errors when using poor core functions. 
Sachs, Geller, and Kaufman8 have also noted, when 
using rather high quality SCF functions, that energy 
differences and population analyses converged much 
more rapidly than the total energy as the expansion 
basis set size is increased; this has been observed for 
both large Gaussian and STO basis sets. Whitten9 

earlier considered lobe functions representations of 
varying size for excited states of atomic hydrogen. 
However, these comparisons were not continued to 
systems of more than one electron. The later lobe 
functions published for first-row atoms used 10 
Gaussians for the 1s and 2s orbitals and five-Gaussian 
lobe pairs for each p orbital representation. In this 
work we report results utilizing chiefly two-Gaussian 
lobe pairs for each p orbital in atomic and molecular 
calcula tions . 

II. ATOMIC SYSTEMS 

Previous work on beryllium using uncorrelated 
closed-shell wavefunctions was extended to the other 
first-row four-electron ions through FH, using a 
two-Gaussian 1s core representation with an additional 
Gaussian as a 2s orbital. The difference in calculated 
energies for the two- and four-electron species, e.g., 
for the pair C+2 and CH, was then compared with the 
sum of the experimental ionization potentialslO

,1l 

after correction for the correlation energies12 of the 
ions. This gives a comparison between calculated and 
experimental Hartree-Fock energies. The calculated 
and experimental energy difference for the configura-

1690 
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TABLE r. Effects of representation on energy and energy differences. Energies in atomic units. 

Gaussian lobe representation 

(2, 1, 1) (2, 1,2) (3,1,2)0 STOb Hartree-F ockc 

CH -35.3808 -35.3808 -36.1247 
C+ -36.0529 -36.2140 -36.9827 -37.266 -37.284 
C(3P) -36.2575 -36.5574 -37.3285d -37.6285 -37.6886 
E(C+) _E(C3P) 0.2046 0.3434 0.3458 0.363 0.405 
E(C, 1S) -E(C, 1D) 0.0961 0.0806 0.0860 0.096 0.0818 
E(C, 1D) -E(C, 3P) 0.0666 0.0603 0.0578 0.065 0.0573 
F -96.3868 -98.1305 -98.9545 -99.4093 
E(F)-E(F-) -0.185 

a This work, (3,1. 2) denotes three Gaussian in core group; 1 independent 
Gaussian added for 2s orbital; and two-Gaussian functions per lobe in 
p orbital. 

b Tubis, optimized minimum STO basis, Ref. 14. 
c Hartree-Fock limit, Refs. 12, 13. 
d After completion of all molecular calculations with the (3, 1,2) carbon 

tion change (1s) 2 (2s)2----,; (1s)2+ 2e was found to vary 
from 0.19 to 0.34 eV for the series Be through F+5. 
The energy differences for the two- and four-electron 
systems are computed fairly accurately with this 
small basis set even though the total energy values 
are, to say the least, poor. Since work with the p 
orbital lobe functions suggested that two-Gaussian 
lobe, or four-spherical Gaussians for a complete p 

TABLE II. Energies and energy differences for states of first­
row atoms and ions. Energy is for ground state unless otherwise 
noted. Orbital parameters for (3, 1, 2) basis are in Appendix B. 

Species (3,1,2) basis 

Li -7.37200 
E(Li+) -E(Li) 0.19230 

Be -14.4567 
E(Be+)-E(Be) 0.2888 
B -24.3189 
E(B+)-E(B) 0.2643 
C,3P -37.3166 
E(C, 1D) - E(C, 3P) 0.0610 
E(C, 1S) - E(C, 1D) 0.0890 
E(C+) -E(C, 3P) 0.3501 
N,4S -53.8352 
E(N, 2D) -E(N4S) 0.1112 
E(N, 2P) -E(N, 'D) 0.0722 
E(N+, 3P) -E(N, 4S) 0.4357 
0,3p -73.9376 
E(O, 1D) -E(O, 3P) 0.0849 
E(O, 1S) - E(O, D) 0.1266 
E(O+, 4S) -E(O, 3p) 0.3110 
F -98.1305 
E(F)-E(F-) -0.1585 

a Reference 6. 
b Tubis, optimized minimum STO basis, Ref. 14. 

STOb 

-24.502 

-37.6285 
0.065 
0.096 
0.363 

-54.2765 
0.120 
0.080 
0.448 

-74.5505 
0.0935 
0.140 
0.300 

-98.9545 
-0.252 

-0.159 -0.252 +0.050 

atom representation, it was discovered that further adjustment in the 
individual Is core group exponents reduced the 3p state energy by 0.0120 
a. u. Appropriate carbon atom energy to be used in dissociation energy 
calculations with the (3, I, 2) representation is -37.3166 a.u. The small 
change in the core function is not expected to alter any calculated energy 
differences or conclusions. 

orbital representation, would be required, it seemed 
that the use of three, rather than two, Gaussians in 
the core group would not cause a large relative increase 
in computing time for a molecular system. Appendix 
A summarizes comments on numerical precision 
requirements in integral calculation. 

Table I summarizes some of the work for atomic 
systems examining the effects of core and p orbital 
expansion size on the energy and energy differences 
for representative first-row elements, carbon and 
fluorine. The notation (3, 1, 2) refers to a three­
Gaussian core function, a single-Gaussian 2s function 
which is combined with the core group function for 
an orthogonal 2s function, and a two-Gaussian lobe, or 
two lobe pair 2p orbital representation. For comparison, 
values are given for the ultimate energies obtainable 
with independent particle model wavefunctions, i.e., 
hf energy values.12 ,13 A more realistic set of numbers 
for comparison in all calculations described here are 
the energy values obtained by Tubisl4 for a minimum 
Slater basis with optimized exponents. 

