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When is a quantum cellular automaton (QCA) a quantum
lattice gas automaton (QLGA)?

Asif Shakeela) and Peter J. Loveb)

Department of Physics, Haverford College, Haverford, Pennsylvania 19041, USA

(Received 20 August 2013; accepted 5 September 2013; published online 19 September 2013)

Quantum cellular automata (QCA) are models of quantum computation of particular
interest from the point of view of quantum simulation. Quantum lattice gas automata
(QLGA - equivalently partitioned quantum cellular automata) represent an interesting
subclass of QCA. QLGA have been more deeply analyzed than QCA, whereas general
QCA are likely to capture a wider range of quantum behavior. Discriminating between
QLGA and QCA is therefore an important question. In spite of much prior work,
classifying which QCA are QLGA has remained an open problem. In the present
paper we establish necessary and sufficient conditions for unbounded, finite QCA
(finitely many active cells in a quiescent background) to be QLGA. We define a local
condition that classifies those QCA that are QLGA, and we show that there are QCA
that are not QLGA. We use a number of tools from functional analysis of separable
Hilbert spaces and representation theory of associative algebras that enable us to treat
QCA on finite but unbounded configurations in full detail. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4821640]

I. INTRODUCTION

Feynman first noted that simulating the full time evolution of quantum systems on classi-
cal computers is a hard problem, and that one might use one quantum system to efficiently
emulate another.16–18 Feynman’s suggestion became a founding idea in the field of quantum
computation36, 47, 48, 57, 68, 71 and has been subsequently developed in the field of quantum simula-
tion, which has attracted considerable theoretical and experimental attention in recent years with
applications in physics, chemistry and biology.5, 30, 33, 34, 37, 46, 66, 70

Simulation of quantum systems on current classical computer hardware is a well established
field with simulations of diverse systems from quantum chemistry to the structure of the proton. For
large systems these simulations rely on approximate methods, such as semiclassical treatments or
the Monte Carlo method, which scale only polynomially in the problem size. The results of even
approximate methods are of interest as they address issues which are not accessible in any other
way. Classical simulation of quantum systems will remain a hard problem for decades to come, and
one may expect useful quantum computers to appear on this timescale.

Amongst both classical and quantum simulation methods, cellular automata, lattice gas, and
random walk methods can be singled out for their simplicity. In 1948 von Neumann set out to show
that complex phenomena can arise out of many simple, identical interacting entities. Following a
suggestion by Ulam he adopted an approach in which space, time, and the dynamical variables are all
discrete. The result was the cellular automaton, a homogeneous array of cells with a finite number
of states evolving in discrete time according to a uniform local transition rule.64

In the context of physical simulation, classical cellular automata led to lattice-gas models - also
called partitioned cellular automata - which can simulate diffusive processes and fluid mechanics

a)ashakeel@haverford.edu
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for both simple and complex fluids.53 Lattice gases are the only broad class of cellular automata
models that have enjoyed wide success in quantitative modeling of physical phenomena.

In the quantum setting, quantum cellular automata,2, 3, 14, 15, 54, 62, 67 quantum lattice
gases,7–9, 39, 40, 42–44 quantum lattice Boltzmann methods,13, 35, 49, 50, 58, 59 and quantum random
walks,1, 12, 31 have all attracted considerable attention. In particular the one-dimensional cellular
automata for the Dirac equation, originally described by Feynman in a problem discussed in Ref. 19,
has been investigated and generalized by Meyer into the quantum lattice gas model.39, 40, 42–44 Similar
models were investigated independently by Boghosian and Taylor,7–9 and by Succi and Benzi.58, 59

Meyer also showed that the quantum lattice Boltzmann model in 1D58 and quantum lattice gas for a
single particle are equivalent.39 Recently, optical implementations of quantum random walks have
demonstrated topologically protected bound states,32 and simulations of the Dirac equation have
been performed in trapped ions.22

Quantum random walks1, 12, 31 and single-particle quantum lattice-gas models7–9, 39 and lattice-
Boltzmann methods58, 59 all describe a single quantum particle moving on a lattice. Classical lattice-
gas models typically describe many interacting particles moving on a lattice, and Meyer generalized
one-particle models to a multi-particle quantum lattice-gas model given in Ref. 39. Whereas the 1 + 1
dimensional single-particle quantum lattice-gas simulates the Dirac equation in 1 + 1 dimensions, the
multiparticle quantum lattice-gas, that allows two-particle interactions at a lattice site, can describe
the massive Thirring model.39, 60 Because the massive Thirring model is a model of relativistic
fermions with self-interactions this supports the idea that multiparticle quantum lattice-gases should
be considered as models for multiparticle, interacting quantum mechanics and quantum field theories.
We shall take quantum lattice-gas automata (QLGA) to mean the multiparticle models throughout.

Quantum cellular automata, which include QLGA as a subclass, are the most general discrete,
translation invariant quantum models, and one would therefore expect them to describe a broad range
of phenomena arising in interacting quantum systems. However, quantum cellular automata have not
attracted the same degree of interest as their classical counterparts, and have attracted relatively little
attention compared to other approaches to quantum simulation. As we will discuss in detail below,
the definition of quantum cellular automata (QCA) models has been the source of some debate in
the literature, which has perhaps delayed applications of these techniques. We hope the present work
addresses this by clearly delineating the QLGA models from their complement in the set of QCA
and providing a self-contained introduction to these models.

A. Classical lattice-gas cellular automata

Perhaps the most widely explored application of cellular automata has been in the field of fluid
dynamics. Classical lattice-gases have been used extensively for modeling hydrodynamics since
Frisch et al.,21 and Wolfram69 showed that it is possible to simulate the incompressible Navier-
Stokes equations using discrete boolean elements on a lattice. The update rule for all lattice-gases
takes place in two steps, propagation and collision. For the simplest such models one represents
the presence or absence of a particle by a bit. Each bit at a lattice site is associated with a link in
a lattice and a corresponding velocity. During propagation the bits move in the direction of their
velocity vectors along the links, retaining their velocities as they do so. During the collision step, the
newly propagated bits are modified according to a purely local rule. Specification of collision rules
completes the description of a lattice-gas automata (LGA). If the collision process is stochastic, a
single particle in such a model will follow a random walk, and so one may regard classical lattice-gas
models as equivalent to classical multiparticle random walks with an exclusion principle.

The simplest two-dimensional example of a lattice-gas model is the HPP model.27 Here, the
underlying lattice is cartesian, hence there are four lattice vectors per site, corresponding to a particle
moving north, east, south, or west. There may be at most one particle per direction per site, leading
to at most four particles at each lattice site. The non-trivial collision of the HPP gas is shown in
Figure 1.

The distinction between cellular automata and lattice-gases has been the source of some
debate.28, 61 A homogeneous cellular automata utilizes the same neighborhood and the same update
rule at every site and every timestep, as in the Game of Life. The lattice-gas evolves in two distinct
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FIG. 1. Non-trivial collisions of the HPP lattice-gas: The dynamics takes place on a cartesian lattice in two dimensions.
A pair of incoming particles with opposite velocities in the North-South direction become a pair of particles with opposite
velocities in the east-west direction, and vice versa.

substeps: propagation and collision (described in detail below). The connection between the models
may be made by introducing the concept of a block- or partitioned- cellular automata, which alter-
nates between two update rules and two neighborhoods. The simplest of these automata employ a
Margolus neighborhood.38 As an example, we shall construct the two rules and two neighborhoods
which, when alternately applied to a cellular automata, yield the HPP lattice-gas dynamics described
above. The update rules are shown in Figure 2. The update rules act on a block of four cells, which
we shall refer to as upper left (UL), upper right (UR), lower left (LL), lower right (LR). The prop-
agation rule is applied identically to all states: the occupation of each cell in the four cell block is
exchanged with the occupation of the cell diagonally opposite. The collision step is identical to the
propagation step except when UR and LL are the only cells occupied or when LR and UL are the
only cells occupied, in which case the occupancies of these pairs of cells are exchanged. Graphically
this corresponds to either diagonal of the four cells being occupied. In these cases the state is flipped
to the other diagonal occupation, as shown in Figure 2.

Clearly, if either of these rules was applied to a constant neighborhood the resulting dynamics
would be trivial. Neither rule can change the occupation outside the four cell block and both rules
are self-inverse, so applying them twice to the same block returns the original configuration. In
our partitioned automata we specify a different neighborhood for each rule in order to obtain the
HPP dynamics. The Margolus neighborhoods, the cells of the automata and their relationship to

FIG. 2. Update rules for the HPP partitioned cellular automata. The top two boxes show the collision rules in which the
configurations of the cells which are modified in a non-trivial way. The bottom boxes show the update rule which implements
propagation in the automata. The bottom rule is applied to both neighborhoods of the automata. A, B, C, D represent any
occupation state of the four cells, and the propagation update is the permutation of these occupations shown.
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(a)Collision neighborhood (b)Propagation neighborhood (c)Lattice-gas sites and particle directions

FIG. 3. Neighborhoods for collision (a) and propagation (b). The boundaries of the four cell blocks on which the rules shown
in Figure 2 are applied are shown by the bold lines. Figure (a) shows the boundaries for the collision neighborhood. (b) The
boundaries for the propagation neighborhood. (c) The correspondence between the cells of the partitioned automata and the
lattice of the lattice-gas. Bold lines denote the directions along which lattice-gas particles move. Open circles denote sites of
the lattice-gas.

the original cartesian lattice on which we defined HPP model are shown in Figure 3. The two
neighborhoods are the two ways of partitioning a cartesian grid into square tiles of four cells. The
original cartesian lattice on which the HPP lattice gas was defined is the lattice of diagonals with
a lattice node at the center of every collision neighborhood. The lattice-gas vertices are shown by
open circles in Figure 3(c).

In this approach, the original cells of the automata are grouped together into blocks of four
to make the sites of the HPP lattice-gas model. The partitioned dynamics is reinterpreted—one
step of the dynamics (which acts on one partitioning of the original cells) now acts locally on a
single lattice-gas site. This local action is termed the collision or scattering step. The second step of
the dynamics (which acts on the other partitioning of the original cells in the Margolus scheme38)
implements propagation of information between the lattice-gas sites. In the case of the HPP model,
where the alphabet of the original cells is {0, 1}, this step has the interpretation of particles moving
from one lattice-gas site to another. The four sub-cells of a lattice-gas site are then reinterpreted as
lattice vectors, and in the propagation step lattice-gas particles move in the direction of their lattice
vector to a new site. Hence we have taken a partitioned cellular automata and reverse-engineered a
lattice-gas model from it.

The general question of when a classical cellular automata can be reinterpreted in this way was
recently taken up in Ref. 61. Because we know, from the example of Ref. 3, that there are QCA that
are not partitioned CA, we shall proceed by first defining classical lattice-gas automata and proving
a general condition for when a QCA is a QLGA. In the process we shall extend our definition of a
classical lattice-gas to the quantum case.

Consider the lattice to be Zn . Each point x on this lattice is a site of the lattice-gas and has the
same neighborhood Nx . We may consider each neighborhood Nx to be a translation (by x) of the
neighborhood N of the site x = 0, where N is a finite subset of Zn . Hence the neighborhood of site
x is given by x + z|z ∈ N . The state of a single site may be constructed by assigning a substate to
each of a set of lattice vectors—each vector corresponding to a neighborhood element z ∈ N . The
sub-state kx(z) of each lattice vector z at lattice site x takes values in an alphabet Cz . For the simplest
lattice-gases, each lattice vector may have either one or zero particles present and so Cz = {0, 1}∀z.
However, more sophisticated models allow multiple types of particles, and three-dimensional models
allow some vectors to carry more than one particle,10 hence in general Cz may contain arbitrarily
many symbols and may vary with z. The state kx of a lattice-gas site x is therefore an element of the
Cartesian product of all of the Cz :

kx =
∏
z∈N

kx (z) ∈ B =
∏
z∈N

Cz . (1)

The state of the lattice-gas is an element of the set of infinite sequences S over B.
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We may now define the two substeps of the lattice-gas dynamics. First, the sub-states propagate
to the lattice sites in the neighborhood:

σ : S −→ S∏
x∈Zn

∏
z∈N

kx (z) �→
∏

x∈Zn

∏
z∈N

kx+z(z).

Second, in the collision step, the state of each lattice-gas site changes locally under a map �:

� :
∏
z∈N

Cz −→
∏
z∈N

Cz . (2)

With these classical definitions in hand, we now turn to the definition of quantum cellular automata.

B. Watrous quantum cellular automata

QCA have been studied, in considerable depth, by several authors.2, 3, 14, 15, 54, 62, 67 The main idea
is to develop quantum models that retain the key features of a classical cellular automata: translation
invariance and discreteness in time, space, and dynamical variables. A classical deterministic cellular
automata is defined as follows:

(i) A lattice L, whose sites we shall label by x.
(ii) A set of cell values Q with a distinguished quiescent state q0.
(iii) A neighborhood N . This translates to a neighborhood Nx for each cell x, consisting of a set of

cells as follows: Nx = {x + z|z ∈ N }.
(iv) A configuration of the automata is a map a : L −→ Q. If L is infinite then only a finite number

of cells take values in Q that are not quiescent.
(v) A local transition rule δ which updates the value sx ∈ Q at x according to the values si ∈

Q (where i ∈ Nx ) of the cells in the neighborhood δ : Q|N | �→ Q, subject to the condition
that

δ : q |N |
0 �→ q0. (3)

Early work produced an extension of the classical cellular automata (CA) defined above based
on local rules.2, 14, 15, 41, 62 To avoid confusion with the definition of a QCA that we shall introduce
later we follow54 and call these Watrous Quantum Cellular Automata (WQCA). A WQCA is defined
as follows:

(i) A lattice L, whose sites we shall label by x.
(ii) A set of cell values Q with a distinguished quiescent state q0.
(iii) A neighborhood N . This translates to a neighborhood Nx for each cell x, consisting of a set of

cells as follows: Nx = {x + z|z ∈ N }.
(iv) A state of the automaton, �, is a superposition of classical configurations.
(v) A local evolution rule f which maps an element of Q|N | to an element of W = C[Q],

f : Q|N | −→ C[Q]

subject to the constraint that if the neighborhood state is q |N |
0 then f assigns amplitude 1 to the

quiescent state and amplitude 0 to all other states.

