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Bounding polynomial entanglement measures for mixed states
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(Received 25 July 2013; revised manuscript received 15 January 2014; published 30 July 2014)

We generalize the notion of the best separable approximation (BSA) and best W -class approximation (BWA)
to arbitrary pure-state entanglement measures, defining the best zero-E approximation (BEA). We show that
for any polynomial entanglement measure E, any mixed state ρ admits at least one “S decomposition,” i.e., a
decomposition in terms of a mixed state on which E is equal to zero, and a single additional pure state with
(possibly) nonzero E. We show that the BEA is not, in general, the optimal S decomposition from the point of
view of bounding the entanglement of ρ and describe an algorithm to construct the entanglement-minimizing
S decomposition for ρ and place an upper bound on E(ρ). When applied to the three-tangle, the cost of the
algorithm is linear in the rank d of the density matrix and has an accuracy comparable to a steepest-descent
algorithm whose cost scales as d8 log d . We compare the upper bound to a lower-bound algorithm given by C.
Eltschka and J. Siewert [Phys. Rev. Lett. 108, 020502 (2012)] for the three-tangle and find that on random rank-2
three-qubit density matrices, the difference between the upper and lower bounds is 0.14 on average. We also find
that the three-tangle of random full-rank three-qubit density matrices is less than 0.023 on average.

DOI: 10.1103/PhysRevA.90.012340 PACS number(s): 03.67.Mn, 03.65.Ud, 03.67.Bg

I. INTRODUCTION

Nonclassical correlations in quantum states such as en-
tanglement distinguish quantum from classical information
theory. The ability to calculate entanglement of mixed quantum
states is relevant for the analysis of tomography data for
systems of multiple qubits in several implementations [1–3].
Multipartite systems can contain multiple inequivalent types
of entanglement that cannot be converted into one another by
local operations and classical communication [4].

One approach to characterizing pure-state entanglement
in a system of qubits associates a polynomial function that
is invariant under determinant-1 local operations with each
type of entanglement [5–7]. Examples of such polynomial
invariants include the concurrence for two qubits [8] and the
three-tangle, which quantifies the amount of entanglement
in a three-qubit system that cannot be accounted for by
entanglement between pairs of the qubits [9].

A polynomial-invariant E is extended to mixed states by
way of the convex roof, given for a rank-d density matrix ρ by

E(ρ) = min
E ∈ϒρ

∑
i

piE(ψi), (1)

where E = {pi,|ψi〉} is a pure-state ensemble for ρ and ϒρ is
the set of all such ensembles. Carathéodory’s theorem allows
us to restrict the optimization to ensembles containing no more
than d2 elements [10].

An ensemble that minimizes Eq. (1) is said to be minimal.
We consider the rank d of the density matrix d, rather than the
dimension of the Hilbert space on which it acts, because d is
the parameter that determines the computational difficulty of
the convex roof minimization. A number of special cases of

*n.datta@statslab.cam.ac.uk
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computation of the convex roof have been solved for cases
of restricted rank [11–13].

Minimal ensembles have been found analytically for the
concurrence of arbitrary two-qubit mixed states [8] and for the
three-tangle of rank-2 mixtures of generalized Greenberger-
Horne-Zeilinger (GHZ) and generalized W states [12,13], as
well as on rank-3 mixtures of a GHZ state, a W state, and
a state obtained by flipping all three bits of a W state [14].
When the minimal ensemble is not known analytically, which
is the typical case, one may evaluate an upper bound on
E(ρ) using, for example, a steepest-descent algorithm [15].
However, the cost of such an upper bound scales like d8 log d,
making calculations infeasible for high rank.

An alternative approach to characterizing the entanglement
of a mixed state was given by Lewenstein and Sanpera [16].
Given a two-qubit density matrix ρ, they considered the set S

of pure states {ψi}, such that for all ψi ∈ S, there exists some
pi ∈ (0,1) and a separable mixed state πi such that

ρ = piψi + (1 − pi)πi. (2)

We refer to any decomposition of a state into a pure state ψi and
a state πi such that E(πi) = 0, for given polynomial invariant
E, as an S decomposition. For the concurrence on two-qubit
states, Lewenstein and Sanpera showed that S is nonempty and
then considered the S decompositions obtained by finding the
element ψe ∈ S that minimizes the corresponding probability
pe [16]. The corresponding separable state πe is the “best
separable approximation” (BSA) of ρ. Their algorithm for
finding the BSA of a mixed state ρ determines whether ρ is
separable and provides an upper bound on the entanglement of
ρ because E(ρ) � peE(ψe) for all convex roof entanglement
monotones E.