It is seen that the two-Gaussian lobe p functions, 
(2, 1, 2) and (3, 1, 3) give carbon state splittings 
which lie between the optimized minimum basis STO 
values and the HF values. Even the (2, 1, 1) function 
gives acceptable carbon state splittings. The results 
for the (2, 1, 2) and (3, 1, 2) functions show that 
the carbon ionization potential and the electron 
affinity for fluorine depend only slightly on the quality 
of the 1s core function employed, but that the use of 
the simpler p function, (2, 1, 1), leads to an error of 
0.46 a.u. in the sum of the first two carbon ionization 
potentials, or at least 0.2 a.u. error in the ionization 
potential for one electron. We may therefore expect 
to employ at least the (2, 1, 2) representations if 
meaningful energy differences are to be computed 

Downloaded 12 Apr 2013 to 165.82.168.47. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



1692 E. K. GRIMMELMANN AND J. P. CHESICK 

with these functions. The calculated carbon ionization 
potential is within 0.013 a.u. of the STO value for 
the (3, 1, 2) representation. A minimum STO set is 
also insufficient to calculate a stable F- ion; the 
functions used here give values for the electron affinity 
ranging between the STO value of -0.252 a.u. and 
the HF value of 0.050 a.u. We therefore conclude 
that both the (2, 1, 2) and the (3, 1, 2) optimized 
representations for first-row atomic states permit 
calculations of quantities such as ionization potentials 
and multiplet splittings with errors comparable to 
those seen with the use of optimized minimum STO 
orbital sets. 

Table II summarizes results obtained for (3, 1, 2) 
basis sets for the ground states, or lowest multiplets 
in the cases of carbon, nitrogen, and oxygen, as well 
as the lowest state of the singly charged ion for the 
species lithium through fluoride. Parameters have been 
optimized for each state of each species shown. Ap­
pendix B gives the orbital parameters for each of 
these species. Parameters for the hydrogen atom have 
been published elsewhere. 

III. CONSTRAINED LCAO-MO-SCF METHOD 

Taylor15 has presented a simple way of solving the 
Roothaan SCF equations for a closed-shell system 
subject to the constraint that core electrons occupy 
molecular orbitals which are purely linear combinations 
of a subset of the basis set used. His method is sum­
marized here. This core subset is taken to be the set 
of is core atomic orbitals for the elements heavier 
than hydrogen. The core orbitals used have small 
overlap integrals, less than 10-7 for the carbon cores 
used in ethylene and 10-9 for carbon-fluorine cores in 
CH3F, and thus become, in this method, an orthogonal 
set of core molecular orbitals. They may be ortho­
gonalized if the core orbital overlap integrals are not 
sufficiently small. The partitioning of a v term atomic 
orbital basis into m core orbitals and v-m noncore 
basis functions serves to partition the Fock and basis 
overlap matrices into corresponding blocks, or 

(

8n 
8= 

S21 

The Sn overlap matrix for the core orbitals is practic­
ally diagonal for nonhydrogen is core functions. The 
problem is then to find the MO coefficient matrix 
constrained to be of the form 

(

Cn 
C= 

o 
Here the mX m core orbital matrix blockCn is diagonal 
for the m core functions. The C22 block contains the 

coefficients which are to be varied, and the mX (v-m) 
block C12 is fixed by C22 and the orthogonality require­
ment. C22 is obtained as a solution of the (v-m) th 
order secular equation: 

where 

The C22 matrix obtained from this secular equation, 
and the orthogonality requirement C12= -8n-1812Cn 
then determine the (v- m) valence-shell molecular 
orbi tals for the 2 (n - m) electrons moving in the field 
provided by the 2 m core electrons placed in the simple 
core orbital functions. 

The complete molecular orbital coefficient matrix 
obtained as a solution of this (v-m) order variation 
problem then does not diagonalize the original full 
Fock matrix. Although a reduced secular equation 
is solved, the F221 matrix involves all the two-electron 
exchange and Coulomb integrals computed over the 
whole basis set. If all integrals are calculated (as in 
the work reported here), no time is saved in the 
integral evaluation stage of the SCF procedure. How­
ever, the isolation of the core orbitals in the variation 
problem will be seen to permit the utilization of 
poorer core representations, since combinations of 
ligand orbitals cannot effectively "improve" the core 
function, relative to that possible for the free atoms. 
Energy differences (e.g., calculated dissociation en­
ergies) might then be more reliably independent of 
basis size, particularly of the number of s-type 
Gaussians used in a core orbital representation. The 
Taylor method might also prove useful in larger 
calculations using approximations for Coulomb and 
exchange integrals (e.g., the various CNDO methods) 
where the dimensions of the matrix diagonaligation 
problem are more significant in computation time 
than are tht demands of integral evaluation and 
assembly. 

