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?ROC. PHYS. SOC., 1966, VOL. 88 

The modulated absorption of light in an optical 
pumping experiment on 4He 

R. B. PARTRIDGEt and G. W. SERIES 
Clarendon Laboratory, Oxford 

MS. recaved 1st March 1966 

Abstract. Optical pumpmg experiments have been performed on helium 4 atoms 
in the metastable level 2 with the object of studying the modulation of light 
in absorption in the longitudinal and transverse beams. Magnetic resonance 
curves were obtained similar to those found, in emission in double-resonance 
experiments. With a part~cular geometrical arrangement employing circular 
polarizers, the Bloch magnebc resonance curves were obtamed. 

Modulation at four t i m e s  the applied frequency was obtained with a linear 
polarizer 111 the pumping beam. This modulation is ascribed to the circulation of 
coherence in the optical pumping cycle. Fiom the behaviour of the resonance 
signals as a function of the frequency and amplitude of the stimulating field, it is 
inferred that a substantial part of the signal arises from coherence which has 
survived two complete cycles. 

The observations are satnfactorily explained by the theory developed in the 
previous paper. 

1. Introduction 

Helium 4 provides a very convenient system for the study of the interactions between 
atoms and light. A mild discharge in the gas at a pressure of a few mmHg excites 
lolo-lO1l atoms/cm3 to the metastable level 2 ?jl. This serves as the ground level for 
optical pumping experiments. An aligned system may be obtained by illumination of 
the atoms with unpolarized or linearly polarized resonance radiation, 10 830A 
(2 3S1-2 3P0,1,2) ; circularly polarized radiation generates a partially polarized system. 

The system was studied in detail by Colegrove and Franken (1960) and by Schearer 
(MI) ,  with particular emphasis on the relaxation of the metastable atoms and on the 
possible applications to magnetometry. Its attractive feature as a system in which to 
study interaction processes is that it provides the counterpart in absorption to the much- 
studied mercury system, 61S0-63P1, in emission (Brossel and Bitter 1952, Dodd, 
Series and Taylor 1963, Kibble and Series 1963, to be referred to respectively as DST 

The similarities spring from the fact that both systems have the same angular 
momentum quantum number, namely 1, for the initial state of the optical transition. 
By magnetic resonance, the atoms can be prepared in superposition states of the Zeeman 
components Im = 0, i l), and resonance phenomena studied in absorption or emission, 

the case may be. 
It is to be noticed that the light monitors magnetic resonance only if the resonance is 

taking place between the initial states of the optical transition. In  the mercury system, 
for.exmple, magnetic resonance in the excited states has a profound effect on the 
mzttedlight, but has no effect whatever on light absorbed by atoms in the same transition. 
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TO study effects in absorption similar to double resonance in emission, magnetic reson- 
ance must be stimulated in the lower states. This apparent lack of Symetry bemeen 
the initial and final states in the optical transition will form the subject of a futuIe 
communication. 

Figwe 1 shows the relevant transitions in helium and, for comparison, in mercury, 
The identity of the Zeeman structures of the initial states in the two systems leads to 
identity in the resonance phenomena as far as primary interactions are Concerned, but 
the more complicated structure of the final states leads to a greater variety of phenomena 
in higher-order interactions in helium than is possible with mercury. 

4 2 'Po 

2 3 5  a I 

-2 -I 0 I 2 

- I  -0 I U 

I 
1.6 x IO5 cm-1 

I 
I 

I Iso ' 
(a1 (61 

Figure 1. (a) Absorpaon of 10 830 I in helium compared with (b) emission of 
2537 .i in mercury. The structure of the in~t~a l  level is the same m the two cases. 

