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ABSTRACT

Realistic models of the Earth and Sun are used to calculate their respective responses to a homogeneous,
isotropic background of gravitational radiation. Solar velocity data constrain the energy density of such a
background at a frequency of 4 x 10™* Hz to be less than 102 times the closure density of the universe, as
does Earth seismic data at frequencies of 2 x 1072 Hz and 2 x 10~2 Hz. With improved data soon to be
available it is likely that both of these limits will be lowered to below closure density. Errors in previous

analyses of the Earth are pointed out.

Subject headings: cosmology — Earth: general — gravitation — relativity — Sun: general

I. INTRODUCTION

Previous analyses of the coupling of gravitational waves to
the normal modes of the Earth have led to upper limits on a
stochastic gravitational wave background (Forward et al.
1961; Weber 1967; Burke 1973; Zimmerman and Hellings
1980). The use of highly simplified models in addition to
improper treatment of the coupling to high-frequency modes
leads one to suspect these limits. In this paper we calculate the
background level of gravitational radiation consistent with the
most complete model of the Earth and seismic data that are
available in the literature.

A similar calculation for the Sun is performed using a realis-
tic solar model to determine vibrational eigenmodes. The long
damping times predicted for low-frequency p- and g-modes
make them especially interesting for detecting a stochastic
background. The solar velocity data available for these modes
are used to determine limits on the gravitational wave back-
ground which are comparable to those determined from Earth
seismic data.

II. COUPLING OF GRAVITATIONAL WAVES TO A SPHERICALLY
SYMMETRIC BODY

If the wavelength of a gravitational wave is large compared
to the dimensions of a physical body (which is the case for
systems discussed in this paper), the gravitational acceleration
of an element of mass is given by the equation of geodesic
deviation (Misner, Thorne, and Wheeler 1973) d*X ;/dt* =
— Y« Rjoro Xi, where X; are the coordinates of the element
relative to the center of mass and Ry, is the Riemann curva-
ture tensor evaluated at the center of mass. For a plane wave of
angular frequency w and propagating in the j direction it is
straightforward to show that the effective force density, when
expressed in spherical coordinates, has the form

p (r)wz iwt

f(r,9,¢,t)=—4—e

2 1/2 4 1/2
X V[[ﬂ{[(%) (Yoo + Y,-5) — (?Tc) Yzo:'h+
8 1/2
+ (1_751> (Yo, — Y21)hx}:|l , @)

where the Y,,, are normalized spherical harmonics, p(r) is the
mass density of the body, and h, and h, are the dimensionless
amplitudes of the two polarizations of the wave (Misner,
Thorne, and Wheeler 1973). This force density may be
expressed as a linear combination of vector spherical harmo-
nics (Edmonds 1960)

2

f= Y an)Yzme, @

m=-2

where, for example, ay(r) = —(n/2)2w?h,, rp(r).

The eigenfunctions of the oscillations of Earth and Sun may
also be expressed in terms of combinations of vector spherical
harmonics. In particular, consider eigenfunctions of the form

cnlm(r’ 03 d)) = Unlm(r) }’lmf + I/nlm(r)V),lm ’ (3a)
or

gnlm(r! 9’ d)) = anlm(r)YlH-lm + bnlm(r)Yll— im (3b)

Toroidal modes are not described by (3a), but these modes do
not possess time-dependent quadrupole moments and there-
fore do not couple to gravitational waves.

In the presence of a gravitational wave, the displacement
amplitude of the body can be expressed as

g(n 0, d)’ t) = Izcnlm(t)énlm(r’ o, ¢) . (4)

Substituting (4) into the equation of motion with a force
density given by (1) will yield equations of the form
dzcnlm_l_idcnlm
> T, dt

+ wnlmz Cnlm = f;llm eiwt ’ (5)
nlm
for small, lightly damped oscillations. The quantities &, Tuim»
and ®,,, are calculated from knowledge of the mechanical
properties of the Earth (or Sun) and

f;nlm = J‘dsrgnlm * f/ strcnlm : §nlmp(r) s (6)

are the projections of the gravitational wave force on the eigen-
modes. The orthogonality of vector spherical harmonics and
equations (2) and (3b) show explicitly that only modes with
I = 2 couple to gravitational waves.
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We assume spherically symmetric models for Earth and sun.
Since these systems are invariant under a rotation about any
axis the constants t,,,, and w,;,,2 of equation (5) and the coeffi-
cients U,,,, and V,,,, of equation (3a) must be independent of m.