IV. MOLECULAR CALCULATIONS 

Results are presented in Table III for both the 
complete coefficient variation (Roothaan) 16 method 
and the constrained variation (Taylor) 15 method using 
different orbital representations. The notation (2,1,2,2) 
refers to a (2, 1, 2) carbon atomic orbital representation 
combined with a two-Gaussian representation of a 
hydrogen atom is function. The four-exponent scale 
factors are then the adjustable orbital parameters; 
linear coefficients and relative values of the Gaussian 
exponent constants within the orbital groups are left 
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TABLE III. CH4• 

Full variation Constrained variation 
Large Large 

Basis (2, 1,2,2) (3,1,2,2) (2, 1,2,2) (3,1,2,2) Min. STO· GTOb STO· 

Rc-H 2.067 2.067 2.10 2.10 2.059 2.12 2.067 
Cl,d 1.03 1.01 0.997 0.997 
C2• 1.5 1.30 1.20 1.20 
C2P 1.34 1.34 1.34 1.34 

H" 1.24 1.30 1.24 1.24 
E -39.0872 -39.7956 -39.0076 -39.7802 -40.1283 -40.1983 -40.2045 
T 38.9516 39.8292 39.0396 39.7130 
al -10.8205 -11.1326 -10.7323 -11.1298 -11.2049 -11.2216 -11.2148 
a2 -0.9212 -0.9245 -0.9448 -0.9302 -0.9252 -0.9295 -0.9343 

-0.5306 -0.5202 -0.5178 -0.5198 -0.5384 -0.5348 -0.5363 
Calc HF dissoc. energy 0.5894 0.5386 0.5088 0.5232 0.54-
Atomic charge H -0.062 -0.027 -0.013 -0.016 -0.019 

C +0.248 +0.106 +0.052 +0.066 -0.075 

a Reference 19. 
b Reference 2. 
c Reference 18. 

unchanged at the free-atom values. Exponent scale 
factors were varied in addition to variation in the 
bond length. The RCH values presented are estimated 
to be within 2% of optimum values for the basis sets 
employed, and all RcH values given are at least within 
4% of the experimental Rc value. It has been noted 
by Allen and Russel,I7 using functions of improved 
quality, that equilibrium bond lengths and molecular 
geometries are readily calculated from approximate 
HF functions if optimized orbital exponents are used. 

The calculated dissociation energy in the work 
described here is not strongly dependent on the size 
of the hydrogen representation, as seen by comparing 
the results obtained with the (2, 1,2,3) and (2, 1, 2, 2) 
basis sets using the same scale factors, bond length, 
and the Taylor variation method. The calculated 
dissociation energy changes by 0.0018 a.u. on increasing 
the size of the hydrogen Is orbital representation. 
Use of only one Gaussian for the hydrogen orbital 
is not worth the saving in computation time, given 
the size of the p orbital representation. The calculated 
dissociation energies for the (2, 1, 2, 2) and (3, 1, 2, 2) 
basis sets are both much closer together for the Taylor 
method than for the free variation (Roothaan) method, 
and the values slightly under the HF limit obtained 
with the Taylor method are more plausible than the 
values [e.g., 0.589 for (2, 1, 2, 2) basis] calculated 
using the standard Roothaan method. Core isolation 
in the Taylor method makes the calculated dissociation 
energy more meaningful when a very limited (poor) 
core representation is used. Molecular orbital energies 
for all but the lowest core orbital are seen to be close 
(within about 0.02 a.u.) to those obtained in more 

d Exponent scale factors for free atom orbital groups. 
• Calculated using -40.22 as nonrelativistic HF Iimit.'·I8 

complete treatments. The (2, 1, 1, 2) basis set is seen 
to provide rather poorer results. The one-Gaussian 
lobe 2p orbital is inadequate for use in quantitative 
studies involving the energy or orbital energies, as 
was suggested by consideration of calculated ionization 
energy of atomic carbon when using the (2, 1, 1) 
basis set. 

The different basis sets and procedures give es­
sentially the same gross atomic populations, using 
the Mulliken definition, with the constrained (Taylor) 
variation method and with the standard Roothaan 
method. The poorest core representation gives the 
most discrepant charge when used in the full variation 
method, just as the calculated HF dissociation energy 
was too large. Hydrogen is seen to be negative by the 
amount of about O.OISe, whereas the SCF calculation 
by Pitzerl8 shows a slight (0.01ge) positive charge on 
hydrogen. The charge is small in magnitude, and the 
two values are in relatively good agreement. Arrighini 
et al.,19 with the best published SCF energy for CH4, 

do not include a population analysis but conclude 
that the negative end of the CH bond moment lies 
towards the proton. Orbital energies are satisfactorily 
close to those reported for the functions of nearly 
HF quality, except for the 1al value, which is expected 
to deviate for an incomplete core function. 

B. CHaF 

The orbital exponent scale factors for 2s, 2p, and 
hydrogen Is orbitals were varied using the (3, 1, 2) 
basis sets for the carbon and fluorine atoms, the two­
Gaussian expansion for the hydrogen Is orbital, and 
the experimental bond lengths and angles. Variations 
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TABLE IV. CHaF. 

(2, 1,2) atom" (3, 1,2) atom" (3,1,2) atomb 

------------- ------------- ------------~ 

Full Constrained Full Constrained Full Constrained Minimum" Larged 

Basis var. var. var. var. var. var. STO STO 

E -134.971 -134.888 -137.424 -137.407 -137.426 -137.407 -139.061 
T 133.992 135.239 136.553 137.124 136.828 137.414 140.178 
lal ~25.323 -25.211 -26.169 -26.142 -26.172 -26.145 -26.280 
2al -10.886 -10.773 -11.208 -11.174 -11. 207 -11.171 -11. 305 
3al -1.487 -1. 576 -1.503 -1.524 -1.1508 -1.530 -1.600 
4al -0.899 -0.931 -0.907 -0.916 -0.907 -0.916 -0.940 
Ie -0.606 -0.600 -0.604 -0.603 -0.603 -0.602 -0.692 
Sal -0.553 -0.549 -0.553 -0.552 -0.560 -0.558 -0.668 
2e -0.430 -0.428 -0.431 -0.432 -0.433 -0.433 -0.524 
Ce +0.38 +0.37 +0.37 +0.38 +0.38 +0.38 +0.17 
H -0.06 -0.05 -0.05 -0.05 -0.06 -0.06 -0.00 
F -0.21 -0.21 -0.22 -0.22 -0.21 -0.21 -0.16 
flEf 0.582 0.489 0.523 0.505 0.526 0.505 0.474 0.463 
J.L" 1. 41 1.37 1.45 1.44 1. 41 1.40 0.96 2.40 

a RC_H =2.095 a.u .. RC_F =2.628 a.u .. HCF angle = 109.5; C's. C's. C'p. 