One further difference of experimental significance is that the initial state for helium 
is an s state, whereas for mercury it is a P state. The spherical symmetry of the S state 
implies that the directional properties of atoms in this state are determined entirely by 
the orientation of the spin. This is reflected in the intensity sum rules. The consequence 
is that the axiouat of light absorbed wili be unaffected by magnetic resonance if the 
spectral density of the monitoring light is uniform over the spin multiplet. For this 
reason, the detection of magnetic resonance signals depends on inequalities of spectral 
density such as are normally found in helium lamps. The 10 830 K radiation is usually 
emitted as a spectrally resolved doublet. The component (3Sl-3P,,) is resolved from, 
2nd ~ ~ a k e r  than, the blend (9S1-3P1, sPp,). Colegrove and Franken (1960) and Schearer 
(1961) interpreted the vanishing of optical pumping signals under certain conditions as 
a consequence of the differential absorption of the components of the doublet. 

Of the variety of effects studied with the helium system, we describe in this Paper 
certain modulation phenomena, classified as a and /? processes. These terms refer to 
the state of the system before the final interaction with the radic-frequency field. The 
atoms may have been left by previous cycles of optical pumping in eigenstates of the 
time-independent Hamiltonian, or in superposition states. The a processes are repre- 
sented by the further development of the eigenstates, and the /? processes by the httr" 
ference terms which develop from the superposition states. Jn the language of denslq 
matrices, the a processes correspond to the development of the diagonal elementsf and 
the 1 processes correspond to the development of the off-diagonal elemens. This 
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ci&ification represents a generalization of that used in DST and KS. a processes are 
be ‘principal magnetic resonance phenomena’, formerly described as case 1. Cases 
2 and 3 were special cases of 

The effects interpreted here as a processes include modulation effects at 2w0 in the 
beam, and at w o  and 2w0 in a transverse beam (w0/2?r is the applied radio 

frequency). In SO far as similar effects were studied in the mercury system, the resonance 
curves found in helium were identical. 

Modulation at frequencies higher than 2 w 0  cannot be due to M processes. I n  the 
present experiments, modulation at 4w0 was studied and ascribed to /? processes. Such 
&cts in optical pumping cycles are particularly interesting in that they prove that 
coherence between atomic eigenstates can survive the shock of optical excitation and the 
random isotropic perturbation which is responsible for spontaneous decay. That it 
cm survive optical excitation has been shown by Skalinski and Rosinski (1964), who 
observed modulation at the ground-state resonance frequency in the fluorescent light 
from optically pumped sodium vapour. That coherence can be carried through a 
complete cycle of optical pumping was shown by Cohen-Tannoudji (1962) in studies 
of the transverse relaxation of mercury 199. 

In the paper which follows (Partridge and Series 1966), it is shown that coherence 
between eigenstates can be transferred in collisions. The transfer of coherence in all 
these cases is governed by a condition of the type w f -  U ,  # rf, where w,  and of refer 
to the precessional frequencies of the initial and final states, and Ff is the damping 
constant of the final state. In physical terms, the requirement for the efficient transfer 
of coherence is that the precession of atoms in the initial and final states shall not develop 
a large phase difference within the mean lifetime of the final state. 

The experimental results in this paper are compared with theoretical expressions 
derived in the preceding paper (Series 1966, to be referred to as I). 

processes. 

2. Experimental arrangements 

The arrangements for securing optical pumping were similar to those described by 
Colegrove and Franken (1960). The disposition of apparatus is indicated in figure 1 
of the following paper (Partridge and Series 1966). 

The most favourable pressure of gas in the sample cells was 0.1-0.5 mmHg. At 
pressures of this order there is very little relaxation by collision of atoms in the excited 
3p states. Barium getters were used in some of the cells. 

The main magnetic field H was provided by Helmholtz coils of diameter 61.5 cm. 
Fields up to 1 G were used. Additional coils were used to provide low-frequency 
modulation and t o  compensate stray fields. Compensation was necessary to within 1 mG. 

The frequency range in which the resonances were studied was limited by the response 
of the photodetector. For most experiments the frequency chosen (wO/2.rr) was 0.5 or 
1.0 kc/s. A rotating, rather than an oscillating, field was used, and was provided by 
two orthogonal pairs of Helmholtz coils of diameter 21 cm. Amplitudes HI up to 20 mG 
could be provided. 