From the above data, one can construct a global evolution rule R by jointly evolving the state of
each cell x in any basis state by the local rule f and extending by linearity. The global evolution R is
required to be:

(i) Unitary: R† R = I.
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(ii) Translation invariant: Let τ z, for some z ∈ Z, be the translation operator defined by its action
on a classical configuration c = ∏

j∈Z c j for cj ∈ Q∀j:

τz :
∏
j∈Z

c j �→
∏
j∈Z

c j+z

τ z is extended by linearity. We denote the group of translations: T = {τz}z∈Z. A linear operator
R is translation-invariant if τz Rτ−1

z = R for all z ∈ Z.

By definition, the above model of WQCA is translation-invariant provided the rule f is the same
for all cells. Unitarity for this model has been extensively investigated.14, 15, 41, 62 This model of QCA
was found,3 in some instances of the finite, unbounded QCA, to allow super-luminal signaling.
Super-luminal signaling refers to the faster than light signaling which occurs when the state of a
cell (restricted or reduced state, defined in Sec. III) can be affected by that of another cell which
is an unbounded distance away from it. This is observed when certain classical CAs with finite
neighborhood schemes are quantized (the local rule for classical CA is taken as that for the QCA).

C. Axiomatic QCA

An axiomatic approach has been developed to overcome the problem of super-luminal signaling,
a non-local phenomenon, seen in the WQCA models.3, 4, 54, 55 The requirement of causality is imposed
in the definition of a QCA, with roots in the ideas form Refs. 6 and 55, to preclude this non-
locality.3, 4, 11, 54

The axiomatic model was introduced by Schumacher and Werner54 and further developed
by Arrighi, Nesme, and Werner.3 In this approach a QCA is defined to be a unitary, translation-
invariant, ∗-homomorphism of a C∗ -algebra which satisfies a quasi-local condition by which the
global homomorphism R is uniquely determined by a local homomorphism of tensor factor (one-site)
algebras to the neighborhood. The program developed in Ref. 54 investigates when the structure of
such QCAs can be given by ∗-isomorphisms obeying a quasi-local condition as follows. Once the
cells are grouped into super-cells, such super-cells partition the lattice. Then there exists a shifted
partition with super-cells that overlap with the original cells in a Margolus partitioning scheme.38

The global evolution is given by a set of unitary operators U, V, each of which acts on a cell of the
respective partition, applied in succession. If this structure holds, then imposing the requirement of
causality on quantum cellular automata requires them to be quantum lattice-gas automata.

One of the conclusions of Schumacher and Werner,54 that all QCA are QLGA, was revised by
Arrighi, Nesme, and Werner.3 Arrighi, Nesme, and Werner3 give an example of a QCA in Ref. 3 that
is not a QLGA, thus showing that there is a separation between two non-empty subclasses of QCA.
Precisely characterizing this separation by determining which QCA are QLGA is the subject of the
present paper. The axiomatic one-dimensional development of Arrighi, Nesme, and Werner3 is more
restricted and defined on a Hilbert space of unbounded, finite configurations (finitely many active
cells in a quiescent background). This set of sequences, called the set of finite configurations, is
embedded into some abstract Hilbert space in which the elements of this set comprise an orthonormal
basis. This is a countable-dimensional Hilbert space: the Hilbert space of finite configurations. In
this context, they define a QCA as a unitary, translation-invariant and causal operator on the Hilbert
space of finite configurations.

In the present work we further develop the axiomatic approach and place it on a new math-
ematical foundation. We incorporate in the development of axiomatic QCAs the topology of the
Hilbert space. This is an essential part of any study of the algebra of operators, particularly infinite
dimensional algebras. This is intimately connected, in this case, with the idea of local algebras and
the part they play in the determination of the global evolution. This topology provides the foundation
for connecting the local algebras to the algebra of bounded linear operators of the Hilbert space.
With this topology, we can investigate the space of bounded linear operators as a von Neumann
algebra (as well as a C∗ algebra), making the local subalgebras a useful tool.

We develop a model on the same space of finite but unbounded configurations as Arrighi,
Nesme, and Werner.3 To make a Hilbert space from it, we give an inner product structure to the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.13.85 On: Mon, 25 Aug 2014 18:57:49



092203-7 A. Shakeel and P. J. Love J. Math. Phys. 54, 092203 (2013)

set of finite configurations that is a natural extension of the inner product of the Hilbert space of
each cell. We define the Hilbert space of finite configurations as the �2 completion of the linear
span of the set of finite configurations. This defines the separable topology of the Hilbert space and
the induced inner product is used to define the norm, weak, and strong topologies of the bounded
linear operators on the space. At the outset, we show how the subalgebra of local finite dimensional
operators is connected to the algebra of bounded linear operators on the whole space (Theorem 3.7,
the density theorem). This provides the background for the development of some of the key ideas,
and underpins the proof of the structural reversibility theorem (Arrighi, Nesme, and Werner3).

The main result of this paper is that QLGA can be characterized by a local condition on QCA.
This condition pertains to the set of image algebras under the global evolution of the neighboring
cells. The condition for a QCA to be a QLGA is that the local pieces of these image algebras generate
the full cell algebra. It is clear from our development that a central result, Theorem 3.10, about the
tensor product decomposition of Hilbert space of a single cell is not true in general. In particular, to
have that decomposition, the aforementioned subalgebra condition is needed. This condition is not
satisfied for all QCA, as shown by the example given in Ref. 3. This means that there is a class of
QCAs that are not QLGAs and that require further exploration.

The current paper is structured as follows. In Sec. II we introduce the Hilbert space of interest
for our automata. In Sec. III we introduce the axiomatic definition of QCA and prove several
properties of operators that are translation invariant or causal, or both. We extend our definitions of
the propagation and collision operators to the quantum case and formally define a QLGA before
proving our main theorem. In Sec. IV we give a number of examples of QCA, for the case when our
condition is satisfied and when it is not. We close the paper with some conclusions and discussion.
In the interests of making the present paper self-contained we collect a number of background and
corollary results in the appendices.

II. THE HILBERT SPACE OF FINITE CONFIGURATIONS

We begin with a finite set of symbols Q containing a special quiescent symbol q0, and an infinite
lattice L = Zn in n dimensions. Let us denote by W the Hilbert space of formal linear combinations
of symbols in Q, i.e., W = C[Q] (in this paper all of the vector spaces will be over C). This Hilbert
space W is the Hilbert space of quantum states of a single cell (for the rest of the paper, we will use
the terms cell and site to mean an element of the lattice L). Let the dimension of W (cardinality of
Q) be dimW = dW . The set of basis elements of W corresponding to the symbols in Q is denoted
BQ:

BQ = {|q〉 : q ∈ Q}. (4)

W has an inner product:

〈α|ϑ〉 =
∑
q∈Q

αqϑq , (5)

where α = ∑
q∈Qαq|q〉, ϑ = ∑

q∈Qϑq|q〉.
Informally, the Hilbert space of the automata is the infinite tensor product of copies of W . The

idea of infinite tensor products was first studied by von Neumann in his landmark paper “On infinite
direct products.”63 Later, Guichardet26 introduced a more modern way of describing an infinite
tensor product of Hilbert spaces enumerated by a countable set. This is sometimes referred to as the
incomplete tensor product construction. From countably many copies of the same Hilbert space W
the incomplete tensor product is obtained as the inductive limit of an ascending chain of finite tensor
products of W . This space has a natural basis that we call the set of finite configurations. The Hilbert
space of finite configurations is the incomplete tensor product construction of Guichardet with the
set of finite configurations as its basis.26
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Definition 2.1. The set of finite configurations, denoted by C, is the set of simple tensor products
with only finitely many active elements,

C := {
⊗
x∈Zn

|cx 〉 : |cx 〉 ∈ BQ, all but finite |cx 〉 = |q0〉}.

Thus, C is a countably infinite set. Let |c〉 = ⊗
x∈Zn |cx 〉, |c′〉 = ⊗

x∈Zn |cx
′〉 ∈ C. Define the

inner product of the elements |c〉, |c′〉:
〈c|c′〉 =

∏
x∈Zn

〈cx |cx
′〉

and extend it by linearity to get an inner product on span(C) (the set of finite linear combinations of
elements of C).

Definition 2.2. The Hilbert space of finite configurations, denoted by HC , is the �2 completion
of span(C) under the norm induced by the above inner product. C constitutes an orthonormal basis
of HC .

By definition, HC is a separable Hilbert space since it has a countable orthonormal basis C
(this follows from a standard theorem on Hilbert spaces in texts on analysis, for example, Folland,20

Proposition 5.29, p. 176).

Definition 2.3. The neighborhood N ⊂ Zn is some finite set. The neighborhood of a cell x ∈ Zn ,
denoted by Nx , is a translation of N to x.

Nx = {k + x : k ∈ N }.
The state of the QCA, ρ, is described by a density operator.

Definition 2.4. A density operator, ρ, is a positive trace class operator on HC , with tr(ρ) = 1.

III. AXIOMATIC DEFINITION OF QCA

In this section we introduce the axiomatic definition of QCA in which the requirement of
causality is built in from the start. We show that a QCA on the Hilbert space of finite configurations
must possess a quiescent state as an eigenstate of its global evolution. We define local operators,
and connect the algebraic structure of these operators to the topological structure of operators
on the Hilbert space of finite configurations. We then consider the action of the global evolution
operator on the local operators and define the requirement of causality in terms of the evolution
of local operators. This definition of causality in the Heisenberg picture was termed dual causality
or structural reversibility by Werner and co-workers.54,3 Structural reversibility is useful because it
means that the analysis of the causal global evolution can proceed by analysis of finite dimensional
algebras of local operators.

We continue from the definitions of Sec. II. We need a few more definitions to properly state
the requirements for an axiomatic model of QCA. For a finite subset D ∈ Zn , we introduce the idea
of a co-D space, which will be of use for a number of results.

Definition 3.1. Let D ∈ Zn be a finite subset. Define the set of co-D configurations to be
CD := {⊗i∈Zn\D |ci 〉 : ci ∈ Q, all but finite |ci 〉 = |q0〉}. Let the inner product on CD be induced
by the inner product on W (5), as in the case of C. Then the co-D space, denoted HCD

, is defined as
the completion of span(CD) under the induced �2 norm.

Any operator E ∈ B(HC) can be expressed as a finite sum:

E =
∑

l

el ⊗ El , (6)

where {el} ⊂ End(
⊗

k∈D W ) is a linearly independent set, and {El} ⊂ B(HCD
).
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We can define partial trace on trace class operators in general, and in particular on density
operators. We let {|wx 〉} be some orthonormal basis of the co-D space HCD

. Then a density operator
ρ can be expressed as

ρ =
∑
x,y

ρx,y ⊗ |wx 〉〈wy|,

where ρx,y ∈ End(
⊗

j∈D W j ). The partial trace of ρ over the tensor factors not in D, denoted tr{x /∈D},
is the sum

tr{x /∈D}(ρ) :=
∑

y

ρy,y .

The sum converges, and the definition is independent of the choice of basis {|wy〉} since ρ is trace
class.

We define the restricted or reduced density operator.

Definition 3.2. Let D ∈ Zn be a finite subset. Let ρ be a state (density operator) on HC . The
restriction of ρ to D, denoted ρ|D, is defined to be the partial trace of ρ over the tensor factors not
in D:

ρ|D := tr{x /∈D}(ρ).

Now we have the terminology to state the requirements for an axiomatic QCA.

Definition 3.3. The global evolution R of a QCA on the Hilbert space of finite configurations
HC , with neighborhood N , is required to be:

(i) Unitary: R† R = I.
(ii) Translation invariant: Let τ z, for some z ∈ Zn , be the translation operator defined by its action

on an element |c〉 = ⊗
j∈Zn |c j 〉 ∈ C:

τz :
⊗
j∈Zn

|c j 〉 �→
⊗
j∈Zn

|c j+z〉.

The map τ z is extended by linearity to span(C), on which it is inner product preserving. Then
τ z can be unitarily extended to HC (that such an extension exists, and is a unitary operator
on HC , follows from the Bounded Linear Transformation (B.L.T.) Theorem, standard in the
theory of operators on Banach spaces. The reader can find it in Reed and Simon52 as Theorem
1.7, p. 9). We denote the group of translations: T = {τz}z∈Zn . A linear operator M on HC is
translation-invariant if τz Mτ−1

z = M for all z ∈ Zn .
(iii) Causal relative to the neighborhood N : A linear operator M on HC is said to be causal relative

to a neighborhood N if for every pair ρ, ρ ′, of density operators, and x ∈ Zn , that satisfy

ρ|Nx = ρ ′|Nx ,

the operators MρM†, Mρ ′M† satisfy

MρM†|x = Mρ ′M†|x .

Let us see what the constraints of Definition 3.3 tell us about an operator. First, we consider
translation-invariance. We begin by identifying the invariants (the fixed points), in HC , of the group
of translations T = {τz}z∈Zn .

Lemma 3.4. The space of T -invariants in HC is one-dimensional. It is: C× ⊗
x∈Zn |q0〉, where

C× = C \ {0}.

Proof. Consider the action of T on HC . Let us write φ ∈ HC in a basis {|Ci 〉 : i ∈ Z} of HC :

φ =
∑
i∈Z

φi |Ci 〉,

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.13.85 On: Mon, 25 Aug 2014 18:57:49



092203-10 A. Shakeel and P. J. Love J. Math. Phys. 54, 092203 (2013)

where |Ci 〉 ∈ C. Let |C0〉 = ⊗
x∈Zn |q0〉. If τz ∈ T , then

τz(φ) = τz(
∑

i

φi |Ci 〉) =
∑
i∈Z

φiτz(|Ci 〉).

Since τ z permutes elements of C, we can associate a permutation sz of the indices i ∈ Z with the
action of τ z, i.e., τz(|Ci 〉) = |Csz (i)〉.

If φ is an invariant of T , then: τ z(φ) = φ for all z ∈ Zn , i.e.,

∑
i∈Z

φi |Ci 〉 =
∑
i∈Z

φiτz(|Ci 〉) =
∑
i∈Z

φsz
−1(i)|Ci 〉.

This implies φi = φsz
−1(i) for z ∈ Zn , i.e., φi are constant on the orbits of C under the action

of T . But T fixes |C0〉 = ⊗
x∈Zn |q0〉, and all other orbits in C are countably infinite in cardinality.

