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Equivariant differential embeddings

Daniel J. Cross and R. Gilmorea�

Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA

�Received 16 March 2010; accepted 23 July 2010; published online 21 September 2010�

Takens �Dynamical Systems and Turbulence, Lecture Notes in Mathematics, edited

by D. A. Rand and L. S. Young �Springer-Verlag, New York, 1981�, Vol. 898, pp.

366–381� has shown that a dynamical system may be reconstructed from scalar

data taken along some trajectory of the system. A reconstruction is considered

successful if it produces a system diffeomorphic to the original. However, if the

original dynamical system is symmetric, it is natural to search for reconstructions

that preserve this symmetry. These generally do not exist. We demonstrate that a

differential reconstruction of any nonlinear dynamical system preserves at most a

twofold symmetry. © 2010 American Institute of Physics. �doi:10.1063/1.3479693�

I. INTRODUCTION

Symmetry is an important property enjoyed by many equations describing physical phenom-

ena. Common examples include the Lorenz,
2

Burke and Shaw,
3,4

Kremliovsky,
5

and Thomas
6

dynamical systems. Each system models a measurable physical dynamics, but a typical experiment

records only a single variable. Time delay and differential embedding techniques can be used to

attempt the reconstruction of the entire original phase space. We are interested in determining what

constraints the symmetry of a nonlinear dynamical system imposes on this reconstruction process.

Specifically, the questions this paper addresses are the following: for a differential embedding

constructed from a single observation function, �1� is the reconstructed dynamics equivariant; �2�
if yes, under which group is it equivariant; and �3� under which representation of that group?

In short, equivariance provides an extremely tight constraint on the embedding problem.

Specifically, we shall show that only two possibilities exist when attempting to reconstruct an

equivariant dynamics, either �1� the reconstruction has no symmetry or �2� the reconstruction is

equivariant under the parity representation of Z2, the cyclic group of order of 2. In other words,

regardless of the symmetry of the original system, the construction possesses at most a twofold

symmetry. It most cases this precludes the possibility of an actual embedding since the loss of

symmetry prevents the reconstruction from being one-to-one. That is, not to say that embeddings

do not exist; they just cannot preserve symmetry.

The organization of this paper is as follows. Section II provides background material and

motivation. Section III reviews the relevant theory of group representations. Section IV reviews

the structure theory for equivariant dynamical systems, while Sec. V introduces a structure theory

for differential mappings �dynamical system reconstructions�. The structure of equivariant recon-

structions is worked out in Secs. VI and VII. Implications of this theory for the embedding

problem are given in Sec. VIII. Finally, Sec. IX states our conclusions.

II. BACKGROUND

A dynamical system is a set of first order ordinary differential equations or, equivalently, a

smooth vector field on a manifold. The vector field generates a flow �t�x� which is the unique

a�
Electronic mail: djc49@drexel.edu.
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solution to the differential equations. We are interested in autonomous dynamical systems on

Euclidean space R
n, which have the form ẋi=v

i�x�. We regard the vector field v as a map v :Rn

→R
n associating with each point x�R

n the vector v�x�.
A group G may act on R

n as a set of linear transformations. Such an action is through a

representation � of G. A dynamical system ẋ=v�x� is said to be symmetric or equivariant under

G if there exists a faithful representation � of G acting on R
n, such that the following diagram

commutes for every g�G:

R
n v

−−−→ R
n

Γ(g)

⏐

⏐

�

⏐

⏐

�

Γ(g)

R
n v

−−−→ R
n
. �1�

This relation states the vector field “looks the same” when viewed from a point x as is does from

any symmetry related point ��g��x�. The representation is required to be faithful to eliminate

trivial equivariance, which is simply invariance.

The Lorenz and Kremliovsky dynamical systems are both equivariant under Z2, the cyclic

group of order of 2. The Lorenz system is given by the equations

ẋ = ��y − x� ,

ẏ = Rx − y − xz ,

ż = − bz + xy , �2�

which are equivariant under the transformation Rz��� : �x ,y ,z�� �−x ,−y ,z�, equivalent to a �

rotation about the z-axis. We say that the Lorenz system is rotationally equivariant. The Kremlio-

vsky system is given by the equations

ẋ = − y − z ,

ẏ = x + ay ,

ż = bx + z�x2 − c� , �3�

which are equivariant under the transformation P : �x ,y ,z�� �−x ,−y ,−z�, which is a spatial inver-

sion. We say that the Kremliovsky system is parity equivariant. The representations Rz��� and P

are inequivalent in R
3. The two systems therefore possess distinct symmetries even though they

are both equivariant under faithful representations of the same group, Z2.

An observation function for a dynamical system is a real-valued function f :Rn
→R that

measures some observable of the system. The values of an observation function are recorded along

some trajectory of the system; what one records is the composition f ��t�x0� for some initial

condition x0 at various times t, typically evenly spaced.

