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Measurements of cosmic microwave background (CMB) anisotropies constrain isocurvature fluc-
tuations between photons and nonrelativistic particles to be subdominant to adiabatic fluctuations.
Perturbations in the relative number densities of baryons and dark matter, however, are surprisingly
poorly constrained. In fact, baryon-density perturbations of fairly large amplitude may exist if they
are compensated by dark-matter perturbations, so that the total density remains unchanged. These
compensated isocurvature perturbations (CIPs) leave no imprint on the CMB at observable scales,
at linear order. B modes in the CMB polarization are generated at reionization through the mod-
ulation of the optical depth by CIPs, but this induced polarization is small. The strongest known
constraint . 10% to the CIP amplitude comes from galaxy-cluster baryon fractions. Here it is shown
that modulation of the baryon density by CIPs at and before the decoupling of Thomson scattering
at z ∼ 1100 gives rise to CMB effects several orders of magnitude larger than those considered
before. Polarization B modes are induced, as are correlations between temperature/polarization
spherical-harmonic coefficients of different lm. It is shown that the CIP field at the surface of last
scatter can be measured with these off-diagonal correlations. The sensitivity of ongoing and future
experiments to these fluctuations is estimated. Data from the WMAP, ACT, SPT, and Spider
experiments will be sensitive to fluctuations with amplitude ∼ 5 − 10%. The Planck satellite and
Polarbear experiment will be sensitive to fluctuations with amplitude ∼ 3%. SPTPol, ACTPol,
and future space-based polarization methods will probe amplitudes as low as 0.4% − 0.6%. In the
cosmic-variance limit, the smallest CIPs that could be detected with the CMB are of amplitude
∼ 0.05%.

PACS numbers: 98.70.Vc,95.35.+d,98.80.Cq,98.80.-k

I. INTRODUCTION

The concordance cosmological model posits a nearly
scale-invariant spectrum of primordial density fluctua-
tions with adiabatic initial conditions, for which the ra-
tios of neutrino, photon, baryon, and dark-matter num-
ber densities are homogeneous. The simplest inflationary
models predict adiabatic fluctuations [1–6], and adiabatic
fluctuations are consistent with measurements of cosmic
microwave background (CMB) temperature/polarization
anisotropies [7] and the clustering of galaxies [8, 9].

Isocurvature perturbations are fluctuations in the ra-
tios of number densities of various particle species. They
are produced in topological-defect models for structure
formation [10] and in more complicated models of infla-
tion [11–16]. CMB temperature anisotropies limit the
amplitude of baryon isocurvature perturbations (fluctua-
tions in the baryon-to-photon ratio) [17, 18] and CDM
isocurvature perturbations (fluctuations in the dark-
matter–to–photon ratio) [19–22] to be . 13% of the total
perturbation amplitude [7, 23–33].

Our intuition thus suggests the matter in the early Uni-
verse was very smoothly distributed. It therefore comes
as somewhat of a surprise to learn that perturbations
in the baryon density can be almost arbitrarily large, as
long they are compensated by dark-matter perturbations
such that the total nonrelativistic matter density remains
unchanged [34, 35]. These compensated isocurvature per-

turbations (CIPs) thus obey

ρcδ
CI
c + ρbδ

CI
b = 0, δCI

γ = 0, (1)

where δc, δb, and δγ are fractional energy density per-
turbations in the dark matter, baryons, and photons, re-
spectively, while ρc and ρb are the homogeneous dark
matter and baryon densities.
CIPs induce no curvature perturbation at early times,

and they therefore leave the photon density—and thus
large-angle CMB fluctuations—unchanged at linear or-
der. CIPs induce baryon motion through baryon-pressure
gradients, but these motions occur only at the baryon
sound speed which, at the time when Thomson scatter-
ing first decouples (z ∼ 1100, decoupling hereafter), is
(v/c) ∼ (T/mp)