More generally, it has been shown that every bipartite state
ρ has a unique convex decomposition of the form ρ = λρs +
(1 − λ)ω, where ρs is a separable state and the parameter λ ∈
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[0,1] is maximal [16,17]. State ρs is referred to as the BSA of ρ,
and λ is referred to as its separability [18]. Obviously, for any
two-qubit entangled state, λ < 1. Moreover, it was established
that for any two-qubit mixed state ρ, the separability is nonzero
(and hence the BSA exists), and ω is a pure state. However, for
states of more than two qubits, the separability may be zero,
and ω may be mixed. For a two-qubit state, the BSA places an
upper bound on the concurrence C(ρ) of ρ because, clearly,

C(ρ) � (1 − λ)C(ω). (3)

All entanglement measures are zero on separable states.
However, there are other interesting classes of states, such
as the W class, on which some, but not all, measures are zero.
Acin et al. extended the above approach to the three-tangle
of three-qubit states, defining the “best W approximation”
(BWA) [19].

In this paper, we generalize the BSA and BWA to arbitrary
polynomial invariants, defining the best zero-E approximation
(BEA) of a mixed state ρ. We show that the BEA exists for all
ρ (i.e., S is nonempty for all ρ) and that it is unique. For the
BSA, BWA, and BEA, the probability of the single entangled
state in the pure-state ensemble for ρ is minimized. This does
not mean that the BSA, BEA, or BWA gives the best upper
bound on the entanglement for an ensemble of this form. One
can obtain an improved upper bound on the entanglement of ρ

by finding the element ψl of S such that plE(ψl) is minimized,
where pl is the probability with which ψl occurs in a convex
decomposition of ρ.

We describe an algorithm that finds ψl for any mixed
state ρ and so places an upper bound on E(ρ). Applied to
the three-tangle, the cost of finding this upper bound scales
linearly in d and terminates after 10 s on random three-qubit
density matrices (using Intel Core 2 CPUs at 2.66 GHz), as
opposed to the d8 log d scaling and 10-day runtime expected
(see Table I) for the steepest-descent algorithm given in [15].
We evaluate the accuracy of this algorithm by comparing this
upper bound to the analytical value of the three-tangle for states
on which it is known. By comparing the upper-bound and
steepest-descent methods on random states we demonstrate
that the two algorithms exhibit comparable accuracies on states
for which no analytical value is known.

In all that follows, H denotes a Hilbert space of some
number of qubits, D(H) denotes the set of density matrices
(states) acting on H, and E : D(H) �→ R is assumed to be the
convex roof extension of a polynomial function of pure states

TABLE I. Average run times (in seconds) for the algorithm
presented in the text (UB) and the steepest-descent algorithm (SD)
on 240 uniformly sampled three-qubit density matrices for ranks 2
through 8. The steepest descent has only been calculated up to rank
5 due to the rapid growth in the run time. The average difference in
entanglements is shown in the third row (UB-SD).

Rank
2 3 4 5 6 7 8

UB 0.94 1.89 3.07 4.2 5.5 7.0 7.5
SD 0.17 1.39 12.39 125.2
UB-SD 0.0357 0.0239 0.0164 0.0116

that is of homogeneous degree in the expansion coefficients of
pure states written relative to the computational basis and that
is invariant under determinant-1 local operations. D(ρ,π ) =
‖ρ − π‖1 is the trace distance, supp(ρ) is the support of ρ,
and R(ρ) is its range. For any pure state |ψ〉 ∈ H, we denote
the projector |ψ〉〈ψ | simply as ψ .

II. RESULTS

We generalize the BSA and BWA, beginning with the
following:

Theorem 1. For any mixed state ρ and polynomial-invariant
E there exists a pure-state ensemble containing at most one
state with nonzero E.