HIs Gau~;.;ian exponent scale factors 1.00. 1.35, 1.40, 1.3j all fluorine orbital 
ocale facton 1.00. 

b RC-H = 2.10. RCF = 2.62. HCF angle = 111°. C's and F" exponent ocale 
factors = 1.003. Other orbital exponent :-::cale factors are ~ame as in (a). 

in the two unique bond lengths and the unique bond 
angle (assuming C3r symmetry) indicate that the 
calculated bond lengths are 1 % to 2% larger than the 
experimental values,20 and that the calculated FCH 
angle is likewise about 2% (or 2°) larger than the 
experimental value. Calculations were made by both 
the standard Roothaan method and by the Taylor 
method in which the 1s core orbitals for the heavy 
atoms were isolated from the variation proble~. 
The carbon-fluorine core overlap integral value was 
typically 10-10 for the three-Gaussian core representa­
tions, so the core functions are orthogonal through 
spatial separation as required for simple application 
of the Taylor method. Core representations with only 
two-Gaussian terms give smaller overlap integrals. 
Both Roothaan and Taylor methods gave the same 
bonding orbital exponent scale factors to within the 
precision of the optimization process. Small adjust­
ments in the core exponents changed the kinetic to 
poterial energy ratio without significant (less than 
0.001 a.u.) changes in total energy or bonding orbital 
energies in studies with CH,. This was also found in 
calculations for CHF3. 

Table IV shows the effect of changing the core basis 
size for both the Roothaan and Taylor methods, using 
the experimental molecular structure parameters and 
the same set of atomic orbital exponent scale factors 
for both basis sets. All calculated dissociation energies 
are computed using the best atom energies for com­
parable basis sets. The computed dipole moments are 

c Reference 3. 
d Reference 21. 
e Atomic populations. 
f Calculated HF dissociation energy. 
• Dipole moment (debyes). 

relatively independent of basis set or method of 
calculation. The calculated dissociation energies for 
the Taylor method changes by only 0.016 a.u., when 
changing from the (2, 1, 2) to (3, 1, 2) heavy atom 
representations, although the improvement in the 
core function changes the total system energy by 2.5 
a.u., as seen in Columns 2 and 4. The Roothaan full 
variation method shows an appreciably larger change, 
0.06 a.u. (Columns 1 and 3), in the calculated dis­
sociation energy. This reinforces the view that meaning­
ful t.nergy differences can be computed using in­
complete core representations if the core orbital 
functions are isolated in the molecule. It is also seen 
that the upper occupied valence-shell orbital energies 
and gross atomic populations are insensitive both 
to the core representations used and to the variation 
method employed. The best all-electron SCF-MO 
calculation reported to data for CH3F is that of 
Arrighini et al.21 ; the!y used a basis of 47 STO's and a 
geometry close to the experimental one. Some of their 
results are also included in Table IV. Difficulties in 
ab initio calculation of reliable dipole moments are 
well known, and little should be said except to note 
that all values listed in Table IV are "reasonably" 
close to the experimental value of 1.847 D.22 Correct 
Hartree-Fock atomic energies were used in calculating 
the HF dissociation energy from the molecular energy 
obtained by Arrighini. Their estimate of the correlation 
energy of CH3F seems to provide the best current by 
available route to a value for the nonrelativistic 
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HF energy of CH3F. The value they obtained, -139.1~9 
a.u., is used with atomic nonrelativistic HF energies 
to obtain the "experimental" HF dissociation energy 
of 0.551 a.u. for comparison with the calculated values 
in Table IV. Only the value computed using the two 
Gaussian core functions with the full variation 
(Roothaan) method gives a poor result. The computed 
dissociation energy and dipole moment are as good 
or better than the values obtained by Hehre et a13 
using a minimum STO basis expanded into Gaussian 
functions. The fluorine atom charge, -0.21 e, agrees 
well with the value of -0.19 obtained by Hush and 
SegaJ23 using the CNDO/2 method and with the value 
of -0.16 obtained by Hehre, Stewart, and Pople 
using an optimized minimum STO basis. The atomic 
charge values, defined for each atom as the difference 
between the Mulliken gross atomic population and 
the nuclear charge, obtained using unsealed, free 
atom orbitals, differ significantly from the values 
obtained using scaled or optimized atomic orbital 
representations in these minimum basis calculations. 
However, these values seemed to be insensitive to 
moderate changes in the orbital exponent scale factors; 
parameter optimization was not highly critical in 
determining the gross atomic populations. 