1/2 ∼ (eV/GeV)1/2 ∼ 10−4.5. The ef-
fects of these motions on CMB temperature and polar-
ization anisotropies thus occur only on distances smaller
than ∼ 10−4.5 times the sound horizon at decoupling or
CMB multipole moments l ∼ 106 [34, 36, 37], scales far
smaller than those probed by CMB experiments.
The effect of CIPs on galaxy surveys is also believed

to be small [34]. Big-bang nucleosynthesis (BBN) and
galaxy-cluster baryon fractions constrain the CIP per-
turbation amplitude to be . 10% [35]. Measurements
of fluctuations in 21-cm radiation from atomic hydrogen
during the dark ages may be sensitive to these perturba-
tions [34, 37–39], but these measurements are a long way
in the future.
In Ref. [35], it was shown that, although CIPs produce

http://arxiv.org/abs/1107.5047v2
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no observable effect on the CMB at linear order in per-
turbation theory, they modulate the CMB fluctuations
produced by adiabatic perturbations. In particular, it
was shown that B modes in the CMB polarization are
produced by the angular modulation in the reionization
optical depth induced by the CIP.

Here, we consider the additional effects on CMB fluc-
tuations that arise from modulation of the baryon den-
sity by CIPs at and before decoupling. CIPs modulate
the free-electron density. They thus change the photon
diffusion length and thickness of the surface of last scat-
tering (SLS) on different patches of sky. CIPs also change
the weight of the baryon-photon plasma and thus the de-
tails of the acoustic-peak structure in the CMB power
spectrum. Variation in the baryon density from one re-
gion on the sky to another thus leads to a modulation
of the small-scale power spectrum from one region of
sky to another. This induces B modes in the polariza-
tion and nontrivial higher-order correlations in the tem-
perature/polarization map analogous to those induced
by variations of other cosmological parameters [40] and
those induced by weak gravitational lensing [41].

As we show below, the effects of CIPs on CMB fluctu-
ations from decoupling are several orders of magnitude
larger than those from reionization, and so the CMB
should provide a far more sensitive probe of CIPs than
envisioned in Ref. [35]. We therefore follow through
and develop the formalism required to look for CIPs
with the CMB. To do so, we write down the minimum-
variance estimators that can be constructed from a CMB
temperature-polarization map for the CIP field ∆(n̂) as
a function of position n̂ on the sky. We evaluate the
noise with which the CIP field can be reconstructed and
estimate the signal-to-noise with which a scale-invariant
spectrum of CIPs may be detected with various experi-
ments.

We conclude that data fromWMAP, Spider, ACT, and
SPT are sensitive to CIP amplitudes of ∼ 5− 10%. The
Planck satellite [42] and Polarbear experiment are sen-
sitive to CIP amplitudes as small as ∼ 3%. Upcoming
ground-based polarization experiments (ACTPol [43] and
SPTPol [44, 45]) or a post-Planck CMB-polarization ex-
periment along the lines of the proposed EPIC experi-
ment [46] could detect fluctuations of ∼ 0.4%− 0.6%. In
the cosmic-variance limit, sensitivity to fluctuations of
amplitude ∼ 0.05% is possible.

Our principal motivation in studying CIPs is curios-
ity: can we determine empirically, rather simply assume,
that the primordial baryon fraction is homogeneous and
traces the dark matter? Still, there may be theoreti-
cal motivation as well. For example, curvaton models
for inflation may generate CIPs [36, 47–49], with ampli-
tudes approaching the regime detectable by EPIC [34]. It
may also be that recent models [50–55] that connect the
baryon asymmetry and dark-matter density have impli-
cations for CIPs. Additionally, the techniques introduced
in this paper could be used to empirically disentangle
a CDM isocurvature fluctuation from a baryon isocur-

vature fluctuation, using CMB data. These modes are
usually treated as degenerate in the analysis of CMB ob-
servations.
In Ref. [56], we presented our basic conclusions. Here

we present in detail our results, their derivation, and the
computational methods used. We calculate the induced
temperature anisotropies in Sec. II and the induced po-
larization anisotropies in Sec. III. In Sec. IV, we com-
pute the expected corrections to CMB power spectra for
a scale-invariant spectrum of CIPs and compare the B-
mode power spectrum induced by CIPs at decoupling
with that induced at reionization. In Sec. V, we con-
struct minimum-variance estimators for CIPs. We then
assess in Sec. VI the sensitivity of ongoing and upcom-
ing experiments to CIPs, and we conclude in Sec. VII.
Useful relations involving tensor spherical harmonics are
presented in Appendix A. Numerical derivatives of trans-
fer functions are discussed in Appendix B. Second-order
harmonic expansions for CMB transfer functions are de-
rived in Appendix C. Throughout, we use as our fiducial
cosmological parameters those from Ref. [7].

