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Dressed return maps distinguish chaotic mechanisms

Daniel J. Cross
Physics Department, Haverford College, Haverford, Pennsylvania 19041, USA

R. Gilmore
Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA

(Received 8 October 2012; published 31 January 2013)

Chaotic data generated by a three-dimensional dynamical system can be embedded into R3 in a number of
inequivalent ways. However, when lifted into R5 they all become equivalent, indicating that they all belong
to a single universality class sharing a common chaos-generating mechanism. We present a complete invariant
determining this universality class and distinguishing attractors generated by distinct mechanisms. This invariant
is easily computable from an appropriately “dressed” return map of any particular three-dimensional embedding.

DOI: 10.1103/PhysRevE.87.012919 PACS number(s): 05.45.Ac, 02.20.−a, 02.40.Pc

I. INTRODUCTION

A major aim for the analysis of data generated by chaotic
dynamical systems is determining the chaos-generating mech-
anism. Typical techniques attempt to reconstruct the original
dynamics through an embedding of the data [1–5], but different
embedding procedures can lead to different embeddings
[6–9]. Topological analysis [5] provides information about the
mechanism, but in an embedding-dependent way. In this paper,
we present a method that, although built on topological anal-
ysis, is embedding-independent and so uniquely determines
the chaos-generating mechanism. We consider only genus-1
attractors in detail; higher genus attractors will be treated in a
forthcoming manuscript.

The spectrum of all possible embeddings for dissipative
three-dimensional dynamical systems is now known [9–12].
Embeddings are distinguished by three degrees of freedom that
describe the suspension flow between the various components
of the Poincaré surface of section: global torsion, knot type, and
parity. Since the embedding freedom resides in the suspension,
this suggests that the mechanism can be determined by the
return map alone. While this is not possible using the bare
one-dimensional return maps possessed by dissipative systems
(see, e.g., Fig. 2), it becomes possible if we “dress” the return
map with additional information. We define these dressed
return maps in Sec. II. In Sec. III, we show that any two dressed
return maps describing the same mechanism are related by a
group action. In Sec. IV, we introduce a complete invariant
for determining mechanisms by modding out this group, and
we compute several examples. We summarize our results in
Sec. V.

II. DRESSED RETURN MAPS

Every embedding of a genus-1 attractor (e.g., the Rössler
attractor [13]) is bounded by the surface of a torus of genus
1 [14]. A Poincaré surface of section can be chosen as a disk
that is everywhere transverse to the flow. By the Birman-
Williams theorem [4,5,15,16], the flow can be projected onto
a two-dimensional branched manifold within the torus. The
number of branches is equal to the number of symbols required
to uniquely specify all trajectories. The Poincaré section can
always be chosen to include the branch line, which is where

all of the branches of the branched manifold are joined. The
branched manifold can be described algebraically by (i) an
integer index labeling each branch, (ii) the number of twists
that each branch makes in the return trip to the branch line,
and (iii) the order in which the different branches join when
approaching the branch line. The return map for the flow only
indicates the connectivity (and relative orientations) of the
branches, but can be dressed to include the above information
describing the branched manifold.

We dress each of the n branches in the return map with
three symbols analogous to those describing the branched
manifold. The first symbol i is the name of the branch:
i = 0,1, . . . ,n − 1. The labeling is sequential from one end
of the branch line to the other. The order of the labeling
involves a choice, equivalent to choosing an orientation of
the branch line. Once an orientation is given, the labeling is
uniquely determined by continuity and adjacency (e.g., branch
2 is adjacent to branches 1 and 3). A conventional choice is to
order the branch line from left to right as seen by the “observer.”

Note that if the branch “line” is actually a circle (as
for the van der Pol oscillator [5]), then the first and last
branches are also adjacent. In addition to orientation, there
is a further n-fold labeling degeneracy corresponding to the
n-cyclic permutations of the branch labels.

The second symbol t indicates the torsion of the branch.
This is the number of half-twists that occur in the branch during
one topological period (the flow from branch line back to
branch line). Using the standard convention in linking theory,
this number is positive for right-handed crossings and negative
for left-handed crossings.