C. CH2F 2 and CHF 3 

Calculations were performed for the molecules 
CH2F2 and CHF3 using the (3, 1, 2) basis sets for 
C and F atoms, and the two-Gaussian 1s function for 
hydrogen. The valence atomic orbitals of the functions 
were scaled using the same scale factors obtained in 
the more detailed CH3F work. Experimental values 
were taken for the unique molecular coordinates.2o 

and C2 v and C3, symmetries were assumed for the 
two molecules. Both the complete Roothaan variation 
was carried out as well as the restricted (Taylor) 
variation in which the 1s atomic orbitals on carbon 
and fluorine were used unchanged as the lowest energy 
molecular orbitals, with the upper occupied molecular 
orbitals being determined by solution of the reduced 
secular equation as described previously. The carbon­
fluorine and fluorine-fluorine core orbital overlap 
integrals were 10-10 , and 10-40, respectively, although 
the hydrogen 1s-fluorine core overlap integrals were 
about 10-3. This suggests that variable precision or 
variable assumption routines should be employed in 
ab initio calculations such as these to extend the 
molecular size for practical calculations with polyatomic 
systems. The magnitude of the overlap integral could 
be used to provide a criterion for the neglect of certain 
exchange integrals or for simplifications to be used 
in evaluating Columb integrals for widely spaced 
centers. Such a GNDO (gradual neglect of differential 
overlap) scheme might lead to an amalgamation, for 
large systems, of the more useful aspects of the INDO 

TABLE V. CH,F, and CHF3." 

CH2F2b CHF3c 

Full Constrained Full Constrained 
var. var. var. var. 

E -235.077 -235.054 -332.742 -332.715 
T 233.462 234.145 330.276 331.093 
Cd +0.51 +0.51 +0.68 +0.68 
H -0.04 -0.04 -0.04 -0.04 

F -0.21 -0.21 +0.21 +0.22 
t.Ee 0.507 0.485 0.540 0.513 

f -1. 581 -1. 601 -1.663 -1.683 
-1.517 -1.538 -1.561" -1.582 
-0.905 -0.914 -0.898 -0.906 
-0.685 -0.684 -0.743 -0.742 
-0.656 -0.655 -0.695- -0.695 
-0.618 -0.617 -0.556- -0.555 
-0.518 -0.517 -0.520 -0.520 
-0.486 -0.485 -0.513" -0.512 
-0.481 -0.480 -0.463 -0.462 
-0.429 

a (3, I, 2) representations used for carbon and fluorine. two-term hy­
drogen orbital. All fluorine atom Gaussian exponent scale factors at 1.0; 
carbon 15. Zs, and 2P orbital exponent scale factors at 1.0, 1.34, 1.40; and 
hydrogen Is scale factor at 1.30. 

b RCH =2.065 a.u., RC-F =2 .. 17 a.u., HCH angle =109.5°, FCF angle = 
108.5°. 

c RCH =2.075 a.uo, RC_F =2.517 a.llo, HCF angle = 110.0°. 
d Atomic populations. 
e Calculated HF association energy. 
f Orbital energies, starting with first levels above core functions. 
g Doubly degenerate. 

and CNDO schemes and the complete calculations. 
Table V gives orbital and total energies, total atomic 
populations, and computed binding energies for the 
two molecules, using exponent scale factors suggested 
bv the CH3F calculations. It is seen that the fluorine 
a~d hydrogen atomic populations are virtually the 
same for CH3F, CH2F2, and CHF3. Hydrogen becomes 
slightly less negative in the series of molecules. Carbon 
becomes significantly more positive with fluorine 
substitution, supplying most of the charge taken by 
the fluorines. The agreement of the calculated CHaF 
atomic populations with the calculations of Hehre, 
Steward, and Pople adds some credence to the popula­
tions computated here for CH2F2 and CHF3. Arrighini 
et at. unfortunately did not report a population analysis. 
The increase in positive charge on carbon with fluorina­
tion corresponds to an increase in ionic character of 
bonding and in this context is consistent with the 
shortening of the CF bond observed experimentally 
as one goes from CH3F to CF4• The constancy of the 
charge on fluorine in the series suggests that carbon 
in CF4 may well have a charge of +0.75-0.85. The 
large CF bond strength in CF4 is also qualitatively 
more interpretable in terms of the large positive charge 
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TABLE VI. C2H,. 

This work (3, 1,2,2) basis· 
full constrainedb Minimum Large 
var. 

E(lAg) -77.2272 
T -77 .0366 
lao -11.1371 
1b3u -11.1369 
2ao -1.0020 

2b3" -0.7607 
Ib,u -0.6096 
3ao -0.5254 
Ib lo -0.4722 
Ib1u -0.3294 
Ib,o +0.2865 
E-E(lAo) for: 
3B(3u) (T)e 0.1273 
IB,. (V) e 0.4468 
3B30 (cr--->7r*) 0.3838 
IB3• (cr--->7r*) 0.4067 
Calculated HF 0.6536 
Binding energy 

a RC-C =2.022 a.u .• RCH =2.551 a.u .. HCH angle =120°. Gaussian ex­
ponent scale factors for carbon Is I 2s I 2P. and hydrogen Is orbital groups 
are 1.002. 1.30. 1.20. and 1.36 starting with free atom exponents. 

b Taylor method with carbon Is core orbitals as lowest two MO. 
c Reference 27. using same geometry as this work, minimum Slater basis 

on carbon and large ionic character in the carbon­
fluorine bond. Dipole moments of 1.61 and 1.32 D 
were calculated for CH2F2 and CHF3, in satisfactory 
agreement with the reported experimental values of 
1.9624 and 1.646 D.25. 