For an unpolarized isotropic background, the mean square
dimensionless gravitational wave amplitudes for waves propa-
gating in a frequency interval dw and a solid angle dQ are

<hy?y = <hi?y = h()dodQ , ™

where h?(w) is the intensity of h and is related to the spectral
energy density Sy(w) of the waves by (Misner, Thorne, and
Wheeler 1973)

2
Sk0) = 55 @) ®)
where c is the velocity of light and G the gravitational constant.
The mean square mode coefficient of the n, m normal mode

due to waves propagating in the y-direction is, from equations
(2),(3),(5),(6), and (7):

* Juz (@)dw
2\ n
<Cn2m > - J‘_OO (wnzz _ (,02)2 + 4602/1'"22

_ Sn22am2wn22h2(wn2)1n2 dQ (9)

- 16 ’
where o, = —@n/5)'?, a, = —(8n/15)Y?, a, = —(2n/15)?,
and a,, =(—1)"a_,; and S,, depends only on integrals of
U,,(r), V,,(r), and p(r). Because of spherical symmetry, the
response of the system to waves propagating in other direc-
tions is obtained by applying rotations to the above solution.
Integrating over all directions gives a mean square coefficient
due to an isotropic background of

1673
75

which is independent of m as required by spherical symmetry
and isotropy.

In order to compare with observations, {C,,,>> must be
expressed in terms of the power spectral density of the
observed displacement, velocity, or acceleration of the surface
of the Earth or Sun.

<Cn2m2> =

Sn22wn22h2(wn2)rn2 > (10)

III. LIMITS IMPLIED BY SOLAR OBSERVATIONS

Speculation that an observed solar normal mode is excited
by nearly monochromatic gravitational waves (Walgate 1983)
is unwarranted (Kuhn and Boughn 1984). However, interesting
limits on the background flux can be obtained from observed
upper limits to certain mode amplitudes. While observational
data on solar normal-mode amplitudes are much worse than
their terrestrial counterparts, the large mass of the Sun and
expected large mechanical Q’s (> 10° for some modes) make
the Sun an interesting detector of a stochastic background of
gravitational waves.

To infer the flux with any certainty, of course, requires a
good model of the solar interior. It is beyond the scope of this
paper to critique the relative merits of different solar models.
Bahcall et al. (1982) discuss the uncertainty in most of the
model parameters in the context of the solar neutrino problem.
The model used in this paper is similar to their “ standard solar
models” (e.g., a central density of 147 g cm ~ 3, mixing length to
scale height ratio I/H = 1.5, Z = 0.02, and Y = 0.24). Using
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this model, we find solar p-mode eigenfrequencies that agree
with observed frequencies in the S-minute band to a few parts
in 1000.

In the simplest form the adiabatic eigenmodes are found by
solving for the Lagrangian displacement field, £*, from

o’ o S 6, 0,0
2t Z(¢ )_—p(r)

where .# is a Hermitian differential operator (Cox 1980), with
eigenmodes &,,,* such that

g(énlm*) = Cl)nlzénlm* . (12)

To a high degree of approximation the nonadiabatic eigen-
modes described below also satisfy equation (12). Thus we take
& = &1, to obtain modal equations of the form (5) and 1,
to be the reciprocal imaginary part of the complex eigenvalue
found from the nonadiabatic analysis.

We use a Henyey type oscillation code (the Sacramento
Peak Observatory pulsation code) similar to that used by Saio
and Cox (1980). Nonadiabatic eigenfunctions and complex
eigenvalues are obtained from the linearized equations
described above.

It is unlikely that errors in the calculated eigenmodes or
eigenfrequencies will be large enough to affect our conclusions.
The damping times are more uncertain, and, for the high-
frequency p-modes, are at best only estimates. The low-order
mode damping times should be much less affected by problems
with the treatment of radiative transfer near the photosphere,
since the mode energy there is much smaller than it is below
the convection zone, where the diffusion approximation works
well (cf. Cox 1980).