As the branches approach the branch line, they have some
ordering before being squeezed together and joined. The third
and final symbol j indicates the position of the branch in
this ordering. In analogy with the branch line, introduce an
array line oriented transversely to the branch line and flow
direction, so that the index j = 0,1, . . . ,n − 1 describes the
order in which branches intersect this line. The array line has a
natural interpretation as the local stable manifold along which
the Birman-Williams projection was carried out. Since there
are two possible orientations for this line, there are two possible
orderings for the j indices. A conventional choice is to assign
the numbers in increasing order as they are encountered along
the line of sight from the “observer.”
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FIG. 1. (Color online) Standard orientation: flow (F ) top-to-
bottom, branch line (B) left-to-right, and array line (A) front-to-back.

We reiterate that the determination of the first and third
indices requires a choice of orientation for the branch line and
the array line, respectively. We define a standard orientation
as follows: when the flow is downward, the branch line is
oriented from left to right and the array line is oriented front-
to-back (see Fig. 1). Since the observer could be on either
side of the branch-line–flow-direction plane, there are two
possible standard orientations. The relationship between these
orientations will be discussed in the next section.

Figure 2 shows two distinct mechanisms with identical re-
turn maps: the (outside-to-inside) stretch-and-roll-mechanism
and the S mechanism. For the stretch-and-roll, branch 0 has
zero torsion and connects at the bottom of the array line
(position 2), so it is dressed with (0,0,2). Branch 1 has a torsion
of 1 and connects at the top, so it is dressed with (1,1,0), and
branch 2 has a torsion of 2 and connects in the middle, yielding
(2,2,1). The dressing indices for the S mechanism are (0,0,2),
(1,1,1), and (2,0,0).
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FIG. 2. (Color online) Above: branched manifolds describing the
(a) stretch-and-roll and (b) S mechanisms. The flow is from top to
bottom, then re-injected at the top (not shown). Below: dressed return
maps for the (c) stretch-and-roll and (d) S mechanisms. The dressing
indices (i,t,j ) label each branch.

III. DEGREES OF FREEDOM

The dressed return maps introduced in the previous section
depend on the embedding. Thus, even though the dressings
for the two mechanisms in Fig. 2 are distinct, it does not
necessarily follow that the two mechanisms are distinct. Here
we describe how the dressing transforms with the embedding.
This is possible since all of the embedding degrees of freedom
are known [9].

Two embeddings that can be smoothly deformed into each
other without cutting or self-intersection are called isotopic,
and the deformation is called an isotopy. An example of an
isotopy is rotating the attractor or, equivalently, moving the
location of the observer. Isotopy cannot change the torsions
of branches since they are homotopy invariants (linking
numbers). Neither can isotopy change the adjacency relations
between branches when joined at the branch line. At most an
isotopy will change the perspective of the observer and thus
the orientations of the branch and array lines. Consider the
array line first. A branch encountered first (j = 0) from one
side is encountered last (j = n − 1) from the other side, and so
on. In general, j → j̄ ≡ n − 1 − j . Similarly, the order of the
branches is reversed: i → ī. Finally, we permute the branch
labels (carrying the t and j indices) into the standard order.
Since there are two possible orientations, isotopy provides
a Z2 (two-fold) freedom. For example, the indices of the
stretch-and-roll (Fig. 2) transform as

I :
(0,0,2) → (2,0,0) (0,2,1)
(1,1,0) → (1,1,2) ↗↘ (1,1,2)
(2,2,1) → (0,2,1) (2,0,0)

. (1)

This shows the transformation of indices (indicated by →),
followed by the permutation of the labels (indicated by ↗↘ ).
In this example, the torsion t ′0 of the new branch 0 has the
torsion of the old branch 0̄ = 2, or t ′0 = t0̄ = t2 = 2. Similarly,
the joining index j ′

0 of the new branch 0 is the reversed value
of the old branch 0̄, or j ′

0 = j̄0̄ = 2 − j2 = 1. In summary,
(ti ,ji)′ = (tī ,j̄ī), which we write as

I : (ti ,ji) �→ (tī ,j̄ī).

Now consider nonisotopic changes in the embedding. As
mentioned previously, this can happen in three ways: knot type,
parity, and global torsion. None of the indices is sensitive to
knot type, so changing the knot type of the embedding has no
effect on the dressed return map.