Since φ has a finite �2 norm, this implies that φi = 0 for all i �= 0, i.e., the space of T -invariants is
one-dimensional: C

⊗
x∈Zn |q0〉. �

Now that we know that the only vectors fixed by the group of translations are scalar multiples of
the quiescent state:

⊗
x∈Zn |q0〉, we go on to determine the action of invertible translation-invariant

operators on the quiescent state.

Lemma 3.5. An invertible and translation-invariant operator M on HC has
⊗

x∈Zn |q0〉 as an
eigenvector:

M
( ⊗

x∈Zn

|q0〉
) = λ0

⊗
x∈Zn

|q0〉

for some λ0 ∈ C×. In particular, if M is unitary and translation-invariant, then λ0 = ei�0 for some
�0 ∈ R.

Proof. M is invertible, so M
(⊗

x∈Zn |q0〉
) �= 0. And M is translation invariant, hence

τz Mτ−1
z

( ⊗
x∈Zn

|q0〉
) = M

( ⊗
x∈Zn

|q0〉
) ∀z ∈ Zn.

But τ−1
z (

⊗
x∈Zn |q0〉) = ⊗

x∈Zn |q0〉 for all z ∈ Zn . This implies

τz

(
M

( ⊗
x∈Zn

|q0〉
)) = M

( ⊗
x∈Zn

|q0〉
) ∀z ∈ Zn,

that is, M
(⊗

x∈Zn |q0〉
)

is an invariant of τ z for all z ∈ Zn . Lemma 3.4 now implies that

M
( ⊗

x∈Zn

|q0〉
) = λ0

⊗
x∈Zn

|q0〉

for some λ0 ∈ C×.
As a special case, if M is unitary then all its eigenvalues are roots of unity and so λ0 = ei�0 for

some �0 ∈ R.�0 ∈ R
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Finally, we consider the implication of causality on a unitary operator. First we need the related
notion of a local operator. For any finite-dimensional vector spaces V and W , we will assume
the standard isomorphisms: End(V ) ∼= V ⊗ V ∗ and End(V ⊗ W ) ∼= End(V ) ⊗ End(W ), and make
use of them as needed, without explicit mention. Consider the embedding of

⊗
j∈D End(W ) into a

subalgebra of B(HC) (the algebra of bounded linear operators on HC , where the norm is the usual
operator norm):

ιD :
⊗
j∈D

End(W ) ↪→ B(HC), (7)

a �→ a ⊗ ID,

where a is an element of
⊗

j∈D End(W ), and ID is the identity operator on the co- D space, HCD
,

with the operator decomposition as in (6). Through the embedding ιD (7) the algebra
⊗

j∈D End(W )
is isomorphic to the corresponding finite dimensional subalgebra of B(HC).

Definition 3.6. An operator M on HC is local upon a finite subset D ∈ Zn if it is in the image of
the map ιD (7).

To understand the significance of these local subalgebras, we connect the algebraic structure
of the subalgebra they generate to the topological structure of B(HC). Let us denote the subalgebra
embeddings (7) byAD = ιD(

⊗
j∈D End(W )). Let {Dk ⊂ Zn : |Dk | < ∞}k∈N be a strictly ascending

chain:

D0 � D1 � . . .

such that: Zn = ∪k∈N Dk . We have an ascending chain of subalgebras formed by embeddings
{ADk }k∈N , and we denote the union of these subalgebras by Z:

Z = ∪kADk . (8)

For the proof of the next theorem, we need the following definition. Define, for any subset
S ⊂ B(HC), the commutant of S:

Comm(S) = {y ∈ B(HC) : ys = sy ∀s ∈ S}
Theorem 3.7 (Density theorem). Z is dense in B(HC) in the weak and strong operator topolo-

gies.

Proof. Z acts irreducibly on HC . Indeed, Z acts transitively on a dense subspace, span(C),
of HC . This implies, by Schur’s lemma (Lemma A.1), Comm(Z) = CI , where I is the identity
operator on HC . Then Comm(Comm(Z)) = B(HC). By von Neumann density theorem (Theorem
A.8), Comm(Comm(Z)) is the weak and strong closure of Z . �

The embedding ιD (7) allows us to consider the individual elements of Ax (the special case when
D = {x}, i.e., a single cell) as acting only on the tensor factors of interest. Then we are justified, for
notational reasons, in replacing the finite dimensional algebras AD with a finite tensor product of
cell algebras of the form Ax .

For a unitary operator M on B(HC), denote by CM, the conjugation by M map on B(HC):

CM : B(HC) −→ B(HC),

Z �→ M† Z M.

As M is assumed to be unitary, this map is a unitary isomorphism (under the usual operator norm)
of B(HC).

For any set Y ⊂ B(HC) the image of Y under conjugation by M is CM(Y). By abuse of notation,
we say, CM(Y) = M†YM. The images of the cell algebras under conjugation by M, Mz = M†Az M ,
z ∈ Zn are finite dimensional, and for z, z′ ∈ Zn , z �= z′, Mz , Mz′ pairwise commute as Az , Az′

pairwise commute.
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Having defined the local operators we now consider the supports of some such operators of
particular interest. Let the reflected neighborhood of N , denoted V , be

V = −N = {−k : k ∈ N }
Then this reflected neighborhood V can also be translated. We denote the translation by Vx .

Vx = {x − k : k ∈ N }.
The size of this set, by definition, is |Vx | = |N |.

It is straightforward to see, by symmetry, that Vx ⊂ Zn is the subset of the lattice consisting of
those elements whose neighborhood contains x:

Vx = {l : x ∈ Nl}.
Causality can be expressed in the Heisenberg picture in which one considers the evolution of

operators. This form of causality is captured by the structural reversibility theorem due to Arrighi,
Nesme, and Werner.3 In the interests of making the present paper self-contained we have included
the proof of this theorem in Appendix C (Theorem C.1).

Theorem 3.8 (Structural reversibility). Let M : HC −→ HC be a unitary operator and N a
neighborhood. Let V = {−k|k ∈ N }. Then the following are equivalent:

(i) M is causal relative to the neighborhood N .
(ii) For every operator Ax local upon cell x, M†AxM is local upon Nx .
(iii) M† is causal relative to the neighborhood V .
(iv) For every operator Ax local upon cell x, MAxM† is local upon Vx .

The requirement of causal evolution will be useful in the local analysis of the global evolution
R. This is because, by Theorem 3.7 the subalgebra generated by the local algebra is dense in B(HC).
The unitary, causal evolution of the QCA can therefore be considered in terms of finite dimensional
local subalgebras of B(HC).

For a site x the set of sites whose neighborhood contains x is Vx . We first show that the algebra
Ax is a subset of the algebra formed from the span of the images of the local algebras Ak for k ∈ Vx .
This result is true for all QCAs.

Theorem 3.9. Let M be a unitary and causal map on HC relative to some neighborhood N .
Then for every x ∈ Zn ,

Ax ⊂ span(
∏
k∈N

Mx−k).

In particular Z = M†ZM .

Proof. By structural reversibility, Theorem 3.8 (iii), for every x ∈ Zn ,

MAx M† ⊂
⊗
k∈N

Ax−k

This implies

Ax = M† MAx M† M ⊂ M†(
⊗
k∈N

Ax−k)M = span(
∏
k∈N

M†Ax−k M) = span(
∏
k∈N

Mx−k).

The last statement follows by the first statement and Theorem 3.8 (ii), i.e.,

Mz ⊂
⊗
k∈N

Az+k for all z ∈ Zn.

�
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Consider conjugation by R on B(HC), where R is the global evolution of a QCA. We denote this
map CR:

CR : B(HC) −→ B(HC), (9)

Z �→ R† Z R.

Denote Rz = R†Az R, the image of cell algebras Az under conjugation by R (9). This is the algebra
of operators which are the images of operators localized on a single cell, after a single timestep of
evolution by R. We are interested in the intersection of these time evolved algebras with the algebras
localized on a single cell. Let us denote by Dz,x the following subalgebra of Rz , z ∈ Zn:

Dz,x = Rz ∩ Ax . (10)

When z ∈ Vx then Dz,x are the elements of Rz which are contained in Ax , where

Rz = R†Az R ⊂
⊗
k∈Nz

End(W ),

and

Az = End(W )︸ ︷︷ ︸
k=z

⊗
⊗

k∈Nz\{z}
Ik .

The subalgebras Dz,x for z ∈ Vx may be understood intuitively as the subalgebras localized on
x that the cell x receives from cells in Vx . It turns out that the algebra generated by Dz,x for z ∈ Vx is
the key ingredient in understanding the structure of a subset of QCA. In particular we are interested
in the case when the algebra generated by Dz,x for z ∈ Vx is equal to the full cell algebra Ax . We
state a preliminary theorem about the structure of W = C[Q] and the subalgebras Dz,x when this is
the case. This is the theorem that allows a local classification of a QCA as a QLGA. Let Dx−y,x be
as defined in (10), where x ∈ Zn , and y ∈ N .

Theorem 3.10. Suppose that R is the global evolution of a QCA with neighborhood N . Then
Ax = span(

∏
y∈N Dx−y,x ) if and only if there exists an isomorphism of vector spaces:

S : W −→
⊗
z∈N

Vz

for some vector spaces {Vz}z∈N . Under the isomorphism S, for each y ∈ N :

Dx−y,x
∼= End(Vy) ⊗

⊗
z∈N ,z �=y

IVz

Before proving the theorem, let us state a corollary describing the structure of the algebras Rx

under the conditions of the theorem. These algebras Rx are the images of algebras Ax localized on
a single cell, after one timestep of the global evolution R.

Corollary 3.11. Suppose that R is the global evolution of a QCA with neighborhood N , and
satisfies Ax = span(

∏
y∈N Dx−y,x ). Then

(i) Ax = End(W ) ∼= ⊗
z∈N End(Vz), for all x ∈ Zn .

(ii) The dimension of W , dW , is a product of the dimensions of Vz , dVz , i.e., dW = ∏
z∈N dVz .

(iii) Rx = span(
∏

k∈N Dx,x+k) ∼= ⊗
k∈N End(Vk).

Proof. (i) and (ii) are obvious from the isomorphism S in Theorem 3.10. For the proof of
(iii), we note that by definition of Dx,x+k (10), Rx ⊃ span(

∏
k∈N Dx,x+k). But from Theorem 3.10,

span(
∏

k∈N Dx,x+k) ∼= ⊗
k∈N End(Vk) ∼= End(W ). We already know thatRx = R†Ax R ∼= End(W ).

Hence the conclusion. �
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This corollary shows that if the conditions of Theorem 3.10 are met then the algebra Ax is iso-
morphic to an algebra generated by a set of commuting algebras each of which is the endomorphisms
(full matrix algebra) of a single tensor factor of the space W .

The following lemma shows that if there is a set of pairwise commuting self-adjoint algebras
that generate End(W ), then there is a tensor product decomposition of the space W such that each of
the commuting self-adjoint algebras is the set of endomorphisms (full matrix algebra) of one of the
tensor factors. This will be useful in the proof of Theorem 3.10. We note that the case with a pair of
such algebras has been treated in Theorem 3 of Ref. 3 and the proof given there has been derived
based on the results in Ref. 23. We present a different proof of the more general case primarily based
on the material described in Ref. 25, included in Appendices A and B.

Lemma 3.12. Let {Mk : Mk ⊂ End(W )}m
k=1, be a finite set of distinct pairwise commuting self-

adjoint algebras, each containing the identity operator, such that span(
∏m

k=1 Mk) = End(W ). Then
there is a vector space isomorphism:

SW : W −→
m⊗

k=1

Vk

for some vector spaces {Vk}m
k=1. Under the isomorphism SW , for each 1 ≤ y ≤ m:

My
∼= End(Vy) ⊗

⊗
k∈{1,...,m}\{y}

IVk .

Proof. If m = 1, there is nothing to prove. So assume m > 1. Consider Mm from the set
{Mk : Mk ⊂ End(W )}m

k=1. Let Tm = span(
∏m−1

t=1 Mt ). Then we know that Tm and Mm are mutually
commuting self-adjoint subalgebras, each containing the identity operator. By Proposition B.2, W
is then a completely reducible Tm-module. Corollary A.6 then implies that there exists a finite set of
irreducible Tm-modules (here the index set {j: 1 ≤ j ≤ r} enumerates the finite (by Corollary A.6) set
of equivalence classes of irreducible representations of Tm, denoted T̂m . Each value of j corresponds
to a distinct class λ ∈ T̂m) that we denote {Vj }r

j=1, such that if we denote the set of their multiplicity
spaces: {U j = HomTm (Vj , W )}r

j=1, then we have a Tm-module isomorphism Sm:

Sm :
r⊕

j=1

U j ⊗ Vj −→ W

r∑
j=1

u j ⊗ v j �→
r∑

j=1

u j (v j )

Under this isomorphism:

Tm = Sm
( r⊕

j=1

IU j ⊗ End(Vj )
)
S−1

m ,

Comm(Tm) = Sm
( r⊕

j=1

End(U j ) ⊗ IVj

)
S−1

m ,

where Comm(Tm) is the commutant of Tm, as defined by (A6), and each Uj is a Comm(Tm)-module
under the action given by (A7). Since, by definition of Tm, Mm ⊂ Comm(Tm), this implies

span(Mm Tm) ⊂ span(Comm(Tm)Tm) = Sm
( r⊕

j=1

End(Vj ) ⊗ End(U j )
)
S−1

m ⊂ End(W ).

But by assumption, span(Mm Tm) = End(W ). Then the inclusions above are equalities, and there
must only be one summand in the sum above. That is, there exists some irreducible Tm-module
Ym, such that if we denote its multiplicity space: Um = HomTm (Ym, W ), then we have a Tm-module
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isomorphism Sm:

Sm : Um ⊗ Ym −→ W, (11)

um ⊗ ym �→ um(ym).

Furthermore, under Sm:

Tm
∼= IUm ⊗ End(Ym), (12)

and

Mm
∼= End(Um) ⊗ IYm .

Here the subscript m signifies that Ym is the only class of irreducible Tm-module in W , and does not
correspond to the indexing {j: 1 ≤ j ≤ r} used above. This subscripting convention will be used for
general k in the set: {k: m − 1 ≥ k ≥ 2}, in the arguments to follow.

In particular this proves the lemma for m = 2: if m = 2, observing that T2 = M1, we can define
the vector spaces, V2 := U2, and V1 := Y2, and the isomorphism SW := S−1

2 . Then the vector spaces
V1 and V2, and the isomorphism SW satisfy the statement of the lemma.