Given an observation function, a “differential mapping” of the dynamical system into R
m may

be defined by the formula

x � � f�x�,� d

dt
�

0

f��t�x��, . . . ,� dm−1

dtm−1�
0

f��t�x��� , �4�

where the notation indicates that derivatives are to be evaluated at t=0. A theorem of Takens
1

states that for a generic dynamical system �of dimension n� and generic function f , this mapping

is an embedding when m=2n+1. This mapping is called a differential or Takens embedding.

While smaller values of m may provide embeddings, Takens’ theorem does not guarantee this.

092706-2 D. J. Cross and R. Gilmore J. Math. Phys. 51, 092706 �2010�
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When an observation function is discretely sampled at an interval �t that is sufficiently small,

linear combinations of k adjacent terms in the time series are good approximations to the signal

and its first k−1 derivatives. Thus, differential embeddings can be approximated by discretely

sampled experimental data. In the sequel we investigate the equivariant properties of dynamical

systems under differential mappings only.

As an example to motivate the present analysis, consider the Lorenz system, Eq. �2� �for

details, see Ref. 7�. The coordinate function x and all of its derivatives transform under the parity

representation P of Z2. A differential mapping of the Lorenz system using x as the observation

function results in the induced Lorenz system, which is equivariant under P. The symmetries of

the two attractors in R
3 are compared in Fig. 1. An important consequence of this difference of

symmetry is that this differential mapping does not provide an embedding of the entire Lorenz

system into R
3 �although it does in higher dimensions�. We return to this point in Sec. VIII.

III. GROUP REPRESENTATIONS AND SCHUR’S LEMMAS

The structure of equivariant dynamical systems and their differential embeddings depends on

the structure of the underlying equivariance group G. We will assume that G is a finite group. Let

� be a representation of G acting on the linear space V. Then � is said to be reducible if there

exists a proper subspace U�V that is, invariant under �, that is, ��g��u��U for every u�U. If

V has no proper invariant subspaces then � is said to be irreducible.

A representation � is said to be fully reducible if whenever U is a proper invariant subspace,

there exists a complementary subspace which is also invariant. This means that in the proper basis,

the matrices ��g� are simultaneously block diagonal. It is a fundamental fact that representations

of finite groups are always fully reducible.
8

In this case every representation is a direct sum of

irreducibles.

When speaking of irreducibility, it is important to specify the field. A representation that is

irreducible over R may be reducible over C. Examples are provided by the representations of the

cyclic groups Zp for p�2 as planar rotations through angle 2� / p �this is discussed further in Sec.

IV�. As we are concerned with real representations on real vector spaces �Rn�, irreducibility will

be understood over R unless otherwise noted.

Two more fundamental results that are instrumental to the following analysis are Schur’s

lemmas, which describe the structure of homomorphisms between irreducible representations.

Although applicable in more general settings, in the context of group representations they take the

following form.
8

FIG. 1. Projections of the Lorenz attractor �left column� and the induced Lorenz attractor �right column�. The first row

shows that both attractors possess �x ,y�→−�x ,y� symmetry. The bottom row shows that Lorenz has no z symmetry, while

the induced system has �x ,z�→−�x ,z� symmetry.

092706-3 Equivariant differential embeddings J. Math. Phys. 51, 092706 �2010�
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Schur’s first lemma: Suppose that � is an irreducible representation of a group G acting on a

vector space V. If there exists a linear map M :V→V that commutes with � for every g�G,

V
M

−−−→ V

Γ(g)

⏐

⏐

�

⏐

⏐

�

Γ(g)

V
M

−−−→ V, �5�

then M is a multiple of the identity, M =�I.

Schur’s second lemma: Suppose that �1 is an irreducible representation of a group G acting on

a vector space V1 and that �2 is an irreducible representation of G acting on V2. If there exists a

linear map M :V1
→V2 that commutes with �i for every g�G,

V 1 M
−−−→ V 2

Γ1(g)

⏐

⏐

�

⏐

⏐

�

Γ2(g)

V 1 M
−−−→ V 2, �6�

then either M is zero or an isomorphism. In the latter case the two representations �1 and �2 are

equivalent.

IV. THE STRUCTURE OF EQUIVARIANT DYNAMICAL SYSTEMS

This section reviews the structure theory of equivariant dynamical systems,
9

since this is not

widely known. Let the representation �D define an action of the group G on R
n. Then �D acts on

the coordinate functions xi of Rn. Denote by R�x� the set of all polynomials in variables x1 , . . . ,xn.

This set is a ring under the operations of polynomial addition and multiplication. The action of �D

on the monomials xi induces an action on all of R�x� in a natural way. This representation is

denoted by �R.

Let p�R�x� be a polynomial. If p is invariant under �, p��x�= p�x�, then p is said to be an

invariant polynomial. Otherwise p is said to be covariant. Since �R is fully reducible, each

polynomial p can be decomposed into components, each belonging to an invariant subspace

transforming under a particular irreducible representation. The invariant polynomials all belong to

the same subspace, which transforms under the trivial representation ��g�= In. The sets of invari-

ant and covariant polynomials each possess a basis set of polynomials from which all others may

be constructed through the ring operations.
10

They are called an integrity basis and a ring basis,

respectively.