The proof is given in the Appendix. Theorem 1 leads
naturally to an approximation of ρ in terms of a mixed state
for which E is equal to zero. By analogy with the BSA and
BWA, we define the BEA of ρ as the state ρe := ρ∗/Trρ∗,
where ρ∗ is a positive semidefinite operator with E(ρ∗) = 0
such that ρ − ρ∗ � 0 and Trρ∗ � 1 is maximal. [Since E(ρ∗)
is a homogeneous polynomial in the expansion coefficients of
the pure states in the minimal ensemble, it is well defined even
if ρ∗ has nonunit trace.] Moreover, we refer to the parameter
μ := Trρ∗ ∈ [0,1] as the zero-E equivalency of ρ. Any state
ρ has a convex decomposition of the form

ρ = μρe + (1 − μ)ω, (4)

where ω is a pure state with nonzero E. We refer to (4) as the
optimal zero-E decomposition of ρ, and ρe is the BEA. We
now prove the following:

Theorem 2. All mixed states ρ have nonzero zero-E
equivalency and have a unique optimal zero-E decomposition
with ω being a pure state.

Theorem 2 relies on Lemmas 1, 2, and 3, whose proofs,
together with the proofs of Theorems 1 and 2, are given in the
Appendix.

Lemma 1. Consider ρ,π ∈ D(H) and let E : D(H) �→ R
be a non-negative convex function bounded above by Emax.
Suppose that there exists some k > 0 such that

σρ = ρ + k

D(ρ,π )
(ρ − π ) (5)

is a state. Then,

E(ρ) − E(π ) � D(ρ,π )

D(σρ,π )
[E(σρ) − E(π )]. (6)

The question of the existence of states of the form given by
Eq. (5) is addressed by Lemma 2.

Lemma 2. For all ρ,π ∈ D(H) satisfying supp(π ) ⊆
supp(ρ), there exists a positive constant k > 0 such that the
operator σρ , defined as

σρ := ρ + k

D(ρ,π )
(ρ − π ), (7)

is a state and such that rank σρ < rank ρ.
Equation (6), combined with Lemma 2, provides a nonuni-

form continuity bound on any non-negative convex function
E : D(H) �→ R. The continuity bound is nontrivial between
two density matrices ρ and π as long as ρ and π have equal
supports.

012340-2
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We have now generalized the BSA and BWA to arbitrary
homogeneous polynomial invariants. However, the BEA for
ρ does not, in general, provide the best estimate of E(ρ)
over the set of S decompositions. The entanglement of the
S decomposition for ρ (note that this is an upper bound on
the entanglement of ρ itself) with pure state ψ occurring with
probability p is simply pE(ψ). Hence, we define ψl to be the
state in S such that plE(ψl) is minimal and note

E(ρ) � plE(ψl) � peE(ψe), (8)

where ψe is the pure state associated with the BEA for ρ.
Because the BEA is unique, the second inequality is only an
equality if the BEA minimizes peE(ψe) as well as pe, i.e., if
pe = pl and ψe = ψl .

We now describe an algorithm that may be used to
determine ψl for any state ρ. We use the fact (from Lemma 3)
that every mixed state ρ has in its range at least one pure state
on which E is equal to zero.

Lemma 3. For any mixed state ρ, there is a pure state |ψ〉 ∈
R(ρ) such that E(ψ) = 0.

Given a mixed state ρ ∈ D(H) of rank d, we first use a
steepest-descent algorithm [20] to identify pure states ψi ∈
R(ρ) which have zero E [21]. For d > 2 there is a continuous
set of such states, and the steepest-descent algorithm chooses
one such state randomly. We repeat this procedure several
times to identify a number [22] of such pure states {ψi}.

We then construct the uniform mixture π1 of the pure
states identified by the steepest-descent algorithm. Clearly,
supp(π1) ⊆ supp(ρ) and E(π1) = 0. Then, by Lemma 2, there
exists a k > 0 such that the operator

ρ1 = ρ + k

D(ρ,π1)
(ρ − π1) (9)

is a state and such that rank ρ1 < rank ρ. We then apply
Lemma 1 with σρ ≡ ρ1 and π ≡ π1 to obtain

E(ρ) − E(π1) � D(ρ,π1)

D(ρ1,π1)
[E(ρ1) − E(π1)]. (10)

Hence, because E(π1) = 0,

E(ρ) � D(ρ,π1)

D(ρ1,π1)
E(ρ1). (11)

From Eq. (9), ρ may be written as a convex combination of ρ1

and π1.
If ρ1 is a pure state, then ρ may be written as a convex

combination of the states ψ (comprising π1), which have zero
E, and the state ρ1, which may have nonzero E. We have thus
identified a pure-state ensemble for ρ containing at most one
pure state with nonzero E, and the algorithm terminates since
E(ρ1) can be calculated directly.