Now assume m > 2. Since Tm is a subalgebra of End(W ), we choose the irreducible Tm-module
Ym in (11) to be a subspace of W : Ym ⊂ W .

Clearly the subalgebras in the set {Mk}m−1
k=1 are subalgebras of Tm = span(

∏m−1
t=1 Mt ). Also, we

have that Tm = End(Ym), by the definition of the Tm action on Ym, and (12). Let us consider the
restricted actions of the subalgebras in the set {Mk}m−1

k=1 on Ym. These restricted actions comprise a
set of mutually commuting, self-adjoint (for the inner product on W restricted to Ym) subalgebras of
Tm = End(Ym), each of which contains the identity operator on Ym.

We proceed by induction for this part of the argument. Let k be in the set: m − 1 ≥ k ≥ 3.
Let Tk = span(

∏k−1
t=1 Mt ). By way of induction, assume that there exists a descending sequence of

subspaces of Ym, denoted {Yk}m−1
k=3 satisfying: Ym ⊃ Ym − 1 ⊃ . . . ⊃ Y3, such that each Yk is an

irreducible Tk-module under the restricted Tk action. Since Tm ⊃ . . . ⊃ T3 is a descending sequence
of subalgebras, therefore, Tk can be restricted to act on Yk + 1. Let Uk = HomTk (Yk, Yk+1). Also
assume that there is a Tk-module isomorphism:

Sk : Uk ⊗ Yk −→ Yk+1, (13)

uk ⊗ yk �→ uk(yk),

where uk ∈ Uk, and yk ∈ Yk. Under this isomorphism, assume that

Tk
∼= IUk ⊗ End(Yk), (14)

and

Mk
∼= End(Uk) ⊗ IYk .

Now let us consider the terminating case when k = 2. The subalgebras M1, M2 are subalgebras
of T3 = span(M1 M2). By induction assumption (14), under restricted T3 action, T3 = End(Y3).
Restricted actions of the subalgebras M1, M2 comprise a set of mutually commuting, self-adjoint
(for the inner product on W restricted to Y3) subalgebras of T3 = End(Y3), and each of them contains
the identity operator on Y3. Also, T2 = M1. This case then reduces to the case m = 2, that we
have already proved before stating the induction assumption. The m = 2 result then implies that for
the restricted M1 action on Y3, there is some irreducible M1-module Y2, such that if we denote its
multiplicity space: U2 = HomM1 (Y2, Y3), we have an M1-module isomorphism S2:

S2 : U2 ⊗ Y2 −→ Y3, (15)

u2 ⊗ y2 �→ u2(y2),

where u2 ∈ U2, and y2 ∈ Y2. Under the isomorphism S2, we have that

M1
∼= IU2 ⊗ End(Y2),
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and

M2
∼= End(U2) ⊗ IY2 .

Using the isomorphisms (13) of the induction step, with (11) and (15), implies that Sm is given
as

Sm : Um ⊗ Um−1 ⊗ · · · ⊗ U2 ⊗ Y2 −→ W,

um ⊗ um−1 ⊗ · · · ⊗ u2 ⊗ y2 �→ um(um−1(. . . (u2(y2)))),

where uk ∈ Uk, for 2 ≤ k ≤ m, and y2 ∈ Y2.
Define the vector spaces Vk := Uk , for 2 ≤ k ≤ m, and V1 := Y2, and the isomorphism

SW := S−1
m . Then the vector spaces {Vk}m

k=1, and the isomorphism SW satisfy the statement of
the lemma. The proof shows that the order in which the subalgebras {Mk}m

k=1 are enumerated does
not affect the conclusion. One can also prove this lemma via a slightly more general route, noting
that the subalgebras involved are semisimple, which follows by Corollary B.3, and by using the
semisimple version of the Double Commutant Theorem, Theorem A.7. The approach in the given
proof is more specific. �

Remark. We observe that if some of the subalgebras Mk in Lemma 3.12 are multiples of the
identity operator, then the corresponding vector spaces Vk will be (trivial) one-dimensional spaces.

Proof of Theorem 3.10. Let us assume that Ax = span(
∏

y∈N Dx−y,x ). Fix x ∈ Zn , let y ∈ N .
The subalgebras Dx−y,x are self-adjoint (as Rx−y are self-adjoint) subalgebras of Ax , and they
pairwise commute (as Rx−y pairwise commute), and each contains the identity of Ax . Hence, by
Lemma 3.12, there exists a isomorphism of vector spaces:

Sx : W −→
⊗
k∈N

Vx−k,x

for some vector spaces {Vx−k,x }k∈N . Under the isomorphism Sx, for all k ∈ N :

Dx−k,x
∼= End(Vx−k,x ) ⊗

⊗
z∈N ,z �=k

IVx−z,x

By translation invariance of R, the isomorphisms Sx can be taken to be the same and the sets
of vector spaces {Vx−k,x }k∈N , for all x ∈ Zn , can be taken to be the same. Therefore, there exists a
isomorphism of vector spaces, S:

S : W −→
⊗
z∈N

Vz

for some vector spaces {Vz}z∈N . Under the isomorphism S, for all y ∈ N :

Dx−y,x
∼= End(Vy) ⊗

⊗
z∈N ,z �=y

IVz .

For the converse, let us assume that there exists, for some vector spaces {Vz}z∈N , an isomorphism
S:

S : W −→
⊗
z∈N

Vz

such that

Dx−y,x
∼= End(Vy) ⊗

⊗
z∈N ,z �=y

IVz
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then

span
( ∏

y∈N
Dx−y,x

) = S−1span

( ∏
y∈N

(
End(Vy) ⊗

⊗
z∈N ,z �=y

IVz

))
S

= S−1
( ⊗

z∈N
End(Vz)

)
S = Ax .

�
Theorem 3.10 establishes an equivalence between the fact that the algebra of operators on a

single cell is generated by those pieces of evolved subalgebras that are localized on the cell, and a
tensor product structure of the single cell Hilbert space. In the following we show that Theorem 3.10
enables the classification of a subset of QCAs as QLGAs.

A. Locally equivalent QCA

We note that, just as changing the specific choice of symbols in the alphabet of a classical
CA does not change the dynamics, any local isomorphism of the cell Hilbert space and the global
time evolution operator of a QCA results in equivalent dynamics. The local isomorphisms of the
cell Hilbert space are simply the unitary group of the appropriate dimension. It is therefore only
dimension d of the cell Hilbert space that defines the local Hilbert space W because all Hilbert
spaces of the same finite dimension d are isomorphic to Cd . For any QCA we may therefore define
a local equivalence class of QCA defined by a local Hilbert space W of finite dimension, all local
unitary operators on W and a global evolution R on HC .

Let us define a local transformation of the Hilbert space of finite configurations. Given a local
unitary operator U on W , the image of the symbol basis BQ (4), denoted BQ, U, is

BQ,U = U (BQ) = {U |q〉 : q ∈ Q}. (16)

One observes that the inner product on BQ is preserved on the image BQ, U by the local unitary
transformation U: 〈Uq|Uq′〉 = 〈q|q′〉, for all |q〉, |q′〉 ∈ BQ.

A set of locally transformed finite configurations CU is as defined in Definition 2.1 with BQ

replaced by BQ, U. Then the inner product on W (5) restricted to BQ, U, naturally induces an inner
product on CU , hence on span(CU ). A locally transformed Hilbert space of finite configurations,
denoted by HCU , is the �2 completion of span(CU ), as in Definition 2.2, under the norm induced by
the inner product on span(CU ).

Let Ũ be the local transformation that maps HC to HCU :

Ũ : HC −→ HCU .

This map is defined on C as

Ũ : C −→ CU ,⊗
x∈Zn

|cx 〉 �→
⊗
x∈Zn

U (|cx 〉),

and extended to HC .
Given a global evolution operator R on HC (we assume the neighborhood N in the definition of

R), a locally transformed global evolution operator RU on HCU is defined as

RU := Ũ RŨ †. (17)

The set of locally transformed Hilbert spaces of finite configurations is

LW := {HCU : U is a unitary operator on W }.
Now consider the set of pairs

EW := {(R,HC) : HC ∈ LW , R is a global evolution operator on HC}.
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We say that the pair (R,HC) ∈ EW is equivalent to (R′,HC′ ) ∈ EW , if HC′ = HCU , and R′ = RU,
for some unitary operator U on W . This defines an equivalence relation on the set of pairs EW .
Therefore, the pair (R,HC) is a representative of the equivalence class [(R,HC)] = {(RU ,HCU ) :
U is a unitary operator on W }.

B. Separability of the quiescent symbol and the propagation operator

Assume there is an isomorphism S as in Theorem 3.10. Denote Ŵ = S(W ) = ⊗
z∈N Vz . Ŵ can

be identified with CdW and imbued with an inner product. We choose this inner product such that
the image of the symbol basis BQ (4) under S, S(BQ) = {S(|q〉): q ∈ Q} is an orthonormal set. With
this inner product, Ŵ becomes a Hilbert space. Note that this basis of Ŵ , which is the image of BQ,
will not in general consist of simple tensors. In addition, imbuing each Vk with an inner product and
then constructing an inner product on Ŵ may result in an inner product on Ŵ which is inconsistent
with the requirement that the image of the symbol basis be orthonormal.

For each z ∈ N , let

{|kz〉}1≤kz≤dVz
(18)

be a basis of Vz . Use k to label elements of the Cartesian product
∏

z∈N {1, .., dVz }. A natural basis
for the Hilbert space Ŵ = ⊗

z∈N Vz can be written

BN = {
⊗
z∈N

|k(z)〉 : k ∈
∏
z∈N

{1, .., dVz }}. (19)

The notation k(z) stands for the zth coordinate element of k ∈ ∏
z∈N {1, .., dVz }. And where

|k(z)〉 ∈ Vz . (20)

We shall refer to an individual tensor factor within a cell, i.e., an element of Vz for some z ∈ N , as a
component. The notation here is just as for the case of a classical LGA in Eq. (1). In the classical case
different lattice vectors z can have different alphabets. Here, the dimensions of the Vz may differ,
and hence they have distinct bases. In the case where Vz = C2∀z the basis of Ŵ that we obtain
corresponds to the occupation number representation for systems of particles. This representation is
used widely, particularly in quantum simulation of fermionic systems.5, 56, 72

We add |q̂0〉 = S(|q0〉) to the basis BN and define

Q̂ = BN ∪ {|q̂0〉}. (21)

This is necessary because |q̂0〉 may not be an element of the basis BN , in which case we can express
it as

|q̂0〉 =
∑

k ∈ ∏
j∈N {1, .., dVj }

ω(k)
⊗
z∈N

|k(z)〉,

where k ∈ ∏
z∈N {1, .., dVz } and ω is some complex valued function

ω :
∏
z∈N

{1, .., dVz } −→ C.

We then consider the set of finite configurations, taken over every site, and define the counterparts
of the set of finite configurations and the Hilbert space of finite configurations:

Definition 3.13. The set of finite configurations in component form, denoted by Ĉ, is the set of
simple tensor products with only finitely many active elements,

Ĉ := {
⊗
x∈Zn

|ĉx 〉 : |ĉx 〉 ∈ Q̂, all but finite |ĉx 〉 = |q̂0〉}.
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The inner product on Ĉ is induced by the inner product on Ŵ . Let |ĉ〉 = ⊗
x∈Zn |ĉx 〉, |ĉ′〉 =⊗

x∈Zn |ĉ′
x 〉 ∈ Ĉ. Define the inner product of the elements |ĉ〉, |ĉ′〉:

〈ĉ|ĉ′〉 =
∏

x∈Zn

〈ĉx |ĉ′
x 〉,

and extend it by linearity to get an inner product on span(Ĉ).

Definition 3.14. The Hilbert space of finite configurations in component form, denoted by HĈ ,
is the �2 completion of span(Ĉ), under the norm induced by the above inner product.

We will use the term Hilbert space of an individual cell x to simply mean the set in which
|ĉx 〉 can take any value, without violating the definition of Ĉ. The tensor factors corresponding to
the Hilbert spaces of individual cells are indexed by the cell index x ∈ Zn . Thus we can index the
Hilbert space of a cell x by Ŵx := Ŵ . These spaces themselves are composed of tensor factors Vz

indexed by the component index z, which runs over the neighborhood N , i.e., z ∈ N . So we index
the sub-factors of Ŵx by Vz,x := Vz . We also need for every cell x, the component coordinates given
by kx ∈ ∏

z∈N {1, .., dVz }, as in (19). Then, as in (20), |kx(z)〉 is a basis element of Vz,x . Also, we
have that Ŵx = ⊗

z∈N Vz,x .
The picture of time evolution that we shall establish is that of a permutation on tensor factors

that rearranges the components |kx(z)〉 among the cells x ∈ Zn , followed by transformations acting
only on each cell Hilbert space Ŵx = ⊗

z∈N Vz,x . We first take care to define the map that permutes
the tensor factors and understand what its existence implies about the structure of the space HĈ .
These properties will be useful in proving the main theorem.

We will formally specify the propagation operator, relative to the neighborhood N , by speci-
fying it on elements of Ĉ. This map acts by shifting one component from each of the basis elements⊗

z∈N |ky(z)〉 of the neighborhood cells y ∈ Nx into the corresponding component of the cell x.
We see at once that to be able to define the propagation operator on Ĉ will require that the new

quiescent symbol |q̂0〉 = S(|q0〉) ∈ ⊗
z∈N Vz , is a simple tensor, i.e., of the form:

|q̂0〉 =
⊗
z∈N

|q̂0,z〉

for some |q̂0,z〉 ∈ Vz . If this is not the case then we may always find a unitary operator U acting
on W , such that S(U|q0〉) is a simple tensor. In this case we work with the locally equivalent QCA
defined by the pair (RU ,HCU ) in (17) of Section III A. Let us therefore assume that |q̂0〉 has this
property.