The system was monitored for modulation (a)  in the pumping beam (z beam) with 
the use of linear or circular polarizers or analysers, and (b) transversely, (x  beam) with 
an auxiliary lamp, using linear or circular polarizers. 

The photoelectric detector was a semiconductor device (photo-duo-diode, Texas 
Instruments Ltd.); eight elements were used in parallel. These detectors can be used at 
frequencies UP to 75 kc/s, but their response is independent of frequency only up to 
about 5 kcls. 
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The photoelectric signals were taken through a tuned amplifier and displayed, 
either directly on an oscilloscope (using a time base synchronous with the low-frequency 
modulating field), or as the output of a phase-sensitive detector. In the latter cue the 
reference signal was provided by the oscillator which generated HI, with frequency 
multipliers for the harmonics. NO additional low-frequency modulation was imposed. 
The output from the detector was taken to a pen recorder and plotted as a function of 

the field H. The experimental figures in this paper are plots of this sort. The field H 
was swept linearly through the resonances in times of the order of 100 sec. Integrating 
time constants up to 1 sec were employed. 

Although the experiments were planned primarily for qualitative studies, some care 
was taken to ensure that the response of the recording system was linear to within a few 
per cent and the field sweep correspondingly uniform. 

3. Experimental results 

3.1. G m a l  remarks 
3.1.1. Use ofpolarizingfiltm Most of the results described below were obtained by 
using the pumping light to monitor the resonances (z-beam detection). It is to be realized 
that the use of polarizers in this case d e c t s  both the system studied and the monitoring 
heam. An analyser does not itself affect the system, but selects a component of the beam 
which has both pumped the sample and monitored it. In  general, different results are 
obtained by placing a polarizing filter before or after the sample. This is not the case 
when the sample is monitored by an independent beam of light, provided that this is 
weak compared with the pumping beam. I n  such experiments it is ma te r i a l  on which 
side of the sample the filter is placed. 

3.1.2. Spurious signals. 
(i) Elliptical radio-frequency jield. Many experiments were performed in which the 

frequency of resonance was less than the width of the resonance curves (15-30 Ws). 
In such cases the counter-rotating component of an oscillating field cannot be ignored 
if comparisons are to be made with a simple theory of magnetic resonance such as is 
worked out in I. In  the present experiments, certain spurious modulation effects were 
2ttiibl;utab~e to slight eliipticity in the rotating field. 

(U) Ellipticalpolarizer. Spurious modulation under other conditions was attributable 
to non-ideal circular polarizers. The proof of this was that the phase of the modulation 
changed systematically with the orientation of the polarizer. 

(E) off-axis light. The use of light sources and detectors of finite size inevitably 
ktrc&c&s departures from the ideal geometrical conditions. These were suspected of 
introducing spurious signals and investigated by the use of stops. It was found that 
off-axis light was not an important source of spurious signals. 

3.1.3. Vanishing of signals. Colegrove and Franken (1960) pointed out that the vanishing 
of optical pumping signals (the unmodulated component of the transmitted light) for 
certain densities of metastable atoms was attributable to differential absorption of the 
components of the monitoring light. In the present experiments, modulation phenomena 
vanished under the same conditions as the optical pumping signals. 

3.1.4. Relative intasity of signal. Magnetic resonance signals were studied in the un- 
modulated component of the transmitted light and in the components modulated at 
2w0 and 40~0. 
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The strength of the unmodulated component under optimum conditions was less 
than 1% of the total amount of transmitted light. 

The amplitude of the modulation at 2w0 at the peak of the resonance was approxi- 
mately equal to the strength of the unmodulated component. The amplitude of the 
cosine component of modulation at 4w0 (symmetrical signal) was, under favourable 
conditions, comparable with that at 2w0. The amplitude of the sine component at 
4 ~ , ,  (antisymmetrical signal) was, under favourable conditions, about 5% of that of the 
spmetrical signal. 