Modes with periods near 5 minutes are observed in the solar
spectrum (cf. Duvall and Harvey 1983) and are apparently
overstable. The excitation mechanism is not well understood,
although it is likely that a clear understanding of convection
and radiative transfer (cf. Goldreich and Keely 1977;
Christensen-Dalsgaard and Frandsen 1983) near the photo-
sphere will elucidate the problem. Lacking such a model, we
cannot attribute the excitation of modes in this frequency
range to gravitational waves.

Table 1 lists a representative set of mode frequencies,
damping times, and overlap coefficients, S,,. These coefficients
are the same factors that enter equation (10) and are calculated
from

, (11)

_ 1 pr*U,,@dr + 3 { p()rV,,(r)dr
" [ LU (01%dr + 6 [ p(r)r[V,a(r)]r”

Possibly the best observational limits on mode amplitudes
are contained in the Birmingham group’s data (cf. Isaak 1981).
They observe line-of-sight velocity integrated over the full disk
of the Sun. The observed velocity is approximately the
intensity-weighted line-of-sight component of the modal veloc-
ity. Christensen-Dalsgaard and Gough (1982) have calculated
these modal response functions for several modes. Adopting
the ratio of transverse to vertical velocities of the | = 2 g-mode
near a period of 160 minutes, we obtain an expression for the
mean squared observed velocity:

0*) = {Cpom D02’ Ro*K? (14)

where K? = 0.4 is approximately true for the low-order [ = 2
modes. The additional factor of the solar radius squarred R?

(13)
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TABLE 1
SoLAR MODES

,[1073s71] Period [min] 7,[s] S, Flux [ergs™! cm~2 Hz™ ']
g modes:

0.665 ............ 157 1.5 x 10!2 0.017 1.1 x 10*®

1.18 ... 88 5.3 x 10*2 043 1.4 x 10!

136 ...l 77 8.3 x 103 0.87 1.7 x 10°
p modes:

240 ... 44 4.7 x 10'? —6.2 1.8 x 108

418 ... 25 3.9 x 10*° -84 40 x 10°

133 . 79 1.8 x 108 —11.9 4.4 x 10'?

enters because the radial functions U,,(r) and V,,(r) are nor-
malized to have the value 1 Ry at the surface. C,,,, are the
dimensionless normal-mode coefficients which after averaging
are independent of m (see eq. [ 10]).

Combining equations (8), (10), and (14) gives the background
energy density in terms of the observed velocity,

75¢% D)
327'CsGROZ O)nzzKZTnz S,‘ZZ )

Van der Raay and Isaak (1984) have suggested that the velocity
noise is between 1 and 4 cm s~ ! near periods of 44 minutes.
Since the spectral resolution of the data is much worse than
1/z,, for these periods and since we do not know the actual
velocity power probability distribution in the data bins corre-
sponding to the expected normal mode frequencies, we will
adopt (v?> =1 cm? s~2 as a reasonably conservative mean
squared velocity limit on the gravitational wave background.
With additional information on the observed power spectrum,
a precise statistical statement of the gravitational wave limits
could be made. We believe the limits derived from these solar
data yield roughly 1 ¢ confidence level limits on the gravita-
tional flux. Table 1 shows the corresponding energy density
limits for the modes listed.

Sp(w) =

(15)

IV. LIMITS IMPLIED BY TERRESTRIAL OBSERVATIONS

Although the Earth is much smaller than the Sun, its rela-
tively small cross section is compensated for by our ability to
make more sensitive measurements. As was pointed out by
Weber (1967), terrestrial seismic data may place interesting
limits on a gravitational wave background. Several relatively
crude calculations have been performed to estimate the terres-
trial response to gravitational waves (Forward et al. 1961;
Weber 1967; Zimmerman and Hellings 1980). Given the
advanced state of geophysical models for, at least, the spher-
ically symmetric Earth, a realistic calculation is warranted.