The parity operation reverses one of the coordinate direc-
tions and thus changes the handedness of the embedding.
The choice of axis is ultimately immaterial since different
choices are related by isotopy. For definiteness we choose
the reflection to occur along the branch line, reversing the
branch line orientation while preserving the (local) flow
and array line. Parity reverses the handedness of crossings,
mapping torsions into their negatives: t → −t , and reverses
the branch line: i → ī. Since applying parity twice gives back
the original system, this is another Z2 freedom. Applied to the
stretch-and-roll template, using the same notation as Eq. (1),
we find

P :
(0,0,2) → (2,0,2) (0, − 2,1)
(1,1,0) → (1, − 1,0) ↗↘ (1, − 1,0)
(2,2,1) → (0, − 2,1) (2,0,2)

. (2)

012919-2



DRESSED RETURN MAPS DISTINGUISH CHAOTIC . . . PHYSICAL REVIEW E 87, 012919 (2013)

TABLE I. Transformation properties of the dressing indices under
the embedding degrees of freedom: isotopy (I ), parity (P ), and global
torsion (GT). Here, j̄ ≡ n − 1 − j and m ∈ Z.

Image under

Index I P GT

ti tī −tī ti + 2m

ji j̄ī jī ji

The new dressing labels are (ti ,ji)′ = (−tī ,jī), or

(ti ,ji) �→ (−tī ,j̄ī).

Finally, a change in global torsion is accomplished by
opening the bounding torus along the Poincaré section, adding
an integral number of twists to one side of the section,
and reconnecting. This operation leaves the section invariant,
preserving the flow, branch line, and array line directions, but
systematically changes every torsion index (the number of half
turns) according to t → t + 2m, where m is the integer number
of added twists. This provides a Z (integer-valued) freedom.
On the stretch-and-roll template

GT :
(0,0,2) → (0,0 + 2m,2)
(1,1,0) → (1,1 + 2m,0)
(2,2,1) → (2,2 + 2m,1)

, (3)

or

(ti ,ji) �→ (ti + 2m,ji).

All together there is a Z2 ⊗ Z2 ⊗ Z freedom in the dressed
return map. The three factors correspond to isotopy, parity, and
global torsion, respectively. Two dressed return maps represent
equivalent mechanisms if and only if they can be transformed
into each other by an element of this group. Moreover, they
are isotopic if and only if the dressings can be mapped into
each other using only the first Z2 subgroup. The action of this
group on the dressing labels is summarized in Table I.

These transformation properties can be used to show that
the standard and reverse horseshoes (see Fig. 3) are equivalent
but nonisotopic mechanisms. An isotopy maps the standard
horseshoe indices to

(0,0,1) (0,1,1)
�→

(1,1,0) (1,0,0)
,

which are not the reverse horseshoe indices, and we conclude
that the two are not isotopic. However, the parity operation
maps the standard horseshoe indices to

(0,0,1) (0, − 1,0)
�→

(1,1,0) (1,0,1)
,

which are the reverse horseshoe indices. We conclude that
these mechanisms are equivalent, differing only by embedding.
The equivalence between the direct and reverse horseshoes had
previously been observed by Letellier et al. [17].

IV. DISTINGUISHING MECHANISMS

The preceding section demonstrated that two mechanisms
are equivalent precisely when their dressed return maps can be

(a) (b)

(0
, 0

, 1
)

(1, 1, 0)

(c)

(0,−
1, 0) (1

, 0
, 1

)

(d)

FIG. 3. (Color online) Above: branched manifolds describing the
(a) standard and (b) reverse horseshoe mechanisms. The flow is from
top to bottom. Below: dressed return maps for the (c) standard and
(d) reverse horseshoe. The branched manifolds and dressed return
maps differ by parity.

mapped into each other under the action of a group. Here we
introduce an invariant that completely distinguishes any two
mechanisms: a mapping exists between two dressed return
maps precisely when they have the same invariant.

First define the differential torsion array ∂t , whose entries
are the differences in torsions in adjacent branches,

∂ti ≡ ti − ti−1 = ±1, i = 1, . . . ,n − 1.

This array is manifestly invariant under a change of global
torsion since every torsion index transforms by the same fixed
quantity, which is then subtracted away. Since an isotopy
(I ) reverses the branch order, the differential torsion array
transforms as

I : ∂ti = ti − ti−1 �→ tī − ti−1 = −∂ti−1 ≡ −∂t̄i ,

since i − 1 = ī + 1, and we have defined ∂t̄i ≡ ∂ti−1 = ∂tn−i ,
which is the reverse of the original array. Parity, in addition to
reversing the branches, negates each torsion index (t �→ −t),
so that

P : ∂t �→ ∂t̄ .