3.2. Resonance functions 
Of the observed resonance curves, some were obtained under conditions such that 

only a processes would be expected; namely, with a circular polarizer or no polarizer in 
the pumping beam. These curves were compared with the functions A, B, C, D, E and F 
familiar from the double-resonance experiments (DST, KS), and with the Bloch 
functions 

These latter were not obtained in the mercury system, though there is no reason to 
believe that they could not have been found there had they been sought under the right 
conditions. 

With a linear polarizer in the pumping beam both U and /3 processes are expected. 
The additional signals found under these conditions were compared with the function 
F, and with the more complicated functions described in section 4 of I. Details 
of the comparisons are given below. 

3.3. Observation of a processes 
3.3.1. Monitoring in the x direction. Resonances were found according to table 1. The 
conditions stated are typical, but do not comprise an exhaustive list. LP, LA, CP*, CA* 
refer to linear polarizer, linear analyser, circular polarizer ( c ) and circular analyser ( k ), 
respectively. 

Task 1. Resooazces ~bssrvec! in the longitudinal beam 

Resonance curve Time dependence Conditions of observabon 

A modula t ed  LP or LA or both or neither 

D CGS 2UGt LP or LA or both 
E sin 2wot LP or LA or both 
F modula t ed  CP*, separate monitoring beam with CPF 

superposition of A and F unmodulated CP and CA’ or no A 

Experimental recordings of typical D and E curves are compared with theoretical 
Curves in figure 2. A discussion of the dependence of these curves on the parameters is 
given in section 3.4. 
3.3.2. Monitoring in the x direction. The special interest of this arrangement lay in the 
generation of the functions X’ and x“ by the use of a circular polarizer. These functions 
were only found for a polarized sample. They were not present in an aligned sample, nor 
when a linear polarizer was used for monitoring. The resonances observed were found 
according to table 2. 
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Experimental curves L Ii 
V 

!'''-/i I 2r i I  
! 11-0 05 p! / Theoretical curves i 1 i 

Figure 2. Experimental recordmgs of the amphtude of modulation at 2 w 0  (D and 
E functions) compared with theoretical curves. Experimental conditions: no pol&- 

zer, linear analyser, o o / 2 ~  = 0.5 kc/s, I' = 26 kcis, blr = 0.515. 

Table 2. Resonances observed in the transverse beam 

Resonance Time dependence Polarizer in Polarizer m 
function pumping beam monitoring beam 

cos sin W Q t  1 XT 
x" 

No signal 
sln coswQt wnt 1 

CP 

LP 
cosw,t 1 CP or L? 

CP or LP 

B 
C ski W Q t  I 
D 
E sln 2wot 

CP 

CP 

L? 

LP 

3.4. Fitting of resonance curves and determination of the damping constant 
The parameter of the resonances which could not be measured directly was r, the 

damping constant. Its value is interesting in that it provides a measure of the lifefie 
of the metastable atoms, but in the context of the present experiments a more h P o m t  
consideration was to determine (i) how closely individual resonance curves could be 
fitted to the analytical functions using some particular value of r, and (ii) whether One 

and the same value of could be used consistently for all the resonance functions, we 
shall treat these aspects separately. 
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It is necessary first to consider the factors which influenced the value of I?. These 
were the pressure of gas in the cell, the discharge intensity and the intensity of the 
pumping light. In  the comparisons in $5 3.4.1 and 3.4.2 below, it is to be understood 
6at these factors are held constant. In 5 3.4.3, we consider the dependence of I' on 
be intensity of the pumping light. 

3.4.1. The function D. The amplitude of modulation at the peak of the resonance, 
D ~ ,  was measured as a function of b (=yH,, where H, is the amplitude of the rotating 
field). Plots were made of Do(b)/Do (b-tco) against b and compared with the theoretically 
derived curve plotted against b/P. The curves could be brought into coincidence by 
adjustment of the abscissae, thus allowing a determination of r. Examples of this fitting 
are shown in figure 3 (a) .  