If ρ1 is not pure, the same procedure is applied to ρ1. We
find a density matrix π2 such that E(π2) = 0 and supp(π2) ⊆
supp(ρ1) and construct ρ2 from it. The state ρ can then be
written as a convex combination of the pure states comprising
π1 and π2, and the (possibly mixed) state ρ2. Then,

E(ρ1) � D(ρ1,π2)

D(ρ2,π2)
E(ρ2). (12)

We can now combine Eq. (12) with Eq. (11) to obtain

E(ρ) � D(ρ,π1)

D(ρ1,π1)

D(ρ1,π2)

D(ρ2,π2)
E(ρ2). (13)

The procedure is then repeated for ρ2. The algorithm termi-
nates when one arrives at a state ρi which is pure, in which case
E(ρi) may be calculated directly. Because rank ρi < rank ρi−1

for all i, the algorithm is guaranteed to terminate, and we have

E(ρ) � D(ρ,π1)

D(ρ1,π1)
· · · D(ρd−1,πd )

D(ρd,πd )
E(ρd ), (14)

where ρd = ψd is pure. Note that at the ith step, we only need
to find one pure state with E = 0 in the range of ρi for the
algorithm to proceed.

The algorithm described above constructs an ensemble
with the property that apart from ψd , every pure state in the
ensemble has E = 0. Thus, ψd ∈ S. To find ψl , we then use
the facts that S is a connected set and that the number of local
minima in S is bounded above by the polynomial degree of
E. The connectedness of S follows from the connectedness of
the set of mixed states with zero E. For many entanglement
monotones of interest, the degree of E is only 2 or 4 [5], so
it follows that if we perform steepest descent to minimize the
function pE(ψ) over the set of pure states ψ ∈ S, where p

is the probability of ψ in the S decomposition, starting from
the state ρd = ψd , we will converge to the global minimum ψl

with high probability.
The real dimension of S scales linearly in the rank of

the density matrix, so the steepest descent is tractable. To
perform this steepest descent in practice, for every state ψi ∈ S,
we denote by ki ∈ (0,1) the smallest value such that for
some mixed state πi with E(πi) = 0, ρ = kiψi + (1 − ki)πi .
One can calculate ki using the algorithm of Lewenstein and
Sanpera, suitably adapted to use pure states with zero E, rather
than separable states [16]. If no such value of ki exists, we set
ki = ∞. One may then calculate ψl by minimizing kiE(ψi)
by steepest descent over H.

However, we have found that in many cases one may use
Eq. (14) on its own to obtain a tight and computationally
tractable numerical upper bound on E(ρ). In this approach,
one runs the algorithm up to Eq. (14) many times, getting a
different result each time, and then takes the smallest of these
results as an upper bound on E(ρ).

To investigate the efficacy of this method we performed cal-
culations of the three-tangle for three-qubit mixed states. The
three-tangle is the simplest multipartite entanglement measure,
and in this case the BEA is the BWA. The combination of the
upper bound obtained in this way from Eq. (14) with the lower
bound of [23] provides nontrivial upper and lower bounds on
the three-tangle that one may compute rapidly on arbitrary
states of three qubits. We evaluate both bounds for mixtures
of GHZ-class and W -class states [4] where the three-tangle
is known analytically [12,13] and for random rank-d density
matrices. We compare the upper bound to analytical values of
the three-tangle where available. We also compare the upper
bound to the steepest-descent algorithm given in [15] and to
the lower-bound algorithm of Eltschka and Siewert [23] for
the square root of the three-tangle, whose square gives a lower
bound on the three-tangle. Both algorithms are stochastic, so
we repeat each one many times on a given state and use the
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FIG. 1. (Color online) Upper bounds on the three-tangle of the
states in Eq. (15) for 11 values of p (red circles) compared to the
analytical value (line). For ten values of p (blue squares) the states in
Eq. (15) were conjugated by a random element of SU(2)⊗3 sampled
from the Gaussian unitary ensemble. For p = 0 through p = 0.6,
the algorithm calculated the three-tangle to be zero to numerical
precision. The inset shows the upper bounds (red dots) on the three-
tangle of the density matrices in Eq. (15) for 11 values of p between
0.6 and 0.7, compared to the analytical value (line). These are results
from 400 repetitions of the upper-bound algorithm.

best result. For the calculations described below our upper
bound is the minimum value obtained by running our algorithm
200 times on a given density matrix. The lower bound is
the maximum value obtained after running the Eltschka and
Siewert algorithm [23] 1000 times.