An arbitrary function f on R
n may be decomposed with respect to the action �D of G on R

n

into a sum of an invariant and a covariant function. The invariant part may be written as h0�p�,
where h0 is a �not necessarily polynomial� function of the integrity basis polynomials p. The

covariant part may be further decomposed as 	rhr�p�qr, where r	1, the qr are polynomials in the

ring basis, and the hr are functions of the invariant polynomials. If we define q0
1 as a ring basis

polynomial representing the invariant irreducible subspace, an arbitrary function f may be written

as f =hr�p�qr, where r	0 and summation is implicit over the repeated index.

Now consider a dynamical system ẋi=v
i equivariant under the representation �D of G. Each

component of the vector field may be expanded in the ring basis as v
i=hi

r�p�qr. The behavior of

the dynamical system under the group operation g is determined by

gv
i = ghi

r�p�qr,

gv
i = hi

r�p�gqr,

092706-4 D. J. Cross and R. Gilmore J. Math. Phys. 51, 092706 �2010�
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�D�g−1�i
jv

j = hi
r�p��R�g−1�r

sq
s,

�D�g−1�i
jh

j
sq

s = hi
r�p��R�g−1�r

sq
s, �7�

where in the second line, we used invariance of the hi
r, in the third, the definitions of the repre-

sentations �D and �R, and in the last, the expansion of v
j in the ring basis.

The last line must hold for each basis element qs in the ring basis separately. The resulting

equation may be expressed as the commutative diagram,

R[x]
h

−−−→ R
n

ΓR(g)

⏐

⏐

�

⏐

⏐

�

ΓD(g)

R[x]
h

−−−→ R
n
, �8�

demonstrating that h intertwines the two representations �D and �R. We may regard R
n as a

subspace of R�x� spanned by the monomials xi. Since both �D and �R are fully reducible, Schur’s

first lemma may be applied to the restriction of h to the irreducible subspaces. The conclusion is

that h is multiplication by a constant �that is, an invariant polynomial� between equivalent repre-

sentations and zero otherwise. This severely restricts the structure of the functions h j
i that define an

equivariant dynamical system.

For example, consider the representation �D=Rz��� of Z2, the equivariance group of the

Lorenz system. The invariant polynomials z, x2, xy, and y2 span an integrity basis. The ring basis

polynomials x and y each transform under the nontrivial one dimensional representation Z2

→ �1,−1�. The most general form of a three dimensional dynamical system equivariant under

�D=Rz��� is given by

d

dtx

y

z
� = 

0 h
1

2 h
1

3

0 h
2

2 h
2

3

h
3

1 0 0
�1

x

y
� , �9�

where each hi
j is a arbitrary function of the invariant polynomials. The Lorenz system is defined

by the choices h1
3=−h1

2=�, h2
2=R−z, h2

3=−1, and h3
1=−bz+xy.

V. THE STRUCTURE OF DIFFERENTIAL MAPPINGS

This section describes two properties of differential mappings that restrict the structure of

equivariant embeddings of dynamical systems. These are �1� the canonical form of the image

dynamical equations and �2� the preservation of transformation properties under differentiation.

The differential mapping F in Eq. �4� is constructed from the consecutive derivatives of a

single observation function f . When the image dynamical system is well defined �for example,

when the mapping is an embedding�, the new vector field V at F�x� is given by

Vi =
�Fi

�x j v
j

= � d

dt
�

0

Fi��t�x�� . �10�

It is immediate from the definition that V1=F2. For V2 we have

092706-5 Equivariant differential embeddings J. Math. Phys. 51, 092706 �2010�
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� d

dt
�

0

F2��t�x�� = � d

dt
�

0

� d

ds
�

0

f��s��t�x���

= � d

dt
�

0

� d

ds
�

0

f��s+t�x��

= � d

dt
�

0

� d

ds�
�

t

f��s�
�x��

= � d2

dt2�
0

f��t�x��

= F3�x� , �11�

where s�=s+ t. By induction we have the general rule that Vi=Fi+1 for i
m.

Therefore, the image dynamical system always has the canonical form,

Ḟ1 = F2,

Ḟ2 = F3,

]

Ḟm−1 = Fm,

Ḟm = h�F1, . . . ,Fm� �12�

for some function h. We can express this canonical form by Ḟi=Mi
jF

j +�i
mh�F�, where above the

last row M is an upper shift matrix �unit superdiagonal� and the bottom row is zero,

M =
0 1 0 . . .

0 0 1 . . .

] ] ] �

0
� . �13�

Next we consider how the derivatives of the observation function f transform under a group

operation g. By definition of derivative �recalling that �t is the flow generated by v�,

� d

dt
�

0

f��t�gx�� = lim
t=0

f�gx + tvgx� − f�gx�
t

= lim
t=0

f�g�x + tvx�� − f�gx�
t

= � d

dt
�

0

f�g��t�x��� , �14�

where in the second line, we used the assumption of equivariance. It follows that if f is invariant

under g, then so is its time derivative since f �g= f . Suppose f =qi is a ring basis polynomial. In this

case

092706-6 D. J. Cross and R. Gilmore J. Math. Phys. 51, 092706 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.85.181 On: Wed, 21 Jan 2015 02:48:57



� d

dt
�

0

qi�g�t�x�� = � j
i�g�� d

dt
�

0

q j��t�x�� , �15�

which just says the derivative of qi transforms under the same representation as qi. In the general

case of a linear combination of covariant polynomials multiplied by arbitrary invariant polynomi-

als, the derivative of f transforms the same as f , that is, it is composed of the same representations.