II. PERTURBED LINE-OF-SIGHT (LOS)
FORMALISM: TEMPERATURE

Here we review the standard calculation of the
temperature-fluctuation power spectrum for primordial
adiabatic density perturbations. We then show how this
calculation is altered in the presence of CIPs.

A. General line-of-sight solution for temperature

The spherical-harmonic coefficients Tlm for the CMB
temperature can be written

Tlm ≡
∫

dn̂ T (n̂)Y ∗
lm(n̂)

= 4π
∑

l1m1

∫
dn̂ Y ∗

lm(n̂)Yl1m1
(n̂)

∫ η0

0

dη f(η, n̂)

×
∫

d3k

(2π)3
Φ~ki

l1jl1 [k(η0 − η)]Y ∗
l1m1

(k̂), (2)

where T (n̂) is the CMB temperature in direction n̂, and
Ylm(n̂) are spherical harmonics. The Fourier transform
of the primordial gravitational potential for wave-vector
~k is Φ~k, while jl(x) denotes a spherical Bessel function.
The conformal time η ≡

∫
dt/a(t) is here an integration

variable, and η0 denotes its value today. The function
f (η, n̂), obtained via the numerical solution of the Boltz-
mann equations [57–59], encodes how much a real-space
primordial-potential perturbation Φ[(η − η0)n̂, η] con-
tributes to the temperature anisotropy T (n̂). It depends
on the relation between initial gravitational-potential
fluctuations and radiation-density fluctuations at decou-
pling, as well as the recombination history.
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B. Temperature anisotropies with homogeneous
baryon fraction

In the standard calculation, this transfer function is
the same in all directions; i.e., f(η, n̂) = f(η). In this
case, Eq. (2) simplifies, via orthogonality of the Ylms,
yielding [58, 60]

Tlm =
4πil

(2π)
3

∫
dη f(η)

∫
d3kΦ~kjl[k(η0−η)]Y ∗

lm(k̂). (3)

The temperature power spectrum is then easily obtained
using Eq. (3), averaging over realizations of the poten-

tial perturbation, and using the identity 〈Φ(~k)Φ∗(~k′)〉 =
(2π)

3
δ3D(~k−~k′)PΦ(k), where δ

3
D(~k−~k′) is the Dirac delta

function and PΦ(k) the primordial-potential power spec-
trum, and the angle brackets denote an average over re-
alizations of the primordial potential. We then find [59]

〈T ∗
l′m′Tlm〉 = CTT

l δll′δmm′ , (4)

where

CTT
l =

2

π

∫
k2 dk PΦ(k)[Tl(k)]

2, (5)

is the CMB temperature power spectrum, written in
terms of a transfer function,

Tl(k) =

∫
dη f(η)jl[k(η0 − η)]. (6)

This transfer function is tabulated by Boltzmann codes
like camb [61] and cmbfast [58], and δij is the Kronecker
delta.

C. Temperature anisotropies with CIPs: Single
CIP realization

In the presence of a compensated isocurvature pertur-
bation, the baryon and dark-matter fractions vary from
one point in the Universe to another, and so the transfer
function f(η, n̂) now acquires some direction (n̂) depen-
dence. The CIP involves small changes,