Under this assumption, the basis for Vz in (18) can be chosen such that |q̂0〉 ∈ BN . With the
inclusion of |q̂0〉 in BN , the definition of Q̂ (21) becomes Q̂ = BN (19). This allows us to write an
element |ĉ〉 ∈ Ĉ in the form:

|ĉ〉 =
⊗
x∈Zn

|ĉx 〉 =
⊗
x∈Zn

⊗
z∈N

|kx (z)〉, (22)

where the xth tensor factor of an element
⊗

x∈Zn |ĉx 〉 ∈ Ĉ is given by

|ĉx 〉 =
⊗
z∈N

|kx (z)〉 ∈ Ŵx , (23)

and where

|kx (z)〉 ∈ Vz,x . (24)

Now we may define the propagation operator relative to the neighborhood N , that we denote
by σ . We combine the cell and component indices together in a pair (x, z) ∈ Zn × N . As σ permutes
the cell indices x ∈ Zn , leaving the component indices z ∈ N intact, we can define σ , on Ĉ, in terms
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of a cell-indexing function sσ : Zn × N −→ Zn , as

σ : Ĉ −→ Ĉ⊗
x∈Zn

⊗
z∈N |kx (z)〉 �→ ⊗

x∈Zn

⊗
z∈N |ksσ (x,z)(z)〉, (25)

where sσ is defined as follows:

sσ : Zn × N −→ Zn,

(x, z) �→ x + z.

In other words σ moves the zth component of cell x + z to the zth component of cell x. σ is extended
to a unitary, translation-invariant operator on HĈ . We can omit sσ and write the action of σ as

σ :
⊗

x∈Zn

⊗
z∈N |kx (z)〉 �→ ⊗

x∈Zn

⊗
z∈N |kx+z(z)〉.

We note that the structure described above corresponds to the classical case in the following
way. We identify the states of a classical lattice-gas with the elements of Ĉ. The state of a lattice-gas
site is simply |ĉx 〉, and the state of lattice vector z is an element of the basis of Vz . We may think,
therefore, of the tensor factors Vz , as Hilbert spaces of lattice vectors pointing to neighborhood site
z. Note, however, that because these are quantum models arbitrary superposition states over the
elements of this basis are allowed.

C. The collision operator

As we shall prove below, an evolution composed of the cell-wise isomorphism S and the
propagation operator σ obeys the conditions to be a QCA. However, this is not the only possible
evolution. Performing any cell-wise unitary after the isomorphism S will also give us a QCA.

We therefore formally construct an operator F̂ , by specifying it on the basis Ĉ of HĈ in terms
of some unitary operator F on Ŵ = ⊗

z∈N Vz , as follows:

F̂ :
⊗
x∈Zn

|ĉx 〉 �→
⊗
x∈Zn

F(|ĉx 〉).

Then we have the following lemma that tells us what conditions ensure that F̂ is defined on HĈ :

Lemma 3.15. F̂ is defined on Ĉ as a map F̂ : Ĉ −→ HĈ , and can be extended to HĈ as unitary
and translation-invariant operator, if and only if F has |q̂0〉 as an invariant (an eigenvector with
eigenvalue one): F |q̂0〉 = |q̂0〉.

The proof of this lemma is included in Appendix D. Suppose F |q̂0〉 = |q̂0〉, then we can define

F̂ : HĈ −→ HĈ

which is the extension of the following definition on Ĉ to HĈ :

F̂ : Ĉ −→ HĈ, (26)⊗
x∈Zn

|ĉx 〉 �→
⊗
x∈Zn

F(|ĉx 〉).

Whereas the operator σ is a map that moves the tensor factors Vz between cells of the automata,
the operator F acts locally on states in

⊗
z∈N Vz . In Subsection III B we identified the tensor factors

Vz with lattice-gas vectors. The operator F acts separately on the states of each lattice-gas site. This
operator corresponds to the collision operator of a quantum lattice-gas, as we shall show in detail
below.
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D. The definition of a quantum lattice-gas automaton (QLGA)

At this point we have developed tools that are sufficient to give a formal definition of QLGA.
The dynamics proceed by collision and propagation, as in the classical case and as in the models
defined in Refs. 39, 42–44, and 7–9. A QLGA is defined as follows:

(i) A lattice L = Zn , whose sites we shall label by x.
(ii) A neighborhood N . This translates to a neighborhood Nx for each cell x, consisting of a set of

cells as follows: Nx = {x + z|z ∈ N }.
(iii) For each element of the lattice L there is a site Hilbert space Ŵ = ⊗

z∈N Vz , for some finite-
dimensional vector spaces {Vz}z∈N . Ŵ contains a distinguished unit vector, the quiescent state
|q̂0〉, which is a simple tensor:

|q̂0〉 =
⊗
z∈N

|q̂0,z〉, where|q̂0,z〉 ∈ Vz .

(iv) A Hilbert space of finite configurations in component form HĈ as defined in Definition 3.14,
in terms of Ŵ = ⊗

z∈N Vz and |q̂0〉.
(v) A state of the automaton, �, is an element of the Hilbert space of finite configurations in

component form.
(vi) A propagation operator relative to the neighborhood N , σ : HĈ �→ HĈ , as defined in (25).
(vii) A local collision operator F, which is a unitary operator on the site Hilbert space Ŵ = ⊗

z∈N Vz ,
such that F has |q̂0〉 as an invariant (an eigenvector with eigenvalue one): F |q̂0〉 = |q̂0〉. The
associated collision operator F̂ : HĈ �→ HĈ , in terms of F, as defined in (26).

(viii)A global evolution operator R̂ which consists of applying the propagation operator σ followed
by the local collision operator at every site, i.e., is given by

R̂ = F̂σ.

The tensor factors Vz may be identified with the lattice vectors of a classical lattice-gas, which
point to the elements of the neighborhood of a site.

E. Local inner product preserving transformation to component form

Let S̃ be the map that takes HC to HĈ , i.e. the global map that is the result of applying the local
isomorphism S to every cell.

S̃ : HC −→ HĈ

this map is defined on C as

S̃ : C −→ HĈ, (27)⊗
x∈Zn

|cx 〉 �→
⊗
x∈Zn

S(|cx 〉),

and extended to HC . Here S : W −→ Ŵ is as in Theorem 3.10, and with the choice of inner product
on Ŵ = ⊗

z∈N Vz as discussed at the beginning of Sec. III B, S is an inner product preserving
isomorphism of Hilbert spaces W and Ŵ . This implies S̃ is an inner product preserving isomorphism
of Hilbert spaces HC and HĈ .

F. Quantum cellular automata and quantum lattice-gases

Now we combine the foregoing results to prove our main theorem and characterize the class of
QCAs that are QLGAs.

For a QCA defined by (R,HC), with neighborhoodN , letDx−y,x be as defined in (10), where x ∈
Zn , and y ∈ N . Assuming that R obeys the condition in Theorem 3.10: Ax = span(

∏
y∈N Dx−y,x ),

we can construct a locally equivalent QCA (R′,HC′ ) (as defined in Sec. III A), with a quiescent
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symbol |q ′
0〉, whose image under the isomorphism S in Theorem 3.10, satisfies

|q̂ ′
0〉 = S(|q ′

0〉) ∈
⊗
z∈N

Vz, isasimpletensor, i.e.,|q̂ ′
0〉 =

⊗
z∈N

|q̂ ′
0,z〉, where|q̂ ′

0,z〉 ∈ Vz .

Under the condition in Theorem 3.10, therefore, we may as well consider a QCA (R,HC) for which
|q̂0〉 is a simple tensor. That is, up to local unitary equivalence:

Theorem 3.16. R is the global evolution of a QCA on the Hilbert space of finite configurations
HC , with neighborhood N , and satisfies: Ax = span(

∏
y∈N Dx−y,x ), if and only if:

(i) There exists an isomorphism of vector spaces S:

S : W −→
⊗
z∈N

Vz

for some vector spaces {Vz}z∈N . Under the isomorphism S, for each y ∈ N :

Dx−y,x
∼= End(Vy) ⊗

⊗
z∈N ,z �=y

IVz .

Furthermore, Ŵ = ⊗
z∈N Vz can be given an inner product such that S is an inner product

preserving isomorphism of Hilbert spaces.
(ii) R is given by

R = S̃−1 F̂σ S̃,

where σ is as in (25), F̂ is as in (26) in terms of a unitary map F on
⊗

z∈N Vz , and S̃ is as in
(27).

(iii) F, in the definition of F̂ , has |q̂0〉 as an invariant: F |q̂0〉 = |q̂0〉.

Before proving the theorem, we summarize its implications.

Remark. Theorem 3.16 proves that QCA that satisfy Ax = span(
∏

y∈N Dx−y,x ) are equivalent
to QLGA, and vice versa in the following sense. Part (i) of Theorem 3.16 shows that there is an
isomorphism S from the cell algebra of the QCA to the states of the lattice vectors of the QLGA.
Part (ii) shows that applying S to the Hilbert space of each cell enables R to be realized as a
product of collision and propagation operators. Hence Theorem 3.16 identifies QCA satisfying
Ax = span(

∏
y∈N Dx−y,x ) with QLGA as defined in Subsection III D.

Proof of Theorem 3.16. We first prove that if R is the global evolution of a QCA, and satisfies

Ax = span(
∏
y∈N

Dx−y,x ),

then (i), (ii), and (iii) follow.
By Theorem 3.10, the vector space isomorphism S in (i) is immediate. We can imbue Ŵ =

S(W ) = ⊗
z∈N Vz with an inner product such that {S(|q〉): q ∈ Q} is an orthonormal set (as discussed

in the beginning of Sec. III B). By this choice of inner product, Ŵ is a Hilbert space such that S is
an inner product preserving isomorphism of Hilbert spaces, hence proving (i).

By Corollary 3.11 (iii), Rx = span(
∏

z∈N Dx,x+z), where the definition of Dx,x+z is as in (10).
It follows that

S̃Rx S̃−1 = span(
∏
z∈N

S̃Dx,x+z S̃−1), (28)
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where S̃ is as in (27). We use the indexing from (22) to (24). The isomorphisms from Theorem 3.10
gives us

Ax = S̃−1( ⊗
z∈N

End(Vz,x )
)
S̃,

S̃Dx,x+z S̃−1 = End(Vz,x+z).

Using the above, we expand the LHS of (28):

S̃Rx S̃−1 = S̃ R†Ax RS̃−1 = (S̃ R† S̃−1)
(⊗

z∈N
End(Vz,x )

)
(S̃ RS̃−1),

and the RHS:

span(
∏
z∈N

S̃Dx,x+z S̃−1) = span(
∏
z∈N

End(Vz,x+z)) =
⊗
z∈N

End(Vz,x+z),

and obtain

(S̃ R† S̃−1)
(⊗

z∈N
End(Vz,x )

)
(S̃ RS̃−1) =

⊗
z∈N

End(Vz,x+z). (29)

Let us denote R̂ = S̃ RS̃−1:

R̂ = S̃ RS̃−1 : HĈ −→ HĈ .

R̂ is clearly unitary as R is unitary and S̃ is inner product preserving (S̃ is composed of inner
product preserving operator S acting on every cell), and is translation-invariant since R and S̃ are
translation-invariant.

Fix x ∈ Zn . Choose a basis, BVx , of Ŵx = ⊗
z∈N Vz,x :

BVx = {|bx 〉} ⊂
⊗
z∈N

Vz,x . (30)

For instance, we can choose BVx to be the product basis of Ŵx of the form (19), letting:
BVx = {⊗z∈N |kx (z)〉 : kx ∈ ∏

z∈N {1, .., dVz }}. The set {|bx 〉 ⊗ 〈b′
x | : |bx 〉, |b′

x 〉 ∈ BVx } is a basis of
End(Ŵx ) = ⊗

z∈N End(Vz,x ). Choose such a basis element of End(Ŵx ) and create a basis operator
local on cell x:

Âx = (|bx 〉 ⊗ 〈b′
x |) ⊗ I{x}, (31)

where I{x} is the identity on co-{x} space (defined in Definition 3.1 for HC , and the definition applies

equally for HĈ by replacing C with Ĉ). I{x} is included as part of the local operator to help make the
argument clear:

R̂† Âx R̂ = R̂†((|bx 〉 ⊗ 〈b′
x |) ⊗ I{x}

)
R̂.

By (29), R̂† Âx R̂ is a rank one element of
⊗

z∈N End(Vz,x+z), whereas, by definition, Âx is a rank-one
element of End(Ŵx ) = ⊗

z∈N End(Vz,x ). Since R̂† Âx R̂ is an element of
⊗

z∈N End(Vz,x+z) for all
basis elements Âx ∈ End(Ŵx ) of the form chosen, this implies that we can write R̂† Âx R̂ as follows:

R̂† Âx R̂ = σ †
x

(
(|wx 〉 ⊗ 〈w′

x |) ⊗ I{x}
)
σx , (32)

for some |wx 〉, |w′
x 〉 ∈ Ŵx = ⊗

z∈N Vz,x , and an appropriate permutation operator σ x. σ x maps the
components of the neighborhood elements of cell x,

⊗
z∈N Vz,x+z , to the corresponding components

of cell x,
⊗

z∈N Vz,x .
We label the combined cell and component indices together by the pair (t, z) ∈ Zn × N . It is

necessary and sufficient that σ x satisfy the following conditions:

(a) σ x permutes the zth component of a cell to zth component of another cell (where z ∈ N ). That
is, σ x permutes the cell indices t ∈ Zn , leaving the component indices z ∈ N unchanged.
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(b) For the cell index t = x, σ x maps the zth component of the neighborhood cell x + z to the zth
component of cell x (where z ∈ N ).

To satisfy the requirement in condition (a) that σ x only permute the cell indices, keeping the
component indices intact, we use a cell-indexing function, sx : Zn × N −→ Zn , in the definition of
σ x. As every element |ĉ〉 ∈ Ĉ (Definition 3.13) is of the form |ĉ〉 = ⊗

t∈Zn

⊗
z∈N |kt (z)〉 (22), we

can define σ x as follows:

σx : Ĉ −→ Ĉ⊗
t∈Zn

⊗
z∈N |kt (z)〉 �→ ⊗

t∈Zn

⊗
z∈N |ksx (t,z)(z)〉.

The rest of the requirements in conditions (a) and (b) above can be recast as restrictions on sx.
The remaining requirement in condition (a) is that σ x is a permutation. This implies that when the
component index of the domain of sx is fixed to be some z ∈ N , sx is a bijection of the cell indices
Zn , i.e., a permutation of cell indices:

sx |Zn×z : Z
n × z ←→ Zn.

Condition (b) implies that when the cell index t ∈ Zn of the domain of sx is fixed to be x, sx is as
follows:

sx |x×N : x × N −→ Zn,

(x, z) �→ x + z.