We evaluated the upper bound on mixtures of GHZ and W

states,

π (p) = p|GHZ〉〈GHZ| + (1 − p)|W 〉〈W |, (15)

for which the analytical form is known [13]. Our algorithm
was able to provide a tight upper bound for the three-tangle for
this mixture (Fig. 1). In addition, whereas the steepest-descent
algorithm always yields a nonzero value for the three-tangle,
the algorithm presented above can and does identify the three-
tangle as exactly zero to within numerical precision if the final
pure state ρd has zero three-tangle. We also computed the
upper bound for the case where the state is given by Eq. (15)
convolved with a random element of SU(2)⊗3 constructed
from three elements of SU(2) sampled independently from
the Gaussian unitary ensemble. These states have identical
entanglement to the states given by Eq. (15). We performed
400 repetitions of the algorithm and selected the smallest en-
tanglement. Our findings are presented in Fig. 1 and in Table I.

We evaluated the upper bound on random mixtures of
generalized GHZ and generalized W states for which the
three-tangle is also known analytically [12,13]. On 20 000
rank-2 mixtures the average error of the upper bound was
0.025. On states that had zero three-tangle analytically, our
upper bound yielded a value of exactly zero (to within
numerical precision) 63% of the time. The lower bound of
[23] was nonzero on 72% of density matrices with nonzero
three-tangle.

The upper bound obtained from Eq. (14) was compared to
the one obtained by the steepest-descent algorithm described
in [15] for random density matrices. For ranks 2 through 5,
both algorithms calculated upper bounds on the three-tangle
of 240 different randomly generated density matrices. For the
algorithm presented above, density matrices of ranks 6, 7, and
8 were also tested. The steepest-descent algorithm yielded a

FIG. 2. Cumulative distribution function of the upper bound on
the three-tangle of 10 000 randomly sampled three-qubit density
matrices of rank 2 (lower solid line), 4 (dotted line), 6 (dashed line),
and 8 (upper solid line). The inset shows the cumulative distribution
function of the difference between the upper and lower bounds on the
three-tangle of 30 000 uniformly sampled three-qubit rank-2 density
matrices.

lower (better) value on average, but the difference decreased
with increasing rank. The steepest descent was considerably
slower than our algorithm for evaluating an upper bound,
making calculations infeasible for ranks greater than 5. The
timings and average differences are shown in Table I.

We computed upper and lower bounds on random three-
qubit states with ranks 2 through 8, for which the analytical
form is not known. We sampled 30 000 states for rank 2 and
10 000 states for ranks 3 through 8. We generated random
rank-d states by sampling a probability distribution uniformly
on the (d − 1)-dimensional probability simplex and sampling
pure states uniformly over the Hilbert space. The upper bound
tightly constrains the three-tangle in this ensemble of states, as
shown in Fig. 2. The median values of the three-tangle for ranks
2, 4, 6, and 8 are 0.11, 0.02, 0.013, and 0.003, respectively.
The lower bound was mostly zero on these states: only 2561
of 30 000 states (8.5%) were nonzero for rank 2, 126 of 10 000
for rank 3, 12 of 10 000 for rank 4, 1 of 10 000 for ranks 5
and 6, and none for ranks 7 and 8. Hence, for random states
of rank >2 the strategy of bounding the entanglement above
and below is ineffective as we do not obtain a nontrivial lower
bound from the method of [23] in these cases.

For random rank-2 states the mean upper and lower bounds
over 30 000 states are 0.157 and 0.016, respectively, and the
upper and lower bounds constrain the three-tangle to lie within
a region with an average width of 0.14. If we restrict ourselves
to those states on which the lower bound is nonzero so that we
are considering states where we have a certificate that there
is some entanglement, the mean upper and lower bounds are
0.356 and 0.188, respectively. Hence, states for which the
lower bound is nonzero also have significantly larger values
of the upper bound, and upper and lower bounds constrain the
three-tangle to lie within a region with an average width of
0.167 for these states.

The algorithm will always terminate when applied to a
polynomial entanglement monotone. On other convex roof
entanglement monotones E, for which it may not be possible
to construct ensembles containing at most one state on which
E is nonzero, the algorithm should choose πi to be the pure
state in the support of ρi−1 on which E is minimal. Then,
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Eq. (12) becomes [for the (i − 1)th step]

E(ρi−1) � D(ρi−1,πi)

D(ρi,πi)
[E(ρi) − E(πi)] + E(πi). (16)

Since πi is pure, we may evaluate E(πi) analytically.