Ωb → Ωb [1 + ∆ (n̂)] ,

Ωc → Ωc − Ωb∆(n̂) , (7)

in the cosmological parameters between different lines of
sight n̂. Here, ∆(n̂) is the value of the CIP in direction
n̂ at the surface of last scatter (or reionization—we will
make these statements more precise below). Note that
we define it so that it is the fractional perturbation in
the baryon (rather than dark-matter) density associated
with the CIP. From Eq. (7), the change in the total den-
sity is δΩm = δΩc + δΩb = 0, and so this is indeed a
compensated isocurvature perturbation.
In a general treatment of perturbed recombina-

tion/decoupling, one would follow the set of equations

for the electron, dark-matter, photon, and neutrino den-
sities, velocities, and the gravitational potential at second
order, as in Refs. [62–64]. In the case of CIPs, however,
the CIP amplitude does not evolve for all observation-
ally accessible scales, and we can thus model the effect
of CIPs as a modulation in the cosmological parameters
Ωc and Ωb.
We can build some intuition for the effect of CIP per-

turbations on the CIP by considering a globally constant
CMB perturbation ∆. We run the camb [61] code with
a global perturbation of the form in Eq. (7) for a variety
of ∆ values. We evaluate the angular sound horizon ls at
the surface of last scatter as a function of ∆, using the ex-
pressions in Ref. [65]. We see in the top left panel of Fig.
1 that, as the plasma is more loaded down with baryons
in the presence of a CIP with a positive ∆ value, the de-
crease in sound speed moves the CMB acoustic peaks to
smaller angular scales.
CMB temperature anisotropies are suppressed on an-

gular scales l > ld due to diffusion damping. Using the
expressions in Ref. [60] and the camb [61] code, we eval-
uate ld(∆) and show the results in the top right panel
of Fig. 1. We see that, as photons diffuse over smaller
distances, as a result of higher local baryon density in the
presence of a CIP with positive ∆, the transition to ex-
ponential damping of CMB anisotropies occurs at higher
l.
In the bottom panel of Fig. 1, we show the visibil-

ity functions g(z) = e−τdτ/dz for 3 different values of
∆; τ is the optical depth due to Thomson scattering.
The peak of the visibility function is the redshift zSLS, at
which most CMB photons last scatter. In the presence
of a positive (negative) ∆ CIP, decoupling occurs later
(earlier) due to higher (lower) baryon density.
To calculate the effects on the CMB moments Tlm, we

perturb the line-of-sight solutions, Eqs. (2) and (3). This
approach is relatively simple and amenable to rapid com-
putation. The results should be accurate for multipole
moments L . 870 for the CIP, as the baryon fluctuation
can be considered as roughly constant in a given direction
n̂ across the thickness of the surface of last scatter on such
scales. We discuss in Sec. IVA below how we extrapolate
these results to smaller angular scales (L & 870) with a
Limber approximation.
We proceed by Taylor expanding in real space:

f(η, n̂) = f (0)(η) + ∆(n̂)
df (0)

d∆
(η)

+
1

2
∆2(n̂)

d2f (0)

d2∆
(η) + · · · , (8)

where f (0)(η) is the value of f under the null hypothesis
∆(n̂) = 0. We expand

∆(n̂) =
∑

LM

∆LMYLM (n̂), (9)

in terms of spherical-harmonic coefficients ∆LM for the
angular variation in the CIP at the surface of last scatter.
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FIG. 1: Dependence of physically relevant scales and Thomson scattering visibility function g(z) on amplitude of a global CIP
perturbation ∆. Top left panel shows dependence of the angular sound horizon ls on ∆. Top right panel shows dependence of
the diffusion damping scale ld on ∆. Bottom panel shows g(z) evaluated for 3 different values of ∆.

We then apply the expansion in Eq. (8) to linear order in
∆ to the line-of-sight expression, Eq. (2), and integrate
over angles to obtain the first-order correction,

δT
(1)
lm =4π

∑

LM,l1m1

il1∆LMξLM
lml1m1

KL
ll1

×
∫
dη

df (0)

d∆

∫
d3k

(2π)3
Φ~kjl1 [k (η0 − η)]Y ∗

l1m1
(k̂), (10)

to Tlm in the presence of a CIP, where

ξLM
lml1m1

≡
(
KL

ll1

)−1
∫

dn̂Y ∗
lm(n̂)YLM (n̂)Yl1m1

(n̂)