The Earth model we use has been derived from terrestrial
normal mode observations (model 1066A, Gilbert and Dzie-
wonski 1975). It is believed that the density and elastic con-
stants used in this model are correct to within a few percent
throughout the Earth (Jordan 1980). In the following calcu-
lations we use eigenmodes originally calculated by R. Buland.
A description of the calculational technique is contained in
Backus and Gilbert (1968). The mechanical Q’s of these modes
are less well determined (cf. Sailor and Dziewonski 1978;
Masters and Gilbert 1983). Measured Q-factors for the modes
of interest are too sparse to be used directly, but knowledge of
the eigenfunctions and local mechanical properties of the Earth
model is sufficient to calculate the Q for each mode (cf. Backus
and Gilbert 1968; Dahlen 1980). We use the six-shell model
with no bulk dissipation (shear only) described by Masters and

Gilbert (1983). This calculation yields errors in Q of 5-30%
with the observed modes from which it was derived.

Unlike the solar velocity observations, the terrestrial seismic
data are a direct measurement of the acceleration of the surface
of the Earth with respect to a local inertial frame. An acceler-
ometer responds to: (1) the surface acceleration, (2) the gravita-
tional field due to the redistribution of mass of a normal mode,
(3) the displacement of the accelerometer in the background
gravitational field. Gilbert (1980) has explicitly calculated how
these effects contribute to the vertical and horizontal acceler-
ometer response. For a mode of the form given by equations
(3a) and (4) the vertical acceleration is aq = K, ®,52Cpam
where K, =0.78 for the lowest (n=0) =2 mode and
approaches 0.63 as n increases.

In addition we must consider the effect of the background
gravitational wave on the accelerometer itself. In the absence of
the Earth, an accelerometer is in a local inertial frame even in
the presence of a gravitational wave and so records no acceler-
ation. Its reponse on the surface of the Earth is thus the differ-
ence between a, discussed above and the free acceleration due
to the gravitational wave. As we will see below, this effect is
important when considering the higher frequency modes and
especially the “off-resonance” response of the Earth. The
analog of this effect in the solar data, namely the direct inter-
action of the gravitational wave with the telescope and obser-
ver, is negligible because the Qs of the solar oscillations are so
large.

The response of the Earth to an excitation at one of the
normal mode frequencies can be expressed as the sum of the
resonance response of that mode and the off-resonance
response of all the other modes. For the lowest frequencies the
resonant term dominates by a large factor, and one can ignore
the off-resonance response. At higher frequencies the resonance
response can be smaller than the sum of the off-resonance
terms. However, at these frequencies the off-resonance com-
ponent is to a good approximation equal to, and therefore
cancels, the free response of the accelerometer, as discussed
above. As a consequence, even at high frequencies one need
consider only the resonant excitation.

The mean square displacement amplitude of a seismometer
is, analogous to equation (14),

(X*) =<C")Re’K,7, (16)

where Rg is the radius of Earth and K, lies between-0.63 and
0.78 as discussed above. As before, it follows from equations
(8), (10), and (16) that the energy density of the gravitational
wave background is given by

752 (X
3273GRg? K, 21, 8,,%

Sp(w) = 17)
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TABLE 2
TERRESTRIAL MODES

n w,[x 107257 1] Period [min] 7,[s] S, Flux [erg s™! cm™2 Hz™ ']
0..ccennns 0.194 53.9 6.8 x 10° 0.70 7.1 x 10°
2 0.599 17.5 1.0 x 10° 9.7 x 107# 1.6 x 10'2
4......... 1.08 9.7 1.0 x 10° 8.7 x 1072 5.8 x 107

22 . 5.16 2.0 6.1 x 10* 1.7 x 1073 1.7 x 108
28 i 6.35 1.6 1.2 x 10° 48 x 103 4.4 x 10'°
60 ......... 13.48 0.78 1.8 x 10* —-37x1073 3.4 x 10°

The seismic background noise is apparently limited by
atmospheric pressure load fluctuations and ocean wave action
(cf. Murphy and Savino 1975) and shows a strong frequency
dependence. We have used the mean vertical seismic power
density described by Agnew and Berger (1978) to calculate the
following limits. Since the spectral resolution of the observed
spectra is larger than the resonant widths of the Earth modes,
the mean square displacement is given by <(X2> = P(v,)Av,
where P(v,) is the vertical displacement noise power at fre-
quency v, and Av is the spectral resolution. Furthermore, since
the power spectra of Agnew and Berger are averages of
between 20 and 30 individual spectra, the associated noise on
the spectra is approximately a factor of 5 below the average
power. As no excitations of Earth modes are seen at this level,
we obtain roughly a 1 ¢ limit on the mean square displacement
of a given mode of (X?2) < P(v,)Av/5. Table 2 shows the eigen-
frequencies, Q’s, and corresponding 1 ¢ background gravita-
tional wave energy density limits for some | = 2 Earth modes.