III. CONCLUSIONS

We generalized the best separable approximation and best
W -class approximation to the best zero-E approximation
for any polynomial invariant. The BEA (like the BSA and
BWA) is defined by minimizing the probability of the single
entangled state in the ensemble that defines the BEA. We
defined an algorithm that minimizes the entanglement for
ensembles that contain a single entangled state. We have
presented computations of upper and lower bounds for the
three-tangle that are both practical methods for calculations on
any three-qubit state. We validated these methods on mixtures
of generalized GHZ and W states for which the exact value
of the three-tangle is known. The upper and lower bounds are
close on a large fraction of random rank-2 states, including
the fraction of those states for which the lower bound is
nonzero and so for which we can certify that the entanglement
is nonzero. Future work on the bounds may further close
the gap between them and enable accurate estimation of the
three-tangle, even if a closed form for the three-tangle remains
out of reach.
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APPENDIX

In this appendix we give the proofs of the lemmas and
theorems presented in the paper.

Proof of Lemma 1. Let

ωp := pπ + (1 − p)σρ, (A1)

with p ∈ (0,1). Since π and σρ are states, so is ωp. Note that
for the particular choice of p given by

p ≡ pk = k

D(ρ,π ) + k
, (A2)

we have that ωpk
= ρ. Using the expression for the trace

distance between any two states ρ1 and ρ2,

D(ρ1,ρ2) = max
0�P�I

Tr[P(ρ1 − ρ2)],

it can be readily verified that the following identities hold:

D(π,σρ) = D(π,ρ) + D(ρ,σρ), (A3)

D(ρ,σρ) = k. (A4)

Let ε := 1 − pk . Then, (A2), (A3), and (A4) imply that

pk = D(ρ,σρ)

D(π,σρ)
, ε = D(ρ,π )

D(π,σρ)
. (A5)

Then,

E(ρ) − E(π ) = E(ωpk
) − E(ωpk+ε)

� ε[E(σρ) − E(π )]

= D(ρ,π )

D(π,σρ)
[E(σρ) − E(π )]. (A6)

The first equality holds since the choice of pk and ε ensures that
ωpk

= ρ and ωpk+ε = ω1 = π . The inequality in the second
line holds since E is a convex function and can be obtained as
follows: Since ε = 1 − pk , we have ωpk

= pkπ + εσρ . Then
the convexity of E implies that

E(ωpk
) � pkE(π ) + εE(σρ),

and hence,

E(ωpk
) − E(π ) � ε[E(σρ) − E(π )].

The last equality in (A6) follows from (A5). �
Proof of Lemma 2. It is clear from (5) that Trσρ = 1 since

ρ,π ∈ D(H). To establish that σρ is a state we only need to
show that σρ � 0. In the following, for any |ϕ〉 ∈ H and any
ω ∈ D(H) let ωϕ := 〈ϕ|ω|ϕ〉. Any |ϕ〉 ∈ H can be written as

|ϕ〉 = �ρ |ϕ〉 + (I − �ρ)|ϕ〉,
where �ρ denotes the projection onto the support of ρ.
Obviously, ρ(I − �ρ)|ϕ〉 = 0 and π (I − �ρ)|ϕ〉 = 0 since
supp (π ) ⊆ supp (ρ). These identities imply that σρ(I −
�ρ)|ϕ〉 = 0, and hence,

σϕ
ρ = 〈ϕ|�ρσ�ρ |ϕ〉.

Let us define

|ϕ̃〉 := �ρ |ϕ〉√〈ϕ|�ρ |ϕ〉 . (A7)

Then to prove that σρ � 0, it suffices to show that σ ϕ̃
ρ � 0.

From (5), it equivalently suffices to prove that

ρϕ̃ �
k
(
πϕ̃ − ρϕ̃

)
D(ρ,π )

. (A8)

Note that D(ρ,π ) = D(π,ρ) by symmetry and that

D(π,ρ) = max
0�P�I

Tr[P(π − ρ)],

� Tr[|ϕ̃〉〈ϕ̃|(π − ρ)]

= πϕ̃ − ρϕ̃. (A9)

Hence, to prove (A8), it suffices to prove that there exists a
positive constant k such that

ρϕ̃ � k. (A10)

Let the eigenvalue decomposition of ρ be given by

ρ =
d∑

i=1

λi |ei〉〈ei |, (A11)
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and let us choose k = λmin(ρ), where λmin(ρ) :=
min1�i�d{λi : λi > 0}. Obviously, |ϕ̃〉 ∈ supp ρ, and hence,
|ϕ̃〉 = ∑

i:λi>0 αi |ei〉, with αi = 〈ei |ϕ̃〉 and
∑

i:λi>0 |αi |2 = 1.