This follows at once from the linearity of the derivative, the chain rule, and the special cases

already considered.

Consider again the Lorenz system with observation function x, which transforms under the

parity representation of Z2. The differential mapping F�x ,y ,z�= �X ,Y ,Z� of the Lorenz system into

R
3 constructed using x is given by

X = x ,

Y = ��y − x� ,

Z = ��R + � − z�x − ��1 + ��y , �16�

and it is apparent that the coordinate functions �X ,Y ,Z� transform under the P representation of

Z2. The canonical equations of motion are satisfied with h given by
11,12

b��R − 1�X − b�1 + ��Y − �1 + b + ��Z − X2Y − �X3 +
Y

X
�Z + �1 + ��Y� . �17�

The canonical equations are also equivariant under P.

VI. THE STRUCTURE OF EQUIVARIANT REPRESENTATIONS

This section applies the structure built up in Secs. IV and V to constrain the symmetry of

equivariant dynamical systems under differential mappings. First, we demonstrate that equivari-

ance requires that an observation function be composed of polynomials transforming under a

single representation. Next, we demonstrate that this representation is necessarily Abelian, in fact,

cyclic. Finally, we show that this representation is one dimensional. We conclude that if the image

of an equivariant dynamical system is itself equivariant, the equivariance group representation is

necessarily one dimensional.

Suppose that f =F1 is an observation function and that F= �F1 , . . . ,Fm� is the corresponding

differential mapping. Since the original dynamical system is equivariant, the image system will be

equivariant under G if the following diagram commutes:

R
n F
−−−→ R

m

ΓD(g)

⏐

⏐

�

⏐

⏐

�

ΓD
′

(g)

R
n F
−−−→ R

m
. �18�

Recall that the definition of equivariance requires that �D� be faithful. As we shall see, Eq. �18� is

often satisfied by an unfaithful representation �D�. In this case �D� provides a faithful represen-

tation of some group G� homomorphic to G. Specifically, if � :G→�D� is the homomorphism

defining the representation, then G��G /ker . We say that the image system is equivariant under

G� rather than G.

For instance, the Lorenz system is equivariant under Z2 acting as � rotations around the

z-axis. The coordinate function z is invariant under this action and a differential mapping con-

structed using this function results in a dynamical system without symmetry. It is equivariant

under the identity representation � :Z2→ I3. We will return to this example in Sec. VII.

092706-7 Equivariant differential embeddings J. Math. Phys. 51, 092706 �2010�
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As in Sec. IV we expand each component Fi in the ring basis of R
n as Fi=hi

j�p�q j. By

essentially the same reasoning that led to Eq. �8�, we obtain the diagram

R[x]
h

−−−→ R
m

ΓR(g)

⏐

⏐

�

⏐

⏐

�

ΓD
′

(g)

R[x]
h

−−−→ R
m
, �19�

showing that h intertwines �R and �D�, that is, h�R=�D�h.

Using full reducibility, decompose �R and �D� into a direct sum of irreducible representations,

�R=diag���l1� , . . . ,��ls�� and �D�=diag���k1� , . . . ,��kr��. Similarly decompose R�x� and R
m into the

corresponding invariant subspaces on which the irreducible representations act, R�x�=U1 � ¯

� Us and R
m=V1 � ¯ � Vr. Let the indices of hi

j refer now to invariant subspaces rather than

matrix elements so that hi
j :U j→Vi is a linear map for each i , j. Schur’s second lemma requires

that each hi
j be an isomorphism when nonzero, in particular, U j and Vi have the same dimension.

We obtain the commutative diagram

Uj

hi
j

−−−→ Vi

Γ
(lj)

⏐

⏐

�

⏐

⏐

�Γ
(ki)

Uj

hi
j

−−−→ Vi, �20�

for each pair of indices �i , j�.
Using the decompositions given by the previous paragraph, Eq. �19� can be written in the

block form,

h
1

1��l1� h
1

2��l2� ¯

h
2

1��l1� h
2

2��l2� ¯

] ] �
� = ��k1�h

1
1 ��k1�h

1
2 ¯

��k2�h
2

1 ��k2�h
2

2 ¯

] ] �
� . �21�

The components of F are built from covariant polynomials. Suppose that f =F1 contains a poly-

nomial qr transforming under some representation, which we assume to be ��l1� without loss of

generality. Then some hi
1 is nonzero and therefore an isomorphism. Assume without loss of

generality that i=1. We then have h1
1��l1�=��k1�h1

1, which shows that ��l1� and ��k1� are isomor-

phic and therefore the same representation.