0 1 0  2 0  3 0  
b l P  

Figure 3(u). Do(b)/Do(b + 00) as a function of b/r.  Points correspond to experi- 
ments under different discharge condltlons covering the range of r specified in 
tables 3 and 4. x and 0 refer to samples at 0.3 and 0.1 mmHg, respectively. 

The full curves are theoretical curves. 

The -,vi&kL ai half-iiitetenjiq of thc ceiitral fcatxe, Alia,  ::'zs measured BS B 5 u c t i m  
of b. Plots were made of A,,, against b, and compared with the theoretically derived 
Curve of AI!& against b / r .  The curves could be brought into coincidence by adjustment 
of the ordinates and abscissae, using the same scale constant for each. Examples of 
this fitting are shown in figure 3 (b). 

The values of I' derived from fitting the curves of D o  and h,,, are independent of 
one another and are compared in table 3. Values of r in different rows must not be 
compared, since the intensity of the pumping light was different in each case. 

The value of r used as a scale constant in figure 2 was the appropriate I'(Do). 
From the evidence of figures 2 and 3 and table 3 it is clear that the experimental 

Curves are well represented by the function D. 

3.4.2. The function E. The theoretical plot of E in figure 2 was drawn using the same 



b l r  

0 
Figure 3. (b) AI,& as a function of blr. (c) A& as a function of b[r. For details 

see caption to figure 3(4. 

scale constant as for D. The scale of the magnetic field is the same for the experimental 
curves D and E, but the ordinates have been adjusted separately. The agreement bemeen 
the experimental and theoretical curves is striking. 

The separation between the peaks of E, A,, was measured as a function of b. A$ was 
plotted against b /F  using the appropriate value of l?(Do), and was compared with the 
theoretically derived plot. The result is shown in figure 3 (c).  The agreement bemeen 
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be experimental points and the theoretical curve is satisfactory evidence that the same 
&e of I? can be used consistently in D and E. 

The same value of r was used also in analysing the resonance curves taken at 4 u 0  

3.4.3. The i n t m * t y  of the pumping light. It is of particular interest to notice the depend- 
ace of I' on the intensity of the pumping light. Table 4 shows values of I'(Do) derived 
kom one cell under different conditions of illumination for two different discharge 
conditions. For each discharge condition resonance curves were obtained (U)  with the 
polarizing film in front of the cell and (b) with the film behind it. In cases (b) the light 
ialling on the sample is more than twice as intense as in cases (a).  Resonance curves of 
the same type were obtained for (a)  and (b), but different values of I?, as indicated in the 
table, were needed to secure a fit. 

(83.5). 

Table 4. Dependence of I' on the intensity of the pumping light 

Discharge intensity Position of I' Discharge intensity Position of l7 
(arbitrary scale) polarizer (kc/s) (arbitrary scale) polarizer (kc/s) 

5 (a) before 16 k0.7 10 (a) before 20.3 f0.7 
5 (b) after 18 f 1 5 10 (b) after 26.0 i l . 5  

These figures indicate that the contribution of optical pumping to  the relaxation processes 
was noticeable, but not dominant. 

3.5.  Observation of /3 processes 
Resonance effects were classified as ,B processes when the use of a linear polarizer 

in the pumping beam was essential to their production. The effects studied in detail 
were resonances in the longitudinal beam showing modulation at 4Wo. A number of 
spurious effects causing modulation at this frequency were eliminated (§ 3.1.2). , 

Modulation at higher frequencies is predicted by the theory, as well as the modulation 
at 4Wo. No systematic study of the higher frequencies was attempted, though it was 
established that modulation at 600 was present. 

3.5.1. Modulation at 4w0. The signals appeared in the pumping beam by the use of a 
hear polarizer either with or without a linear analyser. 

The modulation could be expressed by 

S cos 4w0t + T sin 4u0t  (2) 
where the strong signal S was represented by a bell-shaped resonance curve and the 
much weaker signal T by an antisymmetrical resonance curve. Typical experimental 
Curves are shown in figure 4 .  