Hence,

ρϕ̃ = 〈ϕ̃|
⎛
⎝ ∑

i:λi>0

λi |ei〉〈ei |
⎞
⎠ |ϕ̃〉

� λmin(ρ)
∑

i:λi>0

|〈ϕ̃|ei〉|2

= λmin(ρ). (A12)

It follows that the operator σρ defined in Eq. (5) with k =
λmin(ρ) is a state. However, if ρ = π , then ρ − π has at least
one negative eigenvalue. It follows that for k > 0 large enough,
the operator defined in Eq. (5) is not positive semidefinite and
hence is not a state. By continuity, then, there exists a p > 0
such the operator σρ defined in Eq. (5) with k = p is a state
but such that the operator σρ as defined in Eq. (5) is not a
state when k = p + ε for any positive ε. Define σ̄ρ to be the
operator σρ defined in Eq. (5) with k = p.

If the support of π were contained within the support of σ̄ρ ,
then there would exist some q > 0 such that

σ̄ρ + q

D(σ̄ρ,π )
(σ̄ρ − π ) � 0. (A13)

If such a q existed, however, then one could use the fact that
from the definitions of σρ and the trace distance,

p = D(ρ,σρ)

and

D(π,ρ) + D(ρ,σρ) = D(π,σρ)

in order to show that

ρ + p + q

D(ρ,π )
(ρ − π ) � 0,

which is a contradiction by the definition of p. Thus, the
support of π is not contained within the support of σ̄ρ , so
the supports of σ̄ρ and ρ are not equal. However, ρ can be
written as a convex combination of σ̄ρ and π , so the support of
σ̄ρ must be contained within the support of ρ. It follows that
the support of σ̄ρ is strictly smaller than the support of ρ, so
the rank of σ̄ρ must be smaller than the rank of ρ. �

Proof of Lemma 3. Since the range of any mixed state ρ is
the set of superpositions of the eigenvectors of ρ, it suffices to
show that for any two pure states |ψ1〉 and |ψ2〉, there exists
some θ , φ, such that the state

|θ,φ〉 = cos(θ )|ψ1〉 + eiφ sin(θ )|ψ2〉 (A14)

has zero E.
Let the coefficients of |ψ1〉 in the computational basis be

written b1,b2, . . . ,b8, and let the coefficients of |ψ2〉 in the
computational basis be written c1,c2, . . . ,c8. Then for all k,
the coefficients of |θ,φ〉, written in the computational basis,
are given by

ak = cos(θ )bk + eiφ sin(θ )ck. (A15)

Since E is a polynomial of homogeneous degree D equal to at
most 4 in the coefficients of |θ,φ〉 written in the computational

basis, we may write it as

E(|θ,φ〉) =
T∑
i

Cia
s1,i

1 · · · a
sN,i

N , (A16)

where T is the number of terms in the expression for E, N

is the dimension of the Hilbert space, Ci is the coefficient
on the ith term, and

∑N
k=1 sk,i = D for all i. Substituting the

expression for ak , we have

E(|θ,φ〉) =
T∑
i

Ci

N∏
k=1

[cos(θ )bk + eiφ sin(θ )ck]sk,i . (A17)

Factoring out cos(θ )D from every term in the sum, we have

E(|θ,φ〉) = cos(θ )D
T∑
i

Ci

N∏
k=1

[bk + eiφ tan(θ )ck]sk,i . (A18)

We now perform a change of variables, defining z(θ,φ) =
eiφ tan(θ ). We have

E(|θ,φ〉) = cos(θ )D
T∑
i

Ci

N∏
k=1

[bk + z(θ,φ)ck]sk,i . (A19)

We now note that the range of θ may be restricted to the
interval [0,π/2], while the range of φ is [0,2π ]. If we assume
that E(|ψ2〉) = 0, then for the purpose of finding the roots of
E, the range of θ may be restricted further to [0,π/2). On this
range, cos(θ )D is nonzero, so the roots of E(|θ,φ〉) = 0 are
equivalent to the roots of the polynomial