Now, by the results of Sec. IV, every component of F must contain a covariant polynomial

transforming under the same representation ��l1�. This in turn requires that h1
i is nonzero �and

therefore an isomorphism� for every value of i. The first column of Eq. �21� then yields the

equation hi
1��l1�=��ki�hi

1 for every i, which shows that every irreducible representation ��ki� ap-

pearing in �D� is the same and equal to the representation ��l1�. In the same way, comparing the

remaining columns shows that every representation of �R is equal to ��l1� as well. A very strong

result follows: each component of F must be composed of polynomials transforming under a

single irreducible representation.

It turns out that this representation cannot be arbitrary; it is necessarily Abelian as we now

show. Recall the canonical form Ḟi=Mi
jF

j +�i
mh�F� of the image differential equations, where M

is given by Eq. �13�. Equivariance under � yields the equation

��i
jM

j
k − Mi

j�
j
k�F

k = �i
mh��F� − �i

mh�F� . �22�

The left hand side is manifestly linear in F and the right hand side must be linear in F as well.

When i�m the delta vanishes and we must have �i
mh�F� be linear in F. Since h is always
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nonlinear in cases of interest �we are studying nonlinear dynamical systems�, we see that �i
m=0

and therefore �i
jM

j
k=Mi

j�
j
k when i�m. By writing Mi

j =�i+1
j, it follows immediately that �i

j

=�i+1
j+1, which says that � is Toeplitz in the basis spanned by the Fi.

That every matrix in � is simultaneously Toeplitz implies that � is an Abelian representation.

The components of an n�n Toeplitz matrix A are completely determined by the values along the

antidiagonal, which can be considered as a vector of length 2n−1. In index notation we may write

Aij =ai−j+n, in terms of the vector a. Similarly let Bij =bi−j+n. If A and B belong to � then both

products AB and BA belong to � and must be Toeplitz.

Now the components AB and BA are given in terms of the vectors a and b by

�AB�ij = 	
k=1

n

an+i−kbn−j+k,

�BA�ij = 	
l=1

n

bn+i−lan−j+l. �23�

In the expression for BA, the sum over l may be rewritten as a sum over k by setting l=n+1−k.

A term from the this sum is now given by a2n+1−k−jbk+i−1. The antidiagonal of a matrix is specified

by the index condition i+ j=n+1. This relation can be used to swap i and j in the terms giving BA,

yielding a2n+1−k−jbk+i−1→an+i−kbn−j+k, which is exactly the form of the terms giving AB. Thus, the

two matrices have identical antidiagonals. But since the antidiagonal determines the entire matrix,

the two matrices are identical. We conclude that A and B commute.

Thus, the representation � is necessarily Abelian for any equivariance group G. In particular,

if a dynamical system is equivariant under a non-Abelian group G, the largest equivariance group

of any image system constructed by a differential mapping is the Abelianization G̃=G /G�1�, which

is the quotient of the group by its commutator subgroup G�1�= �G ,G�. This is because if G�

=G /N is any Abelian quotient of G then G�1��N. In other words, G̃ is the largest Abelian

homomorphic image of G. It follows that a differential mapping for a non-Abelian G cannot

provide an embedding equivariant under G since group elements representing nontrivial commu-

tators are mapped to the identity.

For example, the alternating group A4 �the group of all even permutations on four objects� is

a non-Abelian group of order of 12. The commutator subgroup is isomorphic to the vierergruppe

V4 and the Abelianization is Ã4�A4 /V4�Z3, the cyclic group of order of 3.
13

Therefore, a

differential mapping of a dynamical system equivariant under A4 will have at most a threefold

symmetry. For n	5 An is non-Abelian and simple.
13

Since An is non-Abelian, A
n

�1�
is not trivial.

Since An is simple A
n

�1�
must then be equal to all of An, and the Abelianization Ãn�An /An is trivial.

A differential mapping of a dynamical system equivariant under An for n	5 never has symmetry.

Remarkably, we will see that differential mappings for A4 and A3�Z3 equivariant dynamical

systems never have symmetry either.

Finally, we show that � must be one dimensional. To this end we momentarily extend to the

complex plane. Schur’s first lemma implies that every irreducible representation of an Abelian

group is one dimensional over C. There are thus two possibilities for �. Either the representation

is one dimensional over R and therefore irreducible over C or two dimensional over R and

expressible as the direct sum of a one dimensional complex representation and its complex con-

jugate, �=��i�
� �̄�i�.

We now suppose that � is two dimensional. In the decomposition �=��j�
� �̄�j�, the complex

irreducible representation ��j� is one dimensional and unitary and therefore a complex number of

modulus one, which can be written ��j��g�=exp i�j ,g�. It follows that � is similar to a real 2

�2 rotation matrix,

092706-9 Equivariant differential embeddings J. Math. Phys. 51, 092706 �2010�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.85.181 On: Wed, 21 Jan 2015 02:48:57



� = �exp i 0

0 exp − i
� � � cos  sin 

− sin  cos 
� . �24�

Note that every 2�2 rotation matrix is manifestly Toeplitz. We may think of � as providing a

homomorphism of G onto a finite subgroup of SO�2�. Such a subgroup is not only Abelian, it is

necessarily cyclic.