Next define the differential joining array ∂j by

∂ji = ji − ji−1, i = 1, . . . ,n − 1.

Global torsion has no effect on the joining indices, so ∂j is
manifestly invariant under global torsion. Isotopy, in addition
to reversing the branch order, reverses the joining index values
(j �→ j̄ ) so that

I : ∂ji = ji − ji−1 �→ j̄ī − j̄i−1 = jī − ji−1 = ∂j̄i ,

where ∂j̄i ≡ ∂ji−1. Parity only reverses the branches, so

P : ∂j �→ −∂j̄ .

012919-3
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TABLE II. Transformation properties of the differential arrays
under parity (P ), isotopy (I ), and the combination IP = PI , and
where we have defined ∂t̄i ≡ ∂ti−1 = ∂tn−i .

Image under

Array P I IP

∂t ∂t̄ −∂t̄ −∂t

∂j −∂j̄ ∂j̄ −∂j

The transformation properties of both arrays are summarized
in Table II.

Both arrays are invariant under global torsion and knot type,
so only the Z2 ⊗ Z2 freedom of isotopy and parity remains.
To define the invariant, first form the combined array A0 =
(∂t ; ∂j ). The Z2 ⊗ Z2 freedom generates three other arrays:
AP ≡ PA0 = (∂t̄ ; −∂j̄ ), AI ≡ IA0 = (−∂t̄ ; ∂j̄ ), and AIP ≡
IPA0 = (−∂t ; −∂j ). Define the invariant A by ordering
{A0,AP ,AI ,AIP } lexicographically and taking the smallest
element.

This invariant readily distinguishes the stretch-and-roll and
S mechanisms presented in Fig. 2. For the stretch-and-roll ∂t =
(1,1) and ∂j = (−2,1), so that A0 = (1,1; −2,1). The other
possible arrays are AP = (1,1; −1,2), AI = (−1, − 1; 1, −
2), and AIP = (−1, − 1; 2, − 1). Clearly AI < AIP < A0 <

AP and the invariant is A = AI = (−1, − 1; 1, − 2). For
the S mechanism ∂t = (1, − 1) and ∂j = (−1, − 1), and the
invariant is A = AP = (−1,1; 1,1). We conclude that the
stretch-and-roll and S mechanisms are distinct; there is no
diffeomorphism that transforms the stretch-and-roll into the S

mechanism.
The stretch-and-roll actually comes in two varieties:

outside-to-inside and inside-to-outside. These two are related
through the parity operation and thus represent the same
underlying mechanism. The dressings and invariants for both
stretch-and-rolls and the S mechanism are given in Table III.

As a final example, consider the two double-fold mecha-
nisms shown in Fig. 4. The two folds in Fig. 4(a) are in the
same direction, whereas the folds in Fig. 4(b) are in contrary
directions. For the first double fold, A0 = (1,1, − 1; −3,1,1)
and the invariant is AIP = (−1, − 1,1; 3, − 1, − 1), while for
the second double fold, A0 = (1, − 1, − 1; −1, − 1,3) and
the invariant is AP = (−1, − 1,1; −3,1,1), hence these are
distinct mechanisms.

The stretch-and-roll mechanism is a submechanism of the
first double fold, obtained by pruning branch 3. Eliminating
this branch removes the last entry in ∂t and ∂j , but the first
joining differential changes from −3 to −2 since branch
3 was connected between branches 2 and 0. Hence A0 �→
(1,1; −2,1), which was A0 for the stretch-and-roll invariant.

TABLE III. Dressings and invariants for the equivalent out-to-in
and in-to-out stretch-and-rolls and the inequivalent S mechanism.

System Dressing (i,t,j ) Invariant

Out-to-in (0,0,2),(1,1,0),(2,2,1) (−1, − 1; 1, − 2)
In-to-out (0, − 2,1),(1, − 1,2),(2,0,0) (−1, − 1; 1, − 2)
S (0,0,2),(1,1,1),(2,0,0) (−1,1; 1,1)

(a)

(b)

FIG. 4. (Color online) Double-fold mechanisms with the folds in
the same direction (a) and in contrary directions (b).