σ x thus defined on Ĉ under the constraints (a) and (b), is extended to HĈ .
Now consider the implication of combining (31) and (32):

R̂†
(
(|bx 〉 ⊗ 〈b′

x |) ⊗ I{x}
)
R̂ = σ †

x

(
(|wx 〉 ⊗ 〈w′

x |) ⊗ I{x}
)
σx . (33)

We have the above equality for every |bx 〉 ⊗ 〈b′
x | and for the corresponding |wx 〉 ⊗ 〈w′

x |. So we
define a linear map Tx on Ŵx = ⊗

z∈N Vz,x , by defining it on the basis BVx (30):

Tx : BVx −→ Ŵx ,

|bx 〉 �→ |wx 〉,
where |bx〉 and |wx 〉 are as in (33). Tx is extended to Ŵx by linearity. Then Tx is unitary since R̂ is
unitary. By symmetry, we can write (33) as

R̂†
(
(|bx 〉 ⊗ 〈b′

x |) ⊗ I{x}
)
R̂ = σ †

x

(
(Tx |bx 〉 ⊗ 〈b′

x |T †
x ) ⊗ I{x}

)
σx .

This is true for every x ∈ Zn . In addition, R̂ = S̃ RS̃−1 is translation-invariant, which implies that all
the maps Tx can be taken to be the same unitary map T on Ŵ = ⊗

z∈N Vz , and that the map σ x for
each x is translation-invariant, i.e., each σ x is the map σ defined in (25). Now define F : Ŵ �→ Ŵ ,
to be F := T†. Then R̂ = S̃ RS̃−1 is a composition of the propagation operator σ followed by the
collision operator F̂ :

S̃ RS̃−1 = F̂σ,

where σ is as defined in (25), and F̂ is a unitary map on HĈ as defined in (26) in terms of F. Thus
we get part (ii) of the theorem. By Lemma 3.15 we get part (iii) of the theorem: F in the definition
of F̂ has |q̂0〉 as an invariant, i.e., F |q̂0〉 = |q̂0〉.

Next we prove that if (i), (ii), and (iii) hold then R is the global evolution of a QCA with neigh-
borhood N , and that it satisfies the condition Ax = span(

∏
y∈N Dx−y,x ). Unitarity and translation-

invariance are obvious from the definition. To prove causality, let us assume Ax is a local operator on
cell x. We consider the action of R†AxR on basis elements of HC . Both S̃ and F̂ act locally on cells by
S and F, respectively. The conjugation of Ax by S is an isomorphism of Ax to Âx = ⊗

z∈N End(Vz,x )
(the counterpart of Ax ), and the conjugation of Âx by F is an isomorphism of Âx to itself. Observe
also that F |q̂0〉 = |q̂0〉. Then we may as well simply look at the conjugation of Âx by σ , and only
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need to show that propagation is causal. Therefore we can simply consider the action of σ−1Âxσ on
basis elements of HĈ . We can write such a basis element as

|ĉ〉 =
⊗
y∈Zn

(⊗
z∈N

|ky(z)〉).
Then

σ |ĉ〉 =
⊗
y∈Zn

(⊗
z∈N

|ky+z(z)〉).
There is no loss of generality (by linearity) in assuming that Âx ∈ Âx is a basis element:

Âx =
((⊗

r∈N
|ax (r )〉) ⊗ ( ⊗

r ′∈N
〈a′

x (r ′)|)) ⊗ I{x},

where |ax (r )〉 ∈ Vr , and |a′
x (r ′)〉 ∈ Vr ′ , and where I{x} is the identity on co-{x} space, as in Definition

3.1. Denote by px = ∏
z∈N 〈a′

x (z)|kx+z(z)〉. Then this implies

σ−1 Âxσ |ĉ〉 = px

⊗
y=x+z:z∈N

( |ax (z)〉︸ ︷︷ ︸
z′=z

⊗
⊗

z′∈N \{z}
|ky(z′)〉) ⊗ ( ⊗

y∈Zn\{x+z:z∈N }

⊗
z′∈N

|ky(z′)〉).
The above shows that σ−1 Âxσ is local upon Nx , hence by Theorem 3.8 (structural reversibility),
R̂ is causal relative to neighborhood N . This in turn implies, by cell-wise conjugation with local
isomorphisms S and F, that R is causal relative to neighborhood N .

Next we show that Ax = span(
∏

y∈N Dx−y,x ). By the same reasoning used in showing causality,

we can consider the following quantities. Let B̂z = σ−1Âzσ (the counterpart of Rz). Let D̂x−y,x =
B̂x−y ∩ Âx (the counterpart of Dx−y,x ), for y ∈ N . Then it is clear by the definition of σ , that

D̂x−y,x = B̂x−y ∩ Âx = End(Vy,x ) ⊗
⊗

z∈N ,z �=y

IVz,x

for each y ∈ N . This implies

Âx = span(
∏
y∈N

D̂x−y,x ).

This further implies, by cell-wise conjugation with local isomorphisms S and F, that: Ax =
span(

∏
y∈N Dx−y,x ).

The significance of this theorem is that it connects a local condition to the global structure
of the QCA. We state the theorem in terms of propagation and collision operators which are the
quantum analogues of the substeps of the evolution for a classical lattice-gas. There are, however, a
few equivalent ways of expressing the global evolution R under the conditions of Theorem 3.16.

Corollary 3.17. The global evolution in Theorem 3.16 can be given as

R = T̃ σ S̃

for some map T̃ :

T̃ : HĈ −→ HC .

Proof. Let

T̃ : HĈ −→ HC

on Ĉ as

T̃ : Ĉ −→ HC⊗
x∈Zn

|cx 〉 �→
⊗
x∈Zn

S−1 F(|cx 〉).
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S, and F are as in Theorem 3.16. T̃ is extended to HĈ .
By Theorem 3.16:

R = T̃ σ S̃.

�
This is called the two-layered brick structure.54 However, instead of working with the space HC ,

we can look at the QCA global evolution as it acts on the space HĈ . This gives us another equivalent
form for the global evolution R.

Corollary 3.18. The global evolution in Theorem 3.16 can equivalently be given by a unitary
operator R̂ on HĈ :

R̂ = F̂σ.

Proof. Let

R̂ : HĈ −→ HĈ,

R̂ = S̃ RS̃−1.

By Theorem 3.16:

R̂ = F̂σ.

�
Remark. Another description of the QLGA is obtained under the unitary isomorphism:

σ : HĈ → HĈ .

Under this isomorphism, the global evolution becomes

Ř = σ R̂σ−1 = σ F̂ .

Thus, the global evolution R is equivalent to one given by another global evolution operator
R̂, with S̃ and S̃−1 providing the change of basis between HC and HĈ . The equivalent evolution R̂
happens in two stages: the propagation (or advection) stage given by σ , followed by the collision (or
scattering) stage given by the map F on

⊗
z∈N Vz . This completes the proof of equivalence of QCA

satisfying the local condition of Theorem 3.16 to QLGA. Theorem 3.16 therefore characterizes the
QLGA as a subclass of QCA. It is clear that the evolution given by Theorem 3.16 has as special
cases both the classical lattice-gas defined in the introduction and the lattice-gas models previously
investigated.7–9, 39, 40, 42–45 In Sec. IV we will give some examples of QCA which are not lattice-gases
and show how they violate the conditions of Theorem 3.16. We also compute the matrices Dx,y

explicitly for the simplest quantum lattice-gas and show that the condition is indeed satisfied.

IV. EXAMPLES

In this section we consider examples of three subclasses of QCA. In the first case we examine the
simplest quantum lattice-gas, defined as an example in Ref. 19 and also obtained from consideration
of the absence of scalar QCA in Ref. 39 and investigated in Refs. 39 and 42–44. Here it is instructive
to see the algebras that appear in our local condition. Second, we investigate the counter example
of Ref. 3 to show that our condition is indeed not satisfied in this case. Finally, we give an example
in which quantization of a classical automata changes the neighborhood size, and results in a QCA
which is also not a QLGA. In this case we show how adding a propagation step to the original QCA
allows our condition to be satisfied and hence results in a QLGA.
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A. The simplest QLGA

The simplest QLGA was originally investigated by Meyer as an extension of a single particle
partitioned QCA.39 In this model each site has two neighbors, and each site has two lattice vectors
that point to these neighbors. At most one particle may be present on each vector so the site Hilbert
space W is isomorphic to C4 � C2 ⊗ C2. The collision operator F is particle number conserving -
meaning that it is block diagonal with two blocks of dimension 1 and one block of dimension 2. We
may choose the basis {|00〉, |01〉, |10〉, |11〉} for W in which the collision operator F may be written

F =

⎛
⎜⎜⎜⎝

1 0 0 0

0 ieiα sin θ eiα cos θ 0

0 eiα cos θ ieiα sin θ 0

0 0 0 eiβ

⎞
⎟⎟⎟⎠.

The lattice is Z and the neighborhood is N = {−1,+1}. Because we are beginning from a
QLGA dynamics composed of propagation and collision we may take the map S to be the identity.
Then

W = Ŵ = C2 ⊗ C2

and the two tensor factors are V−1 � C2 and V1 � C2. From the Heisenberg point of view of the
dynamics of the algebras Ax , which are localized on a lattice-gas site and hence act on C4, the
collision step is simply some isomorphism of the algebra. We need therefore only to consider the
action of the propagation operator to determine the algebras Rx and Dx−y,x . The action of σ on an
operator localized on the site may be written

σ−1I ⊗ B ⊗ I ⊗ I ⊗ A ⊗ Iσ = I ⊗ I ⊗ A ⊗ B ⊗ I ⊗ I,

where the first two tensor factors (reading from left to right) are the left lattice-gas site x − 1, the
middle two tensor factors are the middle lattice-gas site x and the right two tensor factors are the
right lattice-gas site x + 1. From this it is straightforward to write

Dx−1,x = I ⊗ End(C2),

Dx+1,x = End(C2) ⊗ I.

Evidently the span of the product of these algebras is End(C4) and hence this model satisfies the
condition to be a quantum lattice-gas, as it must.

B. QCA that are not QLGA

Consider a one-dimensional classical CA as in Figure 4 in which a cell is 3 bits. Then a cell x is
given by a triple (ax , bx , cx ) ∈ (Z/(2))3. The neighborhood is N = {−1, 0, 1}, and the update rule
μ:

μ : ax �→ ax + bx−1,

bx �→ bx ,

cx �→ cx + bx+1.

a1 b1 c1 a2 b2 c2 a3 b3 c3

FIG. 4. One-dimensional CA which is not a QLGA after quantization.
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Quantizing this CA, we get a QCA. That means, we take the rule above to describe the evolution
of a cell state as a function of neighborhood state. A cell x of the QCA consists of 3 qubits, with basis
states: |ax〉 ⊗ |bx〉 ⊗ |cx〉, where ax , bx , cx ∈ Z/(2). The quiescent state is |q̂0〉 = |0〉 ⊗ |0〉 ⊗ |0〉.
The neighborhood is still N = {−1, 0, 1}.

Define the global evolution R on HC through its action by a controlled-NOT operation on the
neighborhood cells as follows:

R : |ax 〉 �→ |ax + bx−1〉
|bx 〉 �→ |bx 〉
|cx 〉 �→ |cx + bx+1〉.

Let us write the element of Hadamard basis as: |χa〉 = 1√
2
(|0〉 + (−1)a|1〉) for a ∈ Z/(2). Note that

|χ0〉 = | + 〉 and |χ1〉 = | − 〉. We can equivalently look at the qubits in basis states: |χax 〉 ⊗ |bx 〉 ⊗
|χcx 〉, where ax , bx , cx ∈ Z/(2). Since | + 〉 and | − 〉 are eigenvectors of the shift operation with
eigenvalues 1 and − 1, respectively, R can be given as

R : |χax 〉 �→ |χax 〉
|bx 〉 �→ (−1)bx (ax+1+cx−1)|bx 〉

|χcx 〉 �→ |χcx 〉.

We now compute the subalgebras Dx−y,x = Rx−y ∩ Ax , where y ∈ N . Dx,x = Rx ∩ Ax =
span({|ax 〉〈ax | ⊗ |bx 〉〈bx | ⊗ |cx 〉〈cx |}), where |ax〉, |cx〉 ∈ {| + 〉, | − 〉}, and |bx〉 ∈ {|0〉, |1〉}.
Dx−1,x = Rx−1 ∩ Ax = CI ⊗ I ⊗ I. Dx+1,x = Rx+1 ∩ Ax = CI ⊗ I ⊗ I. Then it is clear that dim
span(

∏
y∈{−1,0,1} Dx−y,x ) = 8, while dim Ax = 64. Theorem 3.16 then implies that this QCA is not

a QLGA.
The 2-dimensional version of the above example is referred to as the Kari CA in Arrighi,

Nesme, and Werner.3 This is illustrated in Figure 5. The lattice L = Z × Z. A cell of this classical
CA consists of 9 bits. The neighborhood is N = {−1, 0, 1} × {−1, 0, 1}. The center bit of the center
cell acts by controlled-NOT on the appropriate bit of the neighboring cell as shown.

FIG. 5. Two-dimensional Kari CA which is not a QLGA after quantization.
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In the quantized version, the cells of the QCA are 9-qubits each. Enumerate the qubits of cell
x by (ix, jx) ∈ {−1, 0, 1} × {−1, 0, 1} (not to be confused with the neighborhood coordinates
on the lattice). (ix, jx) = (0, 0) corresponds to the center qubit of a cell. The quiescent state is
|q̂0〉 = ⊗

(ix , jx )∈{−1,0,1}×{−1,0,1} |0〉. The center qubit of the center cell acts by controlled-NOT on
the appropriate qubit of the neighboring cell as for the classical CA. This action is exactly as in
the 1-dimensional case. The neighborhood is the same as for the classical CA, N = {−1, 0, 1} ×
{−1, 0, 1}.

We compute, as in the 1-dimensional case, the subalgebras Dx−y,x = Rx−y ∩ Ax , where y ∈
N . Dx,x = Rx ∩ Ax = span(

∏
(ix , jx )∈{−1,0,1}×{−1,0,1} |aix jx 〉〈aix jx |), where |a00〉 ∈ {|0〉, |1〉}, and the

rest of |aix jx 〉 ∈ {|+〉, |−〉}, for (ix, jx) �= (0, 0). For all y ∈ N \ (0, 0), Dx−y,x = Rx−y ∩ Ax =
C

⊗
k∈{−1,0,1}×{−1,0,1} I. Then it is clear that dim span(

∏
y∈N Dx−y,x ) = 29, while dim Ax = 49.