All of the irreducible representations of cyclic groups are known.
8

If we let g denote the

generator of the cyclic group of order p then there are exactly p inequivalent irreducible repre-

sentations of Zp over C. They are given by

��q��gm� = �mq, �25�

where � is a primitive pth root of unity and 0�q
 p. The representation q=0 is always the

identity. Setting z=x+ iy, the invariant basis polynomials for ��0� are z̄z, zp, and z̄p. The covariant

polynomials for ��j�, j�1, are z j and z̄p−j. Since real representations are formed by the direct sum

of a complex representation and its complex conjugate, q and p−q, the real basis polynomials are

the real and imaginary parts of the corresponding complex polynomials.

In the defining representation on R
2, the x and y coordinates transform under the �=��1�

� �̄�1� representation. The only other polynomials that transform under this representation are the

real and imaginary parts of z̄p−1. If a dynamical system is equivariant under � then in a two

dimensional subspace on which � acts the equations of motion have the complex form ż=�z

+�z̄p−1, with � and � functions of invariant polynomials. In terms of the real variables we have

d

dt
�x

y
� = � �1 �2

− �2 �1

��x

y
� + � �1 �2

− �2 �1

��R�z̄p−1�

I�z̄p−1�
� . �26�

Notice that the real and imaginary parts of z̄p−1 are nonlinear in x and y when p�2.

Now if the image of a dynamical system under a differential mapping is equivariant under �,

then as was shown in Sec. V, the image phase space R
m must decompose as R

m=R2
� ¯ �R

2

with the same representation � of Zp acting on each factor R2. In each subspace the equations of

motion must have the form of Eq. �26�. This is a second canonical form for the equations of

motion �Eq. �12� being the first�.
Denote by Y the coordinates defining this decomposition so that �Y2k−1 ,Y2k� spans the kth

subspace. These coordinates are related to the canonical coordinates F by some invertible linear

transformation, Y i= P j
iF j. We wish to show that the two canonical forms of the equations are

consistent only when h is linear.

The differential equations in the Y coordinates are given by

Ẏ i = Pi
jḞ

j = Pi
jM

j
kF

k + Pi
mh�F� = Pi

jM
j
k�P−1�k

lY
l + Pi

mh�P−1Y� = Ni
jY

j + Cih̃�Y� , �27�

where Ni
j and Ci are constants and h̃=h � P−1 is a nonlinear function of Y. For simplicity in the

following we will drop the tilde and write h for h̃.

The function h may be uniquely written as h=hr�p�qr in terms of invariant and covariant

polynomials. If we identify �Y2i−1 ,Y2i�= �x ,y� for any i, then the most general form of h consistent

with Eq. �26� is

h = h1x + h2y + h3R�z̄p−1� + h4I�z̄p−1� , �28�

where the hi are functions of invariant polynomials. Using this decomposition of h, Eq. �27�
becomes in the �Y2i−1 ,Y2i�= �x ,y� subspace,
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d

dt
�x

y
� = �N11 + C1h1 N12 + C1h2

N21 + C2h1 N22 + C2h2

��x

y
� + �C1h3 C1h4

C2h3 C2h4

��R�z̄p−1�

I�z̄p−1�
� . �29�

Comparing this to Eq. �26� leads to the equations �1=C1h3=C2h4 and �2=C1h4=−C2h3. These

equations require that C1
2=−C2

2, or C1=C2=0, which in turn implies that �1=�2=0. We conclude

that this equation is satisfied only if h is linear. But if h is linear then the image dynamical system

is linear and uninteresting. We therefore conclude that for nonlinear systems, the representation �

must be one dimensional.

For completeness, we note that in the linear case, two dimensional equivariant embeddings do

exist. Consider the simple two dimensional dynamical system,

ẋ = y ,

ẏ = − x , �30�

which is equivariant under SO�2� and therefore every Zp acting as rotations through angle 2� / p.

For p�2 the complex representation �1= �1,� ,�2 , . . . ,�p−1� is faithful. The complex basis poly-

nomial is z=x+ iy, and the monomials x and y form a basis for the two dimensional real repre-

sentation. Suppose that x is chosen as the observation function. Then since ẋ=y the differential

mapping is F= �x ,y� which is just the identity. The image system is in this case identical to the

original system and manifestly equivariant under the same representation of the same symmetry

group.

As an application of the results of this section, consider the Thomas system,
6

which is defined

by the differential equations

ẋ = − bx + ay − y3,

ẏ = − by + az − z3,

ż = − bz + ax − x3. �31�

These equations have a sixfold symmetry. They are equivariant under the parity representation P

of Z2 with generator g2=−I3 as well as the C3=Ru�2� /3� representation of Z3, where u

= �1,1 ,1�. The generator of C3 is the cyclic permutation matrix,

g3 = 
0 1 0

0 0 1

1 0 0
� . �32�

Since the Thomas system is equivariant under both Z2 and Z3, it is equivariant under their direct

product Z6�Z2 � Z3 with generator g6
g2g3=g3g2. This generator can also be described by a

2� /6 rotation about u followed by a reflection in the plane perpendicular to u. The generators of

the two subgroups are recovered as C3=g6
2 and P=g6

3.