Similarly, pruning branch 3 from the second double fold leaves
the S mechanism and A0 �→ (1,1; −1, − 1), which is A0 for
the S mechanism.

Alternatively, pruning branch 0 from the first double fold
leaves an S-like mechanism, but with an extra half-twist. This
is indeed distinct from the S mechanism as the invariant is
AP = (−1,1; −1, − 1). Similarly, pruning branch 0 from the
second double fold leaves a stretch-and-fold-like mechanism
with an extra half-twist, and the invariant is AP = (−1,−1;
−2,1).

The two different three-branch limits of the four branch
double-fold templates obtained by pruning an end branch allow
a more intuitive understanding of the results of experiments
carried out by Used and Martı́n [18]. The results of these
experiments showed templates of both scroll and S types. At
the time it was difficult to reconcile these results with the
operation of continuous folding of the flow. With the results
above, we can now envision a flow evolution beginning with
a three-branch template (e.g., 0-1-2) of scroll type, adding a
fourth branch (3) to create a template of double-fold type, and
then pruning away the first branch, leaving a three-branch
template (1-2-3) of S type. Such an evolution is achieved
without violating the continuity of the underlying equations.

The invariant array introduced here is simple to compute
once the dressed return map has been determined and can
differentiate any two mechanisms in genus-1 attractors. We
infer that the differential torsion and joining information
are sufficient for determining the universality class of a
genus-1 attractor. It follows that the entire spectrum of relative
rotation rates and linking numbers that characterize a particular
representation can be computed from the full dressed return
map. This agrees with the analysis in [19].
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V. DISCUSSION AND CONCLUSIONS

Chaotic data generated by a three-dimensional dynamical
system can be embedded into R3 in many different ways,
each a representation of the same underlying mechanism.
To identify this mechanism, we introduced a dressed return
map computable from any embedding. We showed that two
mechanisms are identical precisely when their dressed return
maps can be transformed into each other under the action of a

particular group. We then defined an invariant that completely
specifies the mechanism by “modding out” this group action.
Two mechanisms are the same if and only if they have the
same value for this invariant. It is now possible to determine
a chaos-generating mechanism in an embedding-independent
way. We have worked this out in detail only for genus-1
attractors; the theory for higher genus attractors will be
presented in a forthcoming manuscript.
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[13] O. E. Rössler, Phys. Lett. A 57, 397 (1976).
[14] T. D. Tsankov and R. Gilmore, Phys. Rev. Lett. 91, 134104

(2003).
[15] J. S. Birman and R. F. Williams, Topology 22, 47 (1983).
[16] J. S. Birman and R. F. Williams, Contemp. Math. 20, 1 (1983).
[17] C. Letellier, G. Gouesbet, and N. Rulkov, Int. J. Bif. Chaos 6,

2531 (1996).
[18] J. Used and J. C. Martı́n, Phys. Rev. E 82, 016218 (2010).
[19] J. C. Martı́n and J. Used, Int. J. Bif. Chaos 19, 3803

(2009).

012919-5

http://dx.doi.org/10.1103/PhysRevLett.45.712
http://dx.doi.org/10.1103/RevModPhys.65.1331
http://dx.doi.org/10.1103/RevModPhys.70.1455
http://dx.doi.org/10.1103/PhysRevE.52.1497
http://dx.doi.org/10.1063/1.2432023
http://dx.doi.org/10.1103/PhysRevE.75.066214
http://dx.doi.org/10.1103/PhysRevE.75.066214
http://dx.doi.org/10.1103/PhysRevE.80.056207
http://dx.doi.org/10.1103/PhysRevE.81.066220
http://dx.doi.org/10.1103/PhysRevE.82.056211
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1103/PhysRevLett.91.134104
http://dx.doi.org/10.1103/PhysRevLett.91.134104
http://dx.doi.org/10.1016/0040-9383(83)90045-9
http://dx.doi.org/10.1090/conm/020/718132
http://dx.doi.org/10.1142/S0218127496001624
http://dx.doi.org/10.1142/S0218127496001624
http://dx.doi.org/10.1103/PhysRevE.82.016218
http://dx.doi.org/10.1142/S0218127409025122
http://dx.doi.org/10.1142/S0218127409025122

	Dressed Return Maps Distinguish Chaotic Mechanisms
	Repository Citation

	tmp.1421807402.pdf.AOpeR