The result predicted by the theory for these resonance curves consists of a sum of 
terms whose relative weight depends on the spectral distribution of the light. The net 
result cannot therefore be precisely evaluated, but its general form can be deduced. It is 

(F+ KP) cos 4w0t + KQ sin 4u0t  (3 1 
where F is the function we have used before, P i s  a symmetrical and Q an antisymmetrical 
resonance function, and K is proportional to the intensity of the pumping light. The 
contribution F comes from one cycle of optical pumping, while P and Q require two 
cycles. 
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Of the functions which constitute P and Q, the products (1 - 2 4 7  and DE have bee-, 
selected as a suitable basis for comparison with experiment. The experimental curves 
a, in fact, be fairly well represented by these functions, but this does not imply that 
the other constituents of P and Q do not also contribute. Nor is it excluded that contribu- 
tions from three or more pumping cycles may be present. 

Experimental =20,3: curves jh-li 
S 

mG - 
IO 

n O mc I ,  

- -10 

n 

Theoretical curves \ 
b:o5r  ij-0.05 

\ f  

L- 
-lo mG 'pr+ lo 

Figure 4. Experimental recordings of the amplitude of modulation at 4w0 (S and 
T funCtions) compared wth  theoretical c w e s  ((1 -2A)F and DE functlons). 
Experimental condtions: linear polarizer, no analyser, u0/277 = 0.5 kc/s, 

= 20.3 kc/s, b/r = 0.5. The gain employed in recording the T function was 
ten times that employed for the S funcoon. 

3.5.2. The function S. The amplitude of modulation at the peak of the resonance, 
So, was measured as a function of b. Plots were made of S,(b)/S, @-+CO) against b/r 
using the value of derived from analysis of the function D. These curves were corn- 
pared with corresponding plots derived from the theoretical functions F and (1 -2A)F 
(6gure 5 (ajj. The agreement is better with (1 - 2 4 3 .  

The width at half-intensity, A,, was measured as a function of b. Plots were made of 
A$ against b / r  and compared with corresponding plots derived from F and (1 - 2A)F 
(figure 5 (b)). The agreement is again better with (1 -2A)F. 

3.5.3. The function T. The weakness of the signal T led to difficulties in obtaining an 
experimental recording free from admixture with the much stronger quadrature corn- 
ponent S. The intensity of T relative to S was greater at lower values of 6, and the best 
curves were obtained under these conditions. The experimental curve in figure 4 shows 
good correspondence to the theoretical curve, for which the value of r obtained from the 
analysis of D has been used. 

3.5.4. Dependace on wo. It is predicted on theoretical grounds that the strength ofthe 
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I O -  

0 - I O  2 0  3 0  

b l r  
(4 

j 
0 I O  2 0  3 0  4 0  5 0  

blr 
(6) 

Flgure 5 .  (a) So(b)/So (b  + CO) as a function of b/r. (b) As/r as a function of b/r. 
The points represented by x and o correspond to two different discharge condi- 
tions with F = 16 0 and 14.5 kc/s respectively. The full curves are theoretical 

curves derived from the functions F and (1 -243’. 

! processes should decrease as w 0  is increased in relation to I?. Accordingly, the ampli- 
tude So was studied as a function of frequency. In order to avoid difficulties connected 
with the frequency response of the apparatus, So was measured relative to Do generated 
at the frequency wo’ = 2w0. The two resonance signals were thus compared at the 
Same frequency 4w,. In these experiments the discharge conditions were kept constant. 
The D and S signals both tend to a maximum as b is increased. The value of b used in 
each case was large enough to attain this maximum. 
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Do was chosen as a reference signal because, at the time when the experiment lvas 
performed, it was believed that Do was independent of W O .  According to the theory 
(which was at that time not fully developed), Do should indeed be independent of 
if it is generated with an analyser but no polarizer, but not with the converse arrange- 
ment which was the one used in these experiments. The theoretical result for this we 
is 

Do (b -f CO) = const. 