A more convenient representation of the system is given by transforming to new variables

defined by the linear transformation,
9
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X

Y

Z
� =−

�3

2

�3

2
0

−
1

2
−

1

2
1

1 1 1

�x

y

z
� , �33�

which makes Z the new rotation axis so that projection onto the XY-plane exhibits the sixfold

symmetry. Basis polynomials for both subgroups can be constructed and have degree at most 3.

Each basis polynomial has definite transformation properties under the two generators C3 and P.

The transformation properties of these polynomials and the equivariance properties of the images

constructed from them are summarized in Table I.

All four combinations of invariance and covariance between the two subgroups exist. The

coordinate functions X and Y are covariant polynomials of both symmetries and are therefore

covariant polynomials of the complete symmetry group Z6. However, in accordance with the

results of this section, no differential mapping constructed from any of these functions can possess

more than the Z2 symmetry. A direct calculation shows that differential mappings constructed from

X or Y have parity symmetry, and visual inspection shows no apparent rotational symmetry.

VII. THE STRUCTURE OF ONE DIMENSIONAL REPRESENTATIONS

Section VI demonstrated that the only nontrivial equivariance group representations for dif-

ferential mappings are one dimensional. In this case every basis polynomial must be an eigenvec-

tor with eigenvalue �= �1. Since all components of the mapping F transform under the same

representation, each component is a simultaneous eigenvector with the same eigenvalue. If �=1

then the image is equivariant under the trivial representation ��g�= Im for every g. The image

system is no longer equivariant under G, but rather invariant. We say that F has modded out the

symmetry of the dynamical system. In this case, the nicest possible behavior for F is providing a

�G�→1 local diffeomorphism.
9

We noted in Sec. VI that constructing a differential mapping of the

Lorenz system using the z coordinate results in an image without symmetry. This mapping is, in

fact, a 2→1 local diffeomorphism.
9

On the other hand if �=−1 then the image coordinates transform under a representation

satisfying ��g�= � In and ��g2�= In for every g. In this case � furnishes the parity representation

of G�Z2 in R
m. This representation defines a group homomorphism G→Z2.

The necessary and sufficient condition for the existence of such a homomorphism is the

existence of a normal subgroup N⊲G with �N�= �G� /2, since by Lagrange’s theorem we have

�G /N �N�= �G� and Z2 is the unique group of order of 2. We see immediately that when the order

of G is odd that no such homomorphism can exist. In particular, if a dynamical system is equi-

variant under Zp, p odd, its image under any differential mapping cannot be equivariant.

When �G� is even such a homomorphism may or may not exist, depending on the group. For

example, the alternating group A4 has order of 12 but has no subgroup of order of 6,
13

so possesses

TABLE I. Transformation properties for basis polynomials of degree at

most two for the symmetries of the Thomas system, P and C3. Cov and Inv

denote covariance and invariance, respectively. The final column gives the

symmetry of the image system using the corresponding basis polynomial as

observation function. An I denotes the identity representation or invariance.

Polynomial P C3 Image

X ,Y Cov Cov P

Z Cov Inv P

X2+Y2 Inv Inv I

X2−Y2 ,2XY Inv Cov I
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no homomorphism onto Z2. One could also note that the Abelianization is Ã4�Z3, which pos-

sesses no homomorphism onto Z2. Since there is no homomorphism of A4 onto Z2, the image of an

A4 equivariant dynamical system under any differential mapping cannot have symmetry.

Notice that A4 is non-Abelian. Abelian groups of even order always possess a normal sub-

group of half the group order, which we now show. By the fundamental theorem of finite Abelian

groups, we can write G as a direct product of cyclic groups. Since the order of a direct product is

the product of the orders, at least one summand Zr must have even order. If the generator of this

subgroup is h, then h2 generates a cyclic subgroup of order r /2. But every subgroup of an Abelian

group is normal, which establishes the claim.

Consider again the Lorenz system, equivariant under the representation �=Rz��� of Z2. The

basis set of invariant polynomials is given by z, x2, xy, and y2, while the basis set of covariant

polynomials, which transform under P, is given by x and y. Constructing a differential mapping

using an invariant polynomial results in an image without symmetry. For instance, using z results

in a 2→1 local diffeomorphism onto the proto-Lorenz system.
9

On the other hand, using a

covariant function such as x results in a parity equivariant image, the induced Lorenz system. In

no case is it possible to construct an image transforming under the same representation as the

original Lorenz system, Rz���. This agrees with previous results,
7

obtained using different tech-

niques. Similar remarks would hold for any Rz��� equivariant dynamical system, such as the

Burke and Shaw system.

It is worth stressing this last observation. If one constructs a differential mapping of any

equivariant dynamical system and the image system is equivariant, it is necessarily parity equi-

variant, regardless of the original symmetry. This is congruent with the results of the Thomas

system in Sec. VI. In particular, this means that a differential embedding of a system equivariant

under a group of order greater than two cannot be equivariant under a faithful representation of the

symmetry group. In general, symmetries are not preserved by differential embeddings constructed

from a single observation function.