D. C2H 4 

Calculations were performed for ethylene using the 
(3, 1, 2, 2) basis set, i.e., the (3, 1, 2) atomic carbon 
representation with the two-Gaussian hydrogen orbital 
representation. The near equilibrium geometry of 
Rcc=2.022 a.u., RCH-2.551 au, HCH angle= 1200 

was used to facilitate comparisons with previous 
calculations using the same geometry. After varying 
the free carbon atom 2s exponent scale factor, optimum 
values were found in succession for the carbon 2p and 
the hydrogen 1s orbital scale factors. A final small 
adjustment of the carbon 1s core function scale factor 
improved the kinetic/potential energy ratio for the 
Roothaan calculation without significant changes in 
the total or noncore orbital energy values. Final 
results for the best exponent scale factor set are shown 
in Table VI. The calculation was also carried out using 
the Taylor constrained variation method holding the 
two-carbon 1s core orbitals as the lowest two orthogonal 
molecular orbitals in the ethylene molecule. Coulomb 
and exchange integrals were computed between the 
two highest occupied and the two lowest virtual 

var. STOc basisd 

-77.2001 -77.8355 -78.0062 
-77.8911 
-11.1034 -11. 2794 -11.2395 
-11.1034 -11.2787 -11.2379 
-1.0131 -1.0130 -1.0397 
-0.7667 -0.7815 -0.7959 
-0.6080 -0.6431 -0.6549 
-0.5231 -0.5605 -0.5812 
-0.4710 -0.5054 -0.5145 
-0.3270 -0.3691 -0.3736 
+0.2895 +0.2452 +0.1436 

0.1279 0.1268 0.1540 
0.4474 0.4447 0.3419 
0.3858 0.3688 0.3408 
0.4086 0.3928 0.3599 
0.6265 0.5785 >0.6290 

using Slater rule exponents. 
d Reference 29; SCF calculation using a large (sP) Gaussian basis. 
e Energies are computed relative to the ground state u~ing the ground 

::-tate geometry and virtual orbitals. 

molecular orbitals, and vertical excitation energies 
were calculated for the transitions from the ground 
state to singlet and triplet states resulting from both 
(f and 7r orbital excitations. The excitation energies 
for single-electron excitations from either the 1b1u 

or the 1b lo molecular orbital to the 7r* (1b2J ) molecular 
orbital are also given in Table VI. 

References and summaries of a variety of experi­
mental and theoretical work on the states of ethylene 
are found in the recent review by Merer and Mulliken,26 
and in recent calculations presented by Kaldor and 
Shavitt,27 Switkes, Stevens, and Lipscomb,28 and by 
Schulman, Moskowitz, and Hollister.29 Some of the 
results of Schulman et al. are given in Table VI as 
providing the best single-determinant ground state 
calculation to data. Their publication provides one 
of the few published sources for excitation energies 
obtained from the ground state wavefunction. Some 
results of the calculation of Kaldor and Shavitt using 
a minimum Slater basis set with selected exponent 
values are also included for comparison in Table VI. 
Their work includes the calculations of Palke and 
Lipscomb30 as a special case in the more extensive 
set of calculations. Switkes, Stevens, and Lipscomb 
fully optimized the exponents of a minimum Slater 
basis set and obtained an energy of -77.8558 a.u., 
calculated HF dissociation energy 0.599 a.u., with 
net charges on carbon and hydrogen of -0.16 and 
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+0.08. The net charges on carbon and hydrogen in 
our work were found to be -0.04 and +0.02, in 
reasonable agreement with Switkes et al. They did 
not report any values for orbital or excitation energies 
for comparison with the values obtained with selected 
Slater exponents. Optimization of orbital exponents 
improved the total energy by only 0.02 a.u. over the 
value obtained by Kaldor and Shavitt, Column 3 of 
Table VI, so we presume that orbital energies and 
transition energies for fully optimized exponents using 
a minimum Slater basis would be similar to the values 
reported by Kaldor and Shavitt. It is seen that the 
limited lobe Gaussian basis used in our work provides 
excitation energies and calculated HF dissociation 
energy which are close to the values for the minimum 
STO basis; the calculated HF dissociation energy for 
the full Roothaan variation shown in Column 1 of 
Table VI is too large as explained in connection with 
the methane and fluoromethane calculations. The 
Taylor constrained variation method, holding the 
carbon core orbitals and pure molecular orbitals, with­
out core improvement through use of other basis orbital 
combinations, probably provides a better calculation 
when the limited core representation is used. Neither 
this work nor the work with the limited STO basis 
produces the same ordering of excitation energies for 
the transition to IB3" and IB3u states as is obtained by 
Schulman et al. using a greatly expanded basis set. 

ACKNOWLEDGMENTS 

The support of the Haverford College Faculty 
Research fund and computer time provided by the 
Bryn Mawr-Haverford-Swarthmore Joint Computer 
Center are gratefully acknowledged. 

APPENDIX A: INTEGRAL PRECISION 

Use of Gaussian lobe functions as P orbital repre­
sentations introduces two types of errors: The first 
is the failure of the lobe functions with limited numbers 
of terms to reproduce the spherical harmonic functions. 
Neon, for example, will have a spherically symmetrical 
charge distribution when using spherical harmonics 
and the usual STO's, whereas the charge distribution 
will be slightly "lumpy" when using the limited lobe 
functions. 31 The significance of these effects in molecular 
calculations, with the simple lobe representations used 
here, is to be evaluated in terms of the quality of 
results for molecular properties. For spherical harmonic 
atomic p functions, the following identity is valid: 

(PXPy I PXpy) = [(PxPx I pxPx) - (PxPx I Pup,,) J/2. 

Using the two-Gaussian lobe carbon P function, for 
example, we find the values of the left and right sides 
of the above expression differ by only 0.000186 a.u. 
Whitten and Allen32 also comment on the precision 
requirements for integral calculations using lobe 
functions; care must be taken in intermediate stages 

since the lobe function integrals are really obtained 
as differences of integrals using the spherical-type 
Gaussians with slightly different centers. 