Theorem 3.16 then implies that this QCA is also not a QLGA.

C. Examples of QCA that show effect of quantization on neighborhood

Consider a one-dimensional classical CA as in Figure 6 in which a cell is 2 bits. We consider
the scheme in which a cell x is given by a pair (ax, bx). The neighborhood is N = {0, 1}, and the
update rule μ:

μ : ax �→ ax ,

bx �→ bx + ax + ax+1.

Let us quantize this CA to get a QCA. A cell x of the QCA consists of 2 qubits: |ax〉 ⊗ |bx〉,
where ax , bx ∈ Z/(2). The quiescent state is |q̂0〉 = |0〉 ⊗ |0〉. This automata is closely related to the
“Toffoli CA” in Ref. 3.

Define the global evolution R on HC through its action by a controlled-NOT operation on the
basis of its neighborhood.

R : |ax 〉 �→ |ax 〉
|bx 〉 �→ |bx + ax + ax+1〉.

The neighborhood looks like N+ = {0, 1} as expected.
But we can equivalently look at the qubits in state: |ax 〉 ⊗ |χbx 〉, where ax , bx ∈ Z/(2), and |χbx 〉

is as defined in the examples above: |χbx 〉 = 1√
2
(|0〉 + (−1)bx |1〉) for bx ∈ Z/(2). Since |χbx 〉 is an

eigenvector for the shift operation, R can be given as

R : |ax 〉 �→ (−1)ax (bx−1+bx )|ax 〉
|χbx 〉 �→ |χbx 〉.

Now the neighborhood looks like N− = {−1, 0}. In fact, the neighborhood is N = N− ∪ N+ =
{−1, 0, 1}. This is a consequence of the well-known fact that the control and target of a controlled-
NOT operation in the basis | + 〉, | − 〉 are reversed as compared with the logical basis. Hence, while

a1 b1 a2 b2 a3 b3

FIG. 6. One-dimensional CA whose neighborhood changes after quantization.
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a1 b1 a2 b2 a3 b3

FIG. 7. One-dimensional radius-1/2 QLGA from permutation of bits in the CA of Figure 6.

controlled-NOT operations can only propagate classical information in one direction (from control
to target), they may propagate quantum information in both directions.

As before, we compute the subalgebras Dx−y,x = Rx−y ∩ Ax , where y ∈ N . Dx,x = Rx ∩
Ax = span({|ax 〉〈ax | ⊗ |bx 〉〈bx |}), where |ax〉 ∈ {|0〉, |1〉}, and |bx〉 ∈ {| + 〉, | − 〉}.Dx−1,x = Rx−1 ∩
Ax = CI ⊗ I.Dx+1,x = Rx+1 ∩ Ax = CI ⊗ I. Since dim span(

∏
y∈{−1,0,1} Dx−y,x ) = 4, while dim

Ax = 16, Theorem 3.16 implies that this QCA is again not a QLGA.
The change in neighborhood on quantization for this cellular automaton should lead us to

question the original definition. Is there some redefinition of the cells that can maintain the same
neighborhood for classical and quantum automata, and also yield a QLGA? We can in fact take the
classical CA of Figure 6 and change it slightly by allowing a shift of bits, as shown in Figure 7. That
is, we have an extra step that shifts the ax + 1 to ax before applying the add operation. The result is
the following CA:

μ : ax �→ ax+1,

bx �→ bx + ax + ax+1.

Then, after quantization, we obtain a QLGA from it. We accomplish that because the shift of bits
corresponds to a shift of tensor factors (advection). This QLGA has a neighborhood N = {0, 1},
i.e., is a radius-1/2 QLGA.

R : |ax 〉 �→ |ax+1〉
|bx 〉 �→ |bx + ax + ax+1〉.

V. CONCLUSIONS

We have given a local algebraic condition for a quantum cellular automaton to be a quantum
lattice-gas. This result classifies QLGA as a subset of QCA, and resolves the question of which
QCA are equivalent to a circuit with a “brick structure.” This question has been open since Arrighi,
Nesme and Werner3 produced an example showing that QLGA and QCA are distinct classes,
contrary to the work of Ref. 54. The question of classifying the remaining QCA that are not QLGA
remains open. This open question motivates the reexamination of the definition of QCAs through
local rules.14, 15, 41, 67 The techniques introduced in this paper allow us to obtain rigorous results for
models defined on the Hilbert space of finite, unbounded configurations. The definition of this space
necessarily requires the definition of products with countably infinitely many terms,26, 63 just as is
required for the constructions for WQCA defined through local rules.14, 15, 41, 67 One might hope that
the techniques that are used in the present paper may also have utility in deciding which quantum
automata defined through local rules are also causal, and therefore true QCA.
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APPENDIX A: SOME BACKGROUND AND RESULTS ON REPRESENTATIONS
OF ASSOCIATIVE ALGEBRAS

We give a brief primer on representations of associative algebras relevant to this paper. The
material in this section, except for Corollary A.6 and Theorem A.8, is drawn from the texts by
Goodman and Wallach24, 25 and condensed for our purposes. Vector spaces in this section are
assumed to be complex. A representation of an associative algebra A is a pair (γ, V ) such that
γ : A −→ End(V ) is an associative algebra isomorphism. Since a representation (γ, V ) of A makes
V an A-module under the action: av = γ (a)v, for a ∈ A, and v ∈ V , we can call V an A-module
instead (with γ implied by the context). If U is a linear subspace of V such that γ (a)U⊂U for all
a ∈ A, then U is invariant under the representation. A representation (γ, V ) is irreducible if the
only invariant subspaces are {0} and V .

Let (γ, V ), (μ, W ) be two representations of an associative algebra A. Let Hom(V, W ) be
the space of C-linear maps from V to W . Denote by HomA(V, W ) the set of all T ∈ Hom(V, W )
such that Tγ (a) = μ(a)T for all a ∈ A. Such a map is called an intertwining operator between the
two representations. Two representations (γ, V ), (μ, W ) are equivalent if there exists an invertible
intertwining operator between the two representations.

Lemma A.1 (Schur’s lemma, Lemma 4.1.4, p. 180, Goodman and Wallach25). Let (γ, V ) and
(μ, W ) be irreducible representations of an associative algebra A. Assume that V and W have
countable dimension over C. Then

dim HomA(V, W ) =
{

1, if (γ, V ) ∼= (μ, W )
0, otherwise

Let (γ, V ) be a finite-dimensional representation ofA. Let Â be the set of all equivalence classes
of finite-dimensional irreducible representations of A. For each λ ∈ Â, fix a model (πλ, V λ). Let

Uλ = HomA(V λ, V ). (A1)

For each λ ∈ Â, Uλ is called a multiplicity space.
Define the map

Sλ : Uλ ⊗ V λ −→ V, (A2)

uλ ⊗ vλ �→ uλ(vλ).

Then Sλ is an intertwining operator with Uλ ⊗ V λ an A-module under the action a.(u ⊗ v) =
u ⊗ (av) for a ∈ A.

For λ ∈ Â, define the λ-isotypic component:

V [λ] :
∑

W⊂V :W∼λ

W.

A finite-dimensional A-module V is called completely reducible if for every invariant subspace
W ⊂ V there is a complementary invariant subspace U such that V = W ⊕ U . The following result
(Proposition 4.1.11, p. 183, in Ref. 25) provides equivalent characterizations of completely reducible
representations.

Proposition A.2. Let (γ, V ) be a finite-dimensional representation of A. The following are
equivalent:

(i) V is completely reducible.
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(ii) V = V1 ⊕ · · · ⊕ Vs with each Vi an irreducible A-module.
(iii) V = W1 + · · · + Wd with each W j an irreducible A-module.

Let (γ, V ) be a finite-dimensional representation of A, such that V is a completely reducible
A-module. Then it is a result from the representation theory of associative algebras (Goodman and
Wallach,24 Proposition 3.1.6, p. 120), that the map Sλ in (A2) is an A-module isomorphism of
Uλ ⊗ V λ with the submodule V [λ] ⊂ V :

Uλ ⊗ V λ ∼= V [λ]. (A3)

Further

V =
⊕
λ∈Â

V [λ].

This is called the primary decomposition of V . Thus if we extend the maps Sλ as follows:

Sγ =
⊕
λ∈Â

Sλ :
⊕
λ∈Â

Uλ ⊗ V λ −→ V (A4)

∑
λ∈Â

uλ ⊗ vλ �→
∑
λ∈Â

uλ(vλ)

then Sγ in (A4) is an isomorphism of A-modules (where V is an A-module via γ ). Then we have
the following isomorphism of algebras:

S−1
γ γ (a) Sγ =

⊕
λ∈Â

IUλ ⊗ πλ(a), (A5)

where a ∈ A, Uλ is as in (A1), and (πλ, V λ) is a model for the class λ.
We state the Double Commutant Theorem, in Goodman and Wallach,25 p. 184, specialized here

for a finite-dimensional vector space. Let V be a finite-dimensional vector space. Define, for any
subset S ⊂ End(V ), the commutant of S:

Comm(S) = {y ∈ End(V ) : ys = sy ∀s ∈ S}. (A6)

Theorem A.3 (Double commutant, Theorem 4.1.1325). Suppose A ⊂ End(V) is a subalgebra
containing the identity operator, such that V is a completely reducibleA-module. SetB = Comm(A).
Then A = Comm(B).

Denote by Spec(γ ) the set of irreducible representations that occur in the primary decomposition
of V . For each λ ∈ Spec(γ ), the multiplicity space Uλ = HomA(Vλ, V ) in (A4) is a Comm(A)-
module under the action:

b.u = bu, (A7)

where b ∈ Comm(A), and u ∈ Uλ, and bu : V λ u−→V b−→V is the composition (left multiplication by
b) map.

We adapt some results from Goodman and Wallach,25 Section 4.2.1 (General Duality Theorem).
Except for some substitutions, these results are taken exactly as in the said reference, including the
proofs. We obtain from the originals, derived in the setting of group representations, the versions
relevant to subalgebras of End(V). Thus, we get the associative algebra counterparts of the Duality
Theorem, Theorem 4.2.1,25 and Corollary 4.2.4 in Ref. 25.

Theorem A.4 (Duality, Theorem 4.2.125) Suppose A ⊂ End(V) is an subalgebra containing
the identity operator. Let V be a completely reducible A-module. Each multiplicity space Uλ in (A4)
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is an irreducible Comm(A)-module. Furthermore, if λ,μ ∈ Â, and Uλ∼=Uμ as Comm(A)-module,
then λ = μ.

Proof. We first prove that the action of Comm(A) on Uλ is irreducible. Let T ∈ Uλ be nonzero.
Given another nonzero element S ∈ Uλ we need to find r ∈ Comm(A) such that rT = S. Let X = T V λ

and Y = SV λ. Then by Schur’s lemma (Lemma A.1), X and Y are isomorphic A-modules of class λ.
Thus, there exists u ∈ Comm(A) such that uT : V λ −→ SV λ is an A-module isomorphism. Schur’s
lemma implies that there exists c ∈ C such that cuT = S, so we may take r = cu.

We now show that if λ �= μ then Uλ and Uμ are inequivalent modules for Comm(A). Suppose

φ : Uλ −→ Uμ

is an intertwining operator for the action of Comm(A). Let T ∈ Uλ be nonzero and set S = φ(T).
We want to show that S = 0. Set U = T V λ + SV μ. Then since we are assuming λ �= μ, the sum
is direct. Let p : U −→ SV μ be the corresponding projection. Then p ∈ Comm(A). Since pT = 0,
we have:

0 = φ(pT ) = pφ(T ) = pS = S,

which proves that φ = 0. �
Corollary A.5 (Corollary 4.2.425). Let B = Comm(A). Then V is a completely reducible B-

module. Furthermore, the following hold:

(i) Suppose for every λ ∈ Spec(γ ) there is given an operator Tλ ∈ End(V λ). Then there exists
T ∈ A that acts by I ⊗ Tλ on the λ-summand in the decomposition (A4).

(ii) Let T ∈ A ∩ B (the center ofA). Then T is diagonalized by (A4) and acts by scalar T̂ (λ) ∈ C on
Uλ ⊗ V λ. Conversely, given any complex valued function f on Spec(γ ), there exists T ∈ A ∩ B
such that T̂ (λ) = f (λ).

Proof. Since V is the direct sum of B-invariant irreducible subspaces by Theorem A.4, it is a
completely reducible B-module by Proposition A.2. We now prove the other assertions.

(i) Let T ∈ End(V) be the operator that acts by I ⊗ Tλ on the λ summand. Then T ∈ Comm(B),
and hence T ∈ A by the Double Commutant Theorem (Theorem A.3).

(ii) Each summand in (A4) is invariant under T, and the action of T on the λ summand is by an
operator of the form Rλ ⊗ I = I ⊗ Sλ with Rλ ∈ End(Uλ), and Sλ ∈ End(Vλ). Such an operator
must be a scalar multiple of the identity operator. The converse follows from (i). �

An algebraB is simple if the only two sided ideals inB are 0 andB. An algebraA is a semisimple
algebra if it is a finite direct sum of simple algebras. This is equivalent, by Wedderburn’s theorem
(Goodman and Wallach,24 Theorem 3.2.1, p. 128), to the statement that A is isomorphic to a finite
sum of matrix algebras.

For an algebra A ⊂ End(V ), such that V is a completely reducible A-module, let Spec(A) be
the set of irreducible representations that occur in the primary decomposition of V .

Corollary A.6. Let A ⊂ End(V ) be a subalgebra containing the identity operator, such that V
is a completely reducible A-module. Let B = Comm(A). Then there is an A-module isomorphism:

SV :
⊕
λ∈Â

Uλ ⊗ V λ −→ V, (A8)

∑
λ∈Â

uλ ⊗ vλ �→
∑
λ∈Â

uλ(vλ),
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where V λ is an irreducible module for the class λ ∈ Â, and Uλ = HomA(V λ, V ). Under this
isomorphism

A ∼=
⊕
λ∈Â

IUλ ⊗ End(V λ)

and

B ∼=
⊕
λ∈Â

End(Uλ) ⊗ IV λ ,

where the action of B on each Uλ is given by (A7).
In particular, A is semisimple.
Proof. V is a completely reducible A-module. This implies there is an A-module isomorphism

given by (A4):

SV :
⊕
λ∈Â

Uλ ⊗ V λ −→ V,

∑
λ∈Â

uλ ⊗ vλ �→
∑
λ∈Â

uλ(vλ),

where V λ is an irreducible module for the class λ ∈ Â, and Uλ = HomA(V λ, V ). Then by definition
of A action (as a subalgerba of End(V )) on V , under this isomorphism, Corollary A.5 implies

A ∼=
⊕

Spec(A)

IUλ ⊗ End(V λ).