VIII. IMPLICATIONS FOR EMBEDDINGS

An important consequence of the foregoing analysis is that in almost all cases equivariant

differential mappings are not embeddings. This is immediate if the symmetry of the original

system has order �G��2. Specifically, the action of G partitions the original phase space into �G�
symmetry related domains. Since the image system has only two symmetry related domains, the

original domains are mapped onto the image domains in a �G� /2→1 fashion. If the image system

is invariant, these domains are mapped in a �G�→1 fashion.

Even when �G�=2 one may fail to obtain an embedding when the original representation of Z2

is not the parity representation. Every representation of Z2 acting in R
n is given in the appropriate

basis by �=diag�1, ¯ ,1 ,−1 , ¯ ,−1�. Representations are distinguished by their signature, that is,

the number of + signs in this matrix. Since the coordinate directions corresponding to the + signs

are left invariant �and those corresponding to the � signs covariant�, representations are distin-

guished by the dimension of their invariant subspace. The parity representation leaves only the

origin �zero dimensional subspace� invariant.

A differential mapping must map the symmetry invariant set �not to be confused with the

dynamical invariant set� of the original system onto that of the image system. When the original

invariant set has nonzero dimension, this identification obviously precludes an embedding. How-

ever, in many cases this invariant set may be considered disjoint from the flow. In the case of the

Lorenz system, the z-axis is the stable manifold of the central fixed point and is generally ignored

�excised� when discussing embeddings.

Even with this understanding trouble still arises. Denote by x and y the invariant and covariant

coordinates, respectively, so that ��x ,y�= �x ,−y�. Let F be the differential mapping between

spaces of the same dimension. If J denotes the Jacobian at �x ,y�, then at �x ,−y� we have
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� �F�x,y�
��x,y�

�
�x,−y�

= � �F�x,− y�
��x,− y�

�
�x,y�

= − � �F�x,y�
��x,− y�

�
�x,y�

, �34�

so that the Jacobian determinants are related by

�J�x,− y�� = �− 1�#x�J�x,y�� , �35�

where #x is the number of invariant coordinates. We see that if #x is odd, the Jacobian determi-

nants at �x ,y� and at ��x ,y� have opposite sign, and so the Jacobian must become degenerate

somewhere along any curve connecting these two points. This presents an obstruction to obtaining

an embedding into a space of the same dimension as the original system. We note, however, that

this condition on the Jacobian is not an obstruction to finding an embedding in higher dimensions.

For example, the Lorenz system has the z-axis as a one dimensional invariant subspace.

Therefore, no equivariant differential mapping of Lorenz into R
3 can be an embedding. This is true

for any Rz��� equivariant dynamical system. However, for the Lorenz system, a differential map-

ping constructed from the x coordinate does provide an embedding into R
4 and higher dimensions.

This is worked out explicitly in Ref. 7.

The general theory presented in this paper provides the following implications for the four

dynamical systems listed in the introduction: an equivariant embedding of the Kremliovsky sys-

tem, Eq. �3�, is possible that preserves the parity symmetry; an equivariant embedding of the

Lorenz system, Eq. �2�, or the Burke and Shaw system is possible, but the symmetry necessarily

changes from rotation to parity; an equivariant embedding of the Thomas system, Eq. �31�, is not

possible.

Finally, we note that while differential mappings typically destroy symmetry, it is sometimes

possible to recover the lost symmetry. If one has an invariant �nonequivariant� image, it is possible

to construct a lift of the image system to a covering system with any prescribed symmetry. If the

original symmetry group and representation are known, then a lift to a system equivariant under

this symmetry is possible. This two part process of generating an invariant image and lifting to an

equivariant system yields an embedding of the original system which preserves symmetry. For

details of this construction, see Refs. 9, 15, and 14.

IX. CONCLUSIONS

This paper has considered the embedding problem for equivariant dynamical systems. Equi-

variant dynamical systems possess a rather rigid structure that constrains this problem. We have

shown that for any dynamical system equivariant under any representation of any discrete equi-

variance group, there are only two possibilities when attempting to construct equivariant images

under differential mappings: either �1� the image is invariant or �2� the image is equivariant under

the parity representation of Z2. An immediate corollary is that the only symmetry that can be

preserved under a differential mapping is parity symmetry.

It follows that in almost all cases differential mappings are not embeddings. This is always the

case if the original symmetry has order �G��2, since symmetry related domains in the original

system are mapped onto symmetry domains in the image in a �G�→2 or �G�→1 fashion. Even if

�G�=2, an equivariant differential mapping of an n-dimensional system into R
n will fail to be an

embedding if the dimension of the symmetry invariant subspace is odd. Embeddings in the same

dimension are only possible when the symmetry invariant subspace has even dimension, such as

when the original system is already parity equivariant. The symmetry of an equivariant dynamical

system typically cannot be preserved under differential embedding.
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