While most of the atomic and early CH4 calculations 
were performed on an IBM System 360/65, the re­
maining calculations were performed on an IBM 
S360/44 which provided variable precision arithmetic. 
For most of the CH4 calculations, full double precision 
(56 binary digit representation of mantissa, of IOg16, 
approximately 10 decimal digits) was used. The 
energy calculated for methane using single precision 
(24 binary digit representation of mantissa of IOg16, 
approximately 8 decimal digits) differed from the 
energy calculated using full double precision by less 
than 0.0001 a.u. The calculated energy for CH3F 
using 36 bit arithmetic was also found to be within 
0.0001 a.u. of the value obtained using full double 
precision. 

The carbon and fluorine atomic energy values were 
found to be relatively insensitive to the spacing between 
the centers of the s-type Gaussians which comprise a 
P lobe pair. This value was fixed at 0.20 a.u. for the 
two-Gaussian lobe pairs in the (2, 1, 2) and (3, 1, 2) 
basis sets. Variation in this parameter for each of the 
two-lobe pairs used was thought not worth while, 
and reduction in the lobe spacing below the value 
given leads to increasing imprecision in integral 
calcula tions. 

Electron-nuclear attraction and electron-electron 
repulsion integrals using s-type Gaussian functions 
require evaluation of the factor33 ,34 : 

FO(Z2) = Z-I 1" e-v2dv= 71'1/2 erf(z) / (2z). 
o 

Some care should be used in using standard computer 
library routines for the calculation of erf (z) to avoid 
loss of accuracy in erf (z) / z for certain values of z. 
We have slightly modified the procedure of Larcher,35 
used previously,6 by taking 

71'1/2 erf(z)/(2z) =7I'1/2/(2z); 

IBM S360 Fortran IV library erf(z) 
routine; 

00 

z>4.3, 

4.3>z>0.7, 

71'1/2 erf(z) j (2z) = L (-1) nz2n/[n! (2n+ 1) J; 

0.7>z> 10-4 

(sum is continued until term value is 10-8
), 

71'1/2 erf(z)j(2z) = 1.0; 

, 

This insures values of FO(Z2) accurate to seven digits 
in single precision and to nine or more digits when 
using double precision arithmetic. Tighter precision 
limits seemed unnecessary on comparing results for 
individual integrals and for complete calculations. 
Similar methods have been used independently by 
Schaad.36 
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APPENDIX B: ORBITAL PARAMETERS FOR (3,1,2) ATOMIC REPRESENTATIONS 

The following table provides the exponents and linear coefficients for each of the Gaussian functions in the normalized 1s, 2s, and (for more than four 
electrons) the unique pair of Gaussians in the 2p orbital groups for first-row atoms and ions for the (3, 1, 2) representations. The spacing between the 
centers of the lobe pairs is 0.2 a.u. for all of the 2p orbitals. Hydrogen atom parameters have been published elsewhere.37 All energies are in atomic units. 