= const.f(w,) 

lvhere we have incorporated the relation wo' = 2w0. The experimentally determined 
ratio so (b +. CO)/D, (b + CO) therefore needs to be corrected by the factor f(wO), 
The ratio [So (b  -+ 03)!Do (b + a)lexpf(wo) is plotted in f i e r e  5 (C). 

WO / r  
Figure 5(c). So(b + co)/Do(b + CO) (corrected for the frequency dependence of 
DO) as a funaon of oo/r. The pomts represent one set of experiments with 
I? = 20.3 k/s .  The 5 ~ 2  cwves are theoreticai m e s  showing the frequency 
dependence of Fo, [(1 -2A)F10 by route (a) and [(l -2A)FJ0 by route (b). 

For comparison with the experimental points theoretical curves are also plotted 
showing the frequency deyendence cf f, fiol?i thz first-order soiurion, 01 L(, l- .U)rJo 
from the second-order solution by route (a), and of [(1-2A)Fj0 from the second-order 
solution by route (b)  (see figure 2 of I). In  each case the condition b --f CO, which leads 
to a great simplification, has been incorporated. The functions are 

r r,. n n \ m  

cons t . 
for F,: 

r2 + 4wO2 

const.(r2-8wO2) 
(r2 + 1 6 ~ , ~ ) ( I ' ~  + 40,~) for [(l -2A)FJ0 by route ( U ) :  

const. 
for [(1-2A)q;lb by route (b): 

r2 t 4w02' 

(4) 
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The most significant point to notice is that the experimental points do not fit the 
bt-order solution (4). They fit the second-order solution (sa) reasonably well. 

3.6. Discussion of the modulation at 4w0 

From the existence of the T signal and the evidence of the field and frequency 
dependence of the S signal, it is clear that the modulation at 4w0 cannot be attributed 
solely to the first-order solution F. The dominant component of the S signal must be 
attributed to second- or higher-order solutions, that is, to atoms which have undergone 
WO or more complete cycles of optical pumping before the final interaction with the 
radio-frequency field and absorption of light. 

It is anomalous that a stronger signal should arise from second- than from first-order 
processes. The fact that a second-order signal appears to be dominant has not been 
quantitatively explained, but a possible explanation lies in the fact that some components 
of the second-order signal are in antiphase with the first-order signal, and partially 
suppress it. In particular, the signal (1 -2A)F by route (b) occurs in antiphase with F 
and has the same dependence on frequency (compare the expressions (4) and (5b)). 
If there were approximate cancellation between these components of the signal, one 
could reconcile the theoretical curve [(1-2A)F], by route (a) of figure 5 (c) with the 
experimental points. One would expect to find second-order signals of strength com- 
parable with those in first order when the relaxation due to optical pumping became 
comparable with the relaxation due to other causes. The observation of line-broadening 
due to the pumping light (5 3.4.3) is evidence that the experiments were conducted 
under such conditions. 

4. Conclusions 

The principal magnetic resonance phenomena (E processes) to be expected for a 
spin 1 system have been observed in absorption from the optically pumped level 2 
in helium. The observations go beyond what has previously been studied in the com- 
parable case of emission from the level 6 3P, in mercury in that, with a suitable geo- 
metrical arrangement, the Bloch magnetic functions were observed. 

The damping constant in terms of which the curves were interpreted varied with 
discharge conditions. i t  also varied with the intensity of the pumping iiglnt, pointing to 
some contribution from the optical pumping to the relaxation of the atoms. The smallest 
damping constants observed were in the region of 15 kc/s, corresponding to resonance 
hewidths of the order of 5 mG. 

Modulation was also found at 4 w 0  under conditions which allowed its identification 
as a j3 process, t'hat is, one in which atoms are ieft in a superposition state after one or 
more cycles of optical pumping. The symmetry of the resonance signals and their 
behaviour under variation of the frequency and strength of the inducing field lead to 
the conclusion that the dominant contribution to these signals is attributable to atoms 
which have undergone more than one complete cycle of optical pumping. 

The observation of modulation at 4w0 is of particular interest in that it provides 
additional evidence for the circulation of coherence in optical pumping cycles. 
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