Since V is finite-dimensional, the above implies that Spec(A) is a finite set. This in turn implies
that A is semisimple as it is isomorphic to a finite direct sum of finite dimensional matrix algebras.
Then a standard theorem on semisimple algebras, Proposition 3.3.1 in Ref. 24, implies that each
irreducible representations of A is equivalent to some element of Spec(A). Hence Â = Spec(A).
Therefore

A ∼=
⊕
λ∈Â

IUλ ⊗ End(V λ).

By Duality Theorem (Theorem A.4), under SV :

B ∼=
⊕
λ∈Â

End(Uλ) ⊗ IV λ ,

where the action of B on each Uλ is given by (A7). �
We state the semisimple algebra version of the Double Commutant Theorem, in Goodman and

Wallach,24 p. 137.

Theorem A.7 (Double Commutant Theorem for semisimple algebras). Suppose A ⊂ End(V)
is a semisimple subalgebra containing the identity operator. Then the algebra B = Comm(A) is
semisimple and A = Comm(B). Furthermore, there exists an A-module isomorphism

SA :
r⊕

j=1

U j ⊗ Vj −→ V,

r∑
j=1

u j ⊗ v j �→
r∑

j=1

u j (v j ),

where Vj is an irreducible A-module, and U j = HomA(Vj , V ). Under this isomorphism

A ∼=
r⊕

j=1

IU j ⊗ End(Vj )
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and

B ∼=
r⊕

j=1

End(U j ) ⊗ IVj .

Next we consider a general Hilbert space, and state the remarkable von Neumann density
theorem. The proof of the von Neumann density theorem can be found in Refs. 29 and 65. Consider
a Hilbert space H and the space, B(H), of bounded linear operators of H. Recall the following
definition. For any subset S ⊂ B(H), the commutant of S is defined as

Comm(S) = {y ∈ B(H) : ys = sy ∀s ∈ S}.
Theorem A.8 (von Neumann density theorem). Let A ⊂ B(H) be a self-adjoint algebra of

operators containing the identity operator, then the weak and strong closures of A in B(H) is
Comm(Comm(A)).

APPENDIX B: SOME RESULTS ON REPRESENTATIONS OF SELF-ADJOINT ALGEBRAS

We state a few results on representations of self-adjoint algebras. Let V be a finite-dimensional
Hilbert space, with an inner product 〈 · | · 〉, and A ⊂ End(V ) a subalgebra. Let the adjoint of an
algebra A ⊂ End(V ) be A† = {A† : A ∈ A}. An algebra A is self-adjoint if A = A†. From the
results in this section, Lemma B.1 and Proposition B.2 appear in Ref. 51 (p. 145).

Lemma B.1. LetA ⊂ End(V ) be a self-adjoint subalgebra. If W ∈ V is anA-invariant subspace,
then W ⊥ = {v ∈ V : 〈v|w〉 = 0 ∀ w ∈ W } is A-invariant.

Proof. Let w ∈ W , v ∈ W ⊥, A ∈ A. Then A† ∈ A, which implies A†w ∈ W ⇒ 〈Av|w〉 =
〈v|A†w〉 = 0 ⇒ Av ∈ W ⊥. �

Proposition B.2. Let A ⊂ End(V ) be a self-adjoint subalgebra. Then V is an orthogonal direct
sum of irreducible A-modules. In particular, V is a completely reducible A-module.

Proof. Let W ⊂ V be an A-invariant subspace of minimal dimension. Then it is by definition
irreducible. SinceA = A†, by Lemma B.1, V = W ⊕ W ⊥ is an orthogonal direct sum ofA-modules.
The conclusion follows by induction on dimension. �

Corollary B.3. Let A ⊂ End(V ) be a self-adjoint subalgebra containing the identity operator.
Then A is semisimple.

Proof. By Proposition B.2, V is a completely reducible A-module. Then Corollary A.6 implies
that A is semisimple. �

Corollary B.4. Let A ⊂ End(V ) be a self-adjoint subalgebra. Then there exist for every λ ∈ Â,
a set of intertwining operators {uλ

j } ⊂ Uλ, such that the λ-isotypic component can be written as an
orthogonal direct sum: V [λ] = ⊕

j uλ
j (V

λ).

Proof. By Proposition B.2, V is a completely reducible A-module. Thus by (A3), Sλ in (A2) is
an A-module isomorphism:

Sλ : Uλ ⊗ V λ −→ V [λ].

Again by Proposition B.2, the λ-isotypic component,

V [λ] =
⊕

W j ⊂V :W j ∼λ

W j

is an orthogonal direct sum. Choose uj such that u j (V λ) = W j . �
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APPENDIX C: STRUCTURAL REVERSIBILITY

We prove the structural reversibility (due to Arrighi, Nesme, and Werner3), in our context, to
make the present paper self-contained.

Theorem C.1 (Structural reversibility). Let M : HC −→ HC be a unitary operator and N a
neighborhood. Let V = {−k|k ∈ N }. Then the following are equivalent:

(i) M is causal relative to the neighborhood N .
(ii) For every operator Ax local upon cell x, M†AxM is local upon Nx .
(iii) M† is causal relative to the neighborhood V .
iv For every operator Ax local upon cell x, MAxM† is local upon Vx .

Before proving the theorem, we prove the following lemma:

Lemma C.2. Denote the set of density operators on HC by �. For A ∈ B(HC), define the map:

f A : � −→ C,

f A(ρ) = tr(Aρ),

where tr is the trace operator. Let D ∈ Zn be a finite subset. Then

(i) A is local upon D if and only if for every pair ρ, ρ ′ ∈ � satisfying ρ|D = ρ ′|D
, fA(ρ) = fA(ρ ′).

(ii) ρ, ρ ′ ∈ � satisfy ρ|D = ρ ′|D
, if and only if for every A local upon D, fA(ρ) = fA(ρ ′).

Proof. For elements of B(HC) that are local on some finite subset K ⊂ Zn , by abuse of notation,
we call both B ∈ Z (Z as in (8)) and ι−1

K (B) (ιK as in (7)) by B.
(i) Suppose A is local upon D and ρ, ρ ′ ∈ � are such that ρ|D = ρ ′|D

. Then f A(ρ) = tr(Aρ) =
tr(Aρ|D ) = tr(Aρ ′|D

) = tr(Aρ ′) = f A(ρ ′).
For the converse, suppose A is not local upon D. We can choose an orthonormal basis {|v j 〉} for⊗

k∈D W . Then we can write (special case of (6)):

A =
∑
(l,m)

|vl〉〈vm | ⊗ Al,m,

where {(l, m)} ⊂ {1, . . . , dW } × {1, . . . , dW }, and Al,m ∈ B(HCD
) are non-zero. Since A is not local

upon D, not all the Al, m are multiples of the identity, ID , on HCD
. There are two cases to consider:

1. There is an Al, l for some l such that Al, l is not a multiple of ID . Then there exist two
unit vectors |x〉, |y〉 ∈ HCD

, such that 〈x|Al, l|x〉 �= 〈y|Al, l|y〉. Let ρ = |vl〉〈vl | ⊗ |x〉〈x |, ρ ′ =
|vl〉〈vl | ⊗ |y〉〈y|. Then ρ|D = ρ ′|D

whereas fA(ρ) �= fA(ρ ′).
2. Every Al, l is a multiple of ID . Then choose some Al, m which is not. Then there exist two

unit vectors |x〉, |y〉 ∈ HCD
, such that 〈x|Al, m|x〉 �= 〈y|Al, m|y〉. Let ρ = (|vl〉〈vl | + |vl〉〈vm |) ⊗

|x〉〈x |, ρ ′ = (|vl〉〈vl | + |vl〉〈vm |) ⊗ |y〉〈y|. Then ρ|D = ρ ′|D
whereas fA(ρ) �= fA(ρ ′).

(ii) Suppose A is local upon D and ρ, ρ ′ ∈ � are such that ρ|D = ρ ′|D
. Then f A(ρ) = tr(Aρ) =

tr(Aρ|D ) = tr(Aρ ′|D
) = tr(Aρ ′) = f A(ρ ′).

For the converse, let ρ, ρ ′ ∈ �, such that for all A local upon D, fA(ρ) = fA(ρ ′). Consider
A = |vl〉〈vm | ⊗ ID , a basis element of operators local upon D. Then f A(ρ) = 〈vm |ρ|D |vl〉, f A(ρ ′) =
〈vm |ρ ′|D

|vl〉. This implies by fA(ρ) = fA(ρ ′), that 〈vm |ρ|D |vl〉 = 〈vm |ρ ′|D
|vl〉. Since this is true for all

elements of {|vl〉〈vm | : 1 ≤ l, m ≤ dW }, i.e., for a set of basis elements of operators local upon D,
then by linearity, ρ|D = ρ ′|D

. �
Proof of Theorem C.1.
Note

tr(MρM† A) = tr(ρM† AM) : ∀ρ ∈ �. (C1)
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(i) ⇒ (ii) Let M be causal. Suppose ρ and ρ ′ is a pair such that ρ|Nx = ρ ′|Nx , and A is local
upon x. Causality implies tr(MρM† A) = tr(Mρ ′M† A). By (C1), tr(ρM† AM) = tr(ρ ′M† AM), so
by Lemma C.2 (i), M†AM is local upon Nx .

(ii) ⇒ (i) Suppose A is local upon x, ρ, and ρ ′ be a pair of density operators such that ρ|Nx =
ρ ′|Nx , and M†AM is local upon Nx . Then tr(ρM† AM) = tr(ρ ′M† AM). By (C1), tr(MρM† A) =
tr(Mρ ′M† A), so by Lemma C.2 (ii), MρM†|x = Mρ ′M†|x.

(ii) ⇒ (iv) Suppose Ax is local upon x. Let Ay be an operator local upon y /∈ Vx . Then M†AyM is
local uponNy . But x /∈ Ny , so M†AyM commutes with Ax. But then Ay = MM†AyMM† commutes with
MAxM†, by the definition of conjugation. This applies to every Ay ∈ Ay , hence MAxM† commutes
with Ay . We can express MAxM† as a finite sum (as in (6)):

M Ax M† =
∑

l

el ⊗ El, (C2)

where {el} ⊂ End(
⊗

k∈Vx
W ) ia a linearly independent set, and El ∈ B(HCVx

) (the space of bounded
linear operators on the co-Vx space, HCVx

, defined in Definition 3.1, with D = Vx ).
For any B ∈ End(

⊗
k∈Vx

W ), B ⊗ IVx
(where IVx

is the identity on HCVx
) also commutes with

Ay. This implies (B ⊗ IVx
)(M Ax M†) commutes with Ay. Using the standard commutator notation

[., .] ([X,Y]=XY-YX), we write

[Ay, (B ⊗ IVx
)(M Ax M†)] =

∑
l

(Bel) ⊗ [Ay, El ] = 0.

We can trace out the finite dimensional part. Let the operator thus obtained on HCVx
be ζ (B):

ζ (B) =
∑

l

tr (Bel)[Ay, El ] =
∑

l

tr (Bel)[Ay, El] = 0.

Since (X, Y ) = tr(XY ) is a nondegenerate bilinear form on End(
⊗

k∈Vx
W ), and {el} is a linearly

independent set, we can choose a set {Bl} ⊂ End(
⊗

k∈Vx
W ) (indexed by the same set {l} that indexes

{el}) such that tr (Bkel ) = δk,l . Then

ζ (Bk) = [Ay, Ek] = 0. (C3)

The subalgebra of B(HCVx
) generated by Ay , y /∈ Vx acts irreducibly on the space HCVx

(by the
argument in the proof of Theorem 3.7, i.e., it acts transitively on a dense subspace, span(CVx

), of
HCVx

). By (C3), Ek commutes with this subalgebra. Schur’s lemma (Lemma A.1) then implies that
Ek = ηkIVx

for some ηk ∈ C. This is true for every k ∈ {l}. By (C2):

M Ax M† = (
∑

l

ηl el) ⊗ IVx
= aVx ⊗ IVx

for some aVx ∈ End(
⊗

k∈Vx
W ). Hence MAxM† is local upon Vx .

(iv) ⇒ (ii) Same argument as for the proof of (ii) ⇒ (iv), except interchanging the roles of Nx

and Vx , M and M†.
(iii) ⇔ (iv) Same arguments as for the proof of (i) ⇔ (ii), except replacing N with V , Nx with

Vx , and M with M†. �

APPENDIX D: PROOF OF LEMMA 3.15 REQUIRING QUIESCENT SYMBOL |q̂0〉 TO BE AN
INVARIANT OF F

Lemma (Lemma 3.15). F̂ is defined on Ĉ as a map F̂ : Ĉ −→ HĈ , and can be extended to HĈ as
unitary and translation-invariant operator, if and only if F has |q̂0〉 as an invariant (an eigenvector
with eigenvalue one): F |q̂0〉 = |q̂0〉.
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Proof of Lemma 3.15. Let us assume that F̂ is defined on Ĉ as a map F̂ : Ĉ −→ HĈ , and can be
extended to HĈ as a unitary and translation-invariant operator. Then Lemma 3.5 implies

F̂
( ⊗

x∈Zn

|q̂0〉
) =

⊗
x∈Zn

F |q̂0〉 = ei�0
⊗
x∈Zn

|q̂0〉

for some �0 ∈ R. This implies, F |q̂0〉 = |q̂0〉.
For the converse, assume F |q̂0〉 = |q̂0〉. Then for every element |ĉ〉 = ⊗

x∈Zn |ĉx 〉 ∈ Ĉ, under the
formal definition of F̂ in (26), F̂ |ĉ〉 = ⊗

x∈Zn F |ĉx 〉 ∈ HĈ . Furthermore, as a map F̂ : Ĉ −→ HĈ ,
F̂ preserves the inner product (since F is a unitary operator on Ŵ = ⊗

z∈N Vz), and is translation-
invariant, by the same definition. Then F̂ can be extended to a unitary and translation-invariant
operator on HĈ . �
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