Li E=-7.3720 

0.10191231E 01 
0.50308475E 01 
0.33950943 E 02 
O. 43925200E- 01 

0.47340614E 00 
0.9756161OE 00 
0.76447266E 00 

0.68382502E-01 

B E=-24.3189 

0.32148190E 01 
0.14651364E 02 
0.97183777 E 02 
0.18128240E 00 

0.93314898E 00 
0.16966462E 00 

0.10995684E 01 
0.21957941E 01 
0.16989937 E 01 
0.19800532E 00 
0.11633511E 01 
0.185057161': 01 

c, ID E= -37.2707 

0.47512169E 01 
0.21364380E 02 
0.14129504E 03 
0.28614342E 00 

0.15225906E 01 
0.26480788E 00 

0.14659643E 01 
0.29287443E 01 
0.22525816E 01 
0.27883542E 00 
0.13671436E 01 
0.20587149E 01 

N 4S E= -53.8352 

0.67462177E 01 
0.30894424E 02 
0.20575064E 03 
0.40750223E 00 
0.23628540E 01 
0.41697305E 00 

0.19521132E 01 
0.37553959E 01 
0.27810631E 01 
O. 36350262 E 00 
0.15318670E 01 
0.23026991E 01 

Be 

0.19510822E 01 
0.91328354E 01 
0.61372192E 02 
0.98863482E-01 

E= -14.4567 

0.75741661E 00 
0.15472097 E 01 
0.12044792E 01 

0.12565708E 00 

B+ E= -24.0546 

0.32417021E 01 

0.14826364E 02 
0.99217316E 02 
0.21514511E 00 

0.11124306E 01 
0.22032089E 01 
0.16866198E 01 
0.22514313E 00 

c IS E= -37.1857 

0.47772608E 01 
0.21699951E 02 

0.14460762E 03 
0.28972566E 00 

0.14389420E 01 
0.23973936E 00 

0.14826460E 01 
0.29435720E 01 
0.22354345E 01 

0.28144938E 00 
0.13841200E 01 
0.20028572E 01 

N 2D E= -53. 7240 

0.67769203E 01 

0.31059158E 02 
0.20740379E 03 
0.41089636E 00 
0.23007555E 01 
0.39719814E 00 

0.19643641E 01 
0.3755661OE 01 
0.27745209E 01 

0.36577106E 00 
0.15415354E 01 
0.22721386E 01 

Be+ 

0.19487934E 01 
0.91221228E 01 
0.61300201E 02 

O. 13080984E 00 

C,3P 

0.47338161E 01 
0.20819046E 02 
0.13527962E 03 
0.28394508E 00 
0.15731277 E 01 
0.28117353E 00 

E= -14.1680 

0.75675017E 00 

0.15458488E 01 
0.12034197 E 01 
0.15502095E 00 

E= -37.3285 

0.14462013E 01 
0.28917131E 01 
0.22813101E 01 
0.27722722E 00 
0.13591061E 01 
0.20913801 E 01 

('+ E= -36.9827 

0.47626553E 01 
0.21296417E 02 
0.14117766E 03 
0.32357055E 00 
0.19421329E 01 
0.37684488E 00 

0.14663734E 01 
0.29249220E 01 
0.22534275E 01 
0.30576432E 00 
0.13907328E 01 
0.22474270£ 01 

N 2p E=-53.6519 

0.67759752E 01 
0.31015366E 02 

O. 20740971 E 03 
0.41305971E 00 
0.22608156E 01 
0.38449639 E 00 

0.19625692E 01 

0.37556887 E 01 
0.27771954E 01 
0.36721438E 00 
0.15484514E 01 
0.22518368E 01 
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N+ 3p E=-53.3995 0 3p E= -73.9376 0 ID E= -73.8528 

0.67891865E 01 0.19659805E 01 0.88502159E 01 0.23683062E 01 0.88954258E 01 0.23876209E 01 

0.31016312E 02 0.37523670E 01 0.40092209E 02 0.46288576E 01 0.40384674E 02 0.46250858E 01 

0.20731412E 03 0.27732267 E 01 0.26754932E 03 0.34368925E 01 0.26861670E 03 0.34232216E 01 

0.45344245E 00 0.39382356E 00 0.55651075E 00 0.45921415E 00 0.55879700E 00 0.46062833 E 00 r .... 
0.27923031E 01 0.15560408E 01 0.32189264E 01 0.17025785E 01 0.31840448E 01 0.17073059E 01 ~ .... 
0.52841538E 00 0.24420366E 01 0.54960883E 00 0.24604330E 01 0.53850204E 00 0.24465828E 01 ~ 

M 

0 IS E= -73. 7261 0+ 4S E= -73.6267 F E= -98.1305 
t:I 

M 
O.88984413E 01 0.23879843E 01 0.89039879E 01 0.23879061E 01 0.11191292E 02 0.27867489E 01 ~ 

0.40383835 E 02 0.46255713E 01 0.40330887 E 02 0.46241713E 01 0.49943817 E 02 0.55420732E 01 "0 
~ 

0.26873071E 03 0.34235687E 01 0.26932520E 03 0.34225283E 01 0.33131250E 03 0.41587858E 01 Z 

0.56197101E 00 0.46258920E 00 0.60357368E 00 0.48804271E 00 0.72610593E 00 O. 56060904 E 00 
Ul .... 

0.31325722E 01 0.17147255E 01 0.37949409E 01 0.17109842E 01 o .42470932E 01 0.18582163E 01 0 
Z 

0.52221906E 00 0.24257870E 01 0.70481533E 00 0.26215401E 01 0.71248019E 00 0.26216221E 01 
C'l 
~ 

F- E= -97.9720 c::: 
Ul 

0.11466538E 02 0.29032316E 01 Ul .... 
0.52071838E 02 0.55568810E 01 ~ 

O. 34696582 E 03 0.40750551E 01 
Z 

0.68912792E 00 0.53905737 E 00 
r 
0 

0.56574249E 00 0.24693813E 01 I:d 
M 

0.36510134E 01 0.18542471E 01 
0 
~ 
I:d .... 
~ 
~ 
r 
Ul 
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Dimerization of Methylenes by Their Least Motion, Coplanar Approach: 
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The one-dimensional path of reaction in the least motion, coplanar approach of two methylenes to form 
ethylene has been calculated using the nonempirical multiconfiguration self-consistent field (SCF) method 
in a large Gaussian basis. Orthogonality between open- and closed-shell molecular orbitals of the same 
symmetry is constrained by a "partitioned basis set" technique which is found to give rapid and uniform 
convergence to the proper SCF solution. The results obtained for the reaction path suggest that the ground 
state of bent (~1200) methylene is the triplet. Therefore, in this study, it is the triplet states (and not 
closed-shell singlet states) of two appropriately oriented bent methylenes that correlate with the normal 
(ground) state of ethylene. For two closed-shell singlet-state methylenes the reaction path is found to be 
purely repUlsive. 

The orbital correlation diagram for the least motion, 
coplanar (LM C) approach of two methylenes (CH2), 

in their lowest energy singlet electronic states, to form 
normal ethylene exhibits a level crossing, i.e., a doubly 
occupied level (orbital) on one side of the diagram 
connects with an empty orbital on the other side, and 
vice versa. By the orbital conservation rule of Woodward 
and Hoffmann1,2 a level crossing in the orbital correla­
tion diagram, for a given reaction path in a concerted 
reaction, is sufficient evidence that the particular ap­
proach geometry under consideration is forbidden; 
there should then exist an alternate route to the re­
action products along which path the reaction actually 

proceeds. Hoffmann et al.3 have actually carried out 
orbital correlation and numerical analyses of the titled 
reaction and arrive at the above-stated conclusions. 

The justification, or basis, for the orbital conserva­
tion rule in non empirical electronic structure theory, 
as specifically applied to the dimerization reaction, is as 
follows. A level crossing in the orbital correlation dia­
gram should lead to an avoided crossing in the state level 
diagram at intermediate carbon-carbon bond dis­
tances, as the direct result of an attempted crossing 
of two electronic states of the same symmetry species. 
The avoided crossing, in turn, is expected to give rise 
to a hump in the lower energy branch of the potential 
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