Zimmerman and Hellings (1980) computed the response of
an accelerometer to gravitational wave excitation at fre-
quencies between those of the Earth’s normal modes, i.e., the
off-resonance response. Primarily because they did not take
into account the direct action of the gravitational wave on the
accelerometer, the limits they derived for this type of excitation
were too low by four orders of magnitude.

In Figure 1 we have plotted the resonance and off-resonance

background energy limits. The off-resonance limit was calcu-
lated from the approximate expression
S 2 -2
n2 Wn2 ] . (18)

75 ¢ S w)
S = — =t

1) = G G R’K? | 2 (y” — o)
where S, (w) is the spectral density of the surface acceleration
and the sum extends over the first 61 | = 2 Earth modes. This
expression includes the direct response of the accelerometer to
gravitational waves.

V. DISCUSSION

Upper limits on the flux density of a homogeneous isotropic
background of gravitational radiation have been determined
from terrestrial and solar observations and are illustrated in
Figure 2. For comparison, the limits deduced from pulsar
timing (Romani and Taylor 1983) and from the Stanford cryo-
genic gravitational wave detector (Boughn et al. 1982) are also
plotted.

The limit labeled “Earth normal modes” is from one to
three orders of magnitude higher than that of Zimmerman and
Hellings (1980) and Weber (1967) due to our more realistic
model of the Earth. The limit labeled “ off-resonance response ”
derived by considering off-resonance excitation is about four
orders of magnitude larger than the analogous limits of Zim-
merman and Hellings as described above.

16
T

Log flux lerg/s/cme#2/Hz]

1

N I
-4 -3 -2
Log f [Hz)

F1G. 1.—Background gravitational radiation flux limits. Squares represent limits derived from solar observations, crosses come from resonance seismic data, and
the solid line is derived by considering off-resonance excitation. The dotted line shows the background flux in one octave which is equal to closure density (H = 100
kms~!Mpc™1).
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F1G. 2—Background gravitational flux limits. The dotted line is the same as for Fig. 1. Symbols P, S, and B indicate, respectively, limits obtained from pulsar
timing data, the solar observations, and laboratory bar detectors. ER and EO show the seismic resonance and off-resonance flux limits.

A useful benchmark with which to compare these limits is
the closure density of the universe, i.e., p. =2 x 1072° gcm ™3
(assuming a Hubble constant of 100 km s~! Mpc™!). The
curve labeled “closure density” in the figure is the flux of
gravitation radiation, F,, such that vF, = p, c3; i.e., the closure
density is contained in one octave. Any gravitational wave
background substantially larger than this value conflicts with
observations which imply the universe is approximately open.
Carr (1980) discusses various scenarios for the generation of
gravitational radiation and concludes that vF, could be as
large as 1072 p, ¢3 over periods in the range 1073 s to 10°s. A
more stringent requirement, vF, < 1074 p, ¢, is imposed on a
primordial gravitational wave background in order to be con-
sistent with cosmological nucleosynthesis (Carr 1980).

It is clear that the limits derived in this paper do not con-

strain any models. The “ Earth mode ” limits, however, are due
to the finite spectral resolution of the Agnew and Berger (1978)
data and may decrease by two orders of magnitude or more if
one would observe for long periods of time at a seismically
quiet location. The “solar mode” limits are also due to finite
signal-to-noise and may decrease by orders of magnitude in the
near future. If this is the case, the solar limits will approach the
level of some of the scenarios of Carr (1980) and the Sun may
prove to be one of the most sensitive detectors of background
gravitational radiation at milliherz frequencies.

We thank F. A. Dahlen for Buland’s normal mode calcu-
lations, and for several instructive conversations. This work
was supported in part by the National Science Foundation.
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