Ē =
T∑
i

Ci

N∏
k=1

[bk + z(θ,φ)ck]sk,i . (A20)

The fundamental theorem of algebra guarantees that Ē will
have D complex roots, including multiplicities. These roots
lie within the range of z(θ,φ), which is the entire complex
plane. Thus, there exists at least one unique pure state |θ,φ〉
such that E(|θ,φ〉) = 0, completing the proof. �

Proof of Theorem 2. Every pure state |ψ〉 ∈ R(ω) [where
ω is the state appearing in the optimal zero-E decomposition
(4)] must have positive E. This is because, if there is a pure
state |ϕ〉 ∈ R(ω) with E(ϕ) = 0, then we could subtract γ ϕ

from ω (for some 0 < γ < 1) and add (1 − μ)γ ϕ to μρL to
obtain a decomposition of the form

ρ = μ̃ρ̃L + (1 − μ̃)ω̃,

such that E(ρ̃L) = 0 and μ̃ = μ + (1 − μ)λ. However, this
increases the zero-E equivalency μ and hence leads to a
contradiction since μ is maximal by definition. Hence, E(ψ) >

0 ∀ψ ∈ R(ω). By Lemma 3, it then follows that ω must be
pure. This also implies that if ρ is a mixed state, then μ > 0.

To prove that the optimal zero-E decomposition is unique,
we proceed as in [17] and assume that there exist at least two
optimal zero-E decompositions ρ = λρL + (1 − λ)|ψ〉〈ψ |
and ρ = λρ ′

L + (1 − λ)|ψ ′〉〈ψ ′| with the same maximal λ.
Any convex combination of these two decompositions is also
an optimal zero-E decomposition, i.e., ∀ ε ∈ [0,1],

ρ = ε[λρL + (1 − λ)ψ] + (1 − ε)[λρ ′
L + (1 − λ)ψ ′]

= λρ̃L + (1 − λ)ω̃, (A21)

012340-6



BOUNDING POLYNOMIAL ENTANGLEMENT MEASURES FOR . . . PHYSICAL REVIEW A 90, 012340 (2014)

where ω̃ := εψ + (1 − ε)ψ ′ and ρ̃L := ερL + (1 − ε)ρ ′
L, with

E(ρ̃L) = 0 [since the convex roof extension E is convex
and E(ρL) = 0 = E(ρ ′

L) = 0]. Since ω̃ is a mixed state, by
Lemma 3 there must exist a pure state |ϕ > in its range
such that (as above) we could subtract cϕ from ω̃ [for some
c ∈ (0,1)] and add it to λρ̃L to obtain another optimal zero-E
decomposition. However, this would increase the zero-E
equivalency and thus would result in a contradiction. �

Proof of Theorem 1. We prove Theorem 1 by construction,
using Lemmas 1, 2, and 3. Since ρ is a mixed state, by Lemma 3
there exists a pure state |ψ〉 ∈ R(ρ) such that E(ψ) = 0. By
Lemma 2 we infer that there exists a positive constant k and a
state ρ1 such that

ρ = λψ + (1 − λ)ρ1, (A22)

with rank ρ1 < rank ρ. Here λ ≡ λ(k,D(ρ,ψ)) =
k/[D(ρ,ψ) + k].

If ρ1 is a pure state, then the claim of Theorem 1 follows
since we have constructed an ensemble of two pure states ψ

and ρ1 for ρ, with E(ψ) = 0 and E(ρ1) � 0. If ρ1 is a mixed
state, then we know by Lemma 2 that there exists a pure state
|ψ1〉 ∈ R(ρ1) such that E(ψ1) = 0. Then we repeat the above
steps (for ρ1) to arrive at a state ρ2 such that

ρ = λ1ψ1 + (1 − λ1)ρ2

and λ1 ∈ (0,1). If ρ2 is pure, the proof is completed since ρ

can be expressed in terms of an ensemble of three pure states,
ψ,ψ1, and ρ2, with only ρ2 having possibly nonzero E. If ρ2

is mixed, we iterate again. We stop after the ith iteration if ρi

is pure. Since, by Lemma 2, the rank of the state ρi obtained
after the ith iteration is strictly smaller than the rank of ρi+1,
we definitely arrive at a pure state, and hence, the iteration
stops, yielding an ensemble of pure states for ρ with at most
one (namely, the one obtained in the last step of the iteration)
having nonzero E. �
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