= (−1)
m

√
(2L+ 1) (2l+ 1) (2l1 + 1)

4π

×
(

l L l1
−m M m1

)
, (11)

KL
ll1 ≡

(
l L l1
0 0 0

)
, (12)

and the arrays inside parentheses are Wigner-3J sym-
bols. Throughout, we use the indices L and M exclu-
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sively for the decomposition of the CIP, while lower-case
indices are used for the multipole moments of the CMB
observables Tlm, Elm, and Blm. Sums over m (M) are
always taken over the range −l ≤ m ≤ l (−L ≤ M ≤ L),
while sums over l (L) are formally taken over 1 ≤ l ≤ ∞
(1 ≤ L ≤ ∞); in practice, a maximum value lmax is
used for numerical evaluation, as discussed in Sec. IV.
The monopole L = 0 corresponds to a global shift in Ωb

and Ωc and we absorb this term into the cosmological
parameters themselves.
For a given realization of the CIP field—that is, for a

given set of ∆LM—the covariance between temperature
moments is now

〈T ∗
l′m′Tlm〉 ≃ C

TT,(0)
l +

∑

LM

∆LMξLM
lml′m′S

L,TT
ll′ , (13)

where

SL,TT
ll′ ≡

(
CT,dT

l′ + CT,dT
l

)
KL

ll′ , (14)

and

CX,dX′

l ≡ 2

π

∫
k2 dk PΦ(k)Xl(k)

dX ′
l(k)

d∆
, (15)

for {X,X′} ∈ {T,E,B} (a generalization that will be use-

ful below), and C
TT,(0)
l is the temperature power spec-

trum in the absence of CIPs. Here,

dX ′
l(k)

d∆
=

∫
dη

df(η)

d∆
jl[k(η0 − η)] (16)

describes the change in the transfer function, Eq. (6),
with ∆.
In deriving these results, we have taken an average over

realizations of the primordial-potential power spectrum
Φ~k, but we have restricted our consideration to a given
realization of the CIP. In Sec. V, we build the formalism
to reconstruct ∆(n̂) from these off-diagonal temperature
correlations as well their generalization to polarization.

D. Temperature anisotropies with CIPs: Average
over CIP realizations

We now take an ensemble average over many realiza-
tions of both the primordial potential field and the CIP
field. This allows us, given a spectrum of CIPs, to calcu-
late the effects of these CIPs on the power spectrum of
CMB fluctuations measured on the entire sky.
We denote the ensemble average of a spatially varying

field X over realizations of the CIP field by 〈X〉b. We
denote the ensemble average over realizations of both the
CIP field and the primordial potential by 〈X〉bc. From
Eqs. (13) and (14), we see that 〈T ∗

l′m′Tlm〉bc ∝ 〈∆LM 〉b.
For an isotropic random field, 〈∆LM 〉b = 0, so we must
thus go to second order in ∆(n̂) to compute the effects

of CIPs on the CMB power spectrum. We thus obtain,
to second order in ∆, the temperature power spectrum,

C
TT,(2)
l ≡

〈
|Tlm|2

〉
bc

≃ C
TT,(0)
l +

〈∣∣∣δT (1)
lm

∣∣∣
2
〉

bc

+
〈
T

(0)∗
lm δT

(2)
lm

〉
bc

+
〈
δT

(2)∗
lm T

(0)
lm

〉
bc

, (17)

where T
(0)
lm is the unperturbed moment in Eq. (3), δT

(1)
lm is

given by Eq. (10), and C
TT,(0)
l is the unperturbed power

spectrum given by Eq. (5). The (2) superscript denotes
the term arising when expanding Tlm to order ∆2(n̂).
We evaluate this term using the second-derivative term
d2f (0)/d∆2 in Eq. (C2). We take an expectation value
over CIPs and primordial-potential realizations. We then
use Eqs. (2), (11), and (17), identities of Wigner-3J sym-
bols [66], and Appendix C to obtain

C
TT,(2)
l = C

TT,(0)
l + δC

TT,(1)
l + δC

TT,(2)
l ,

δC
TT,(1)
l ≡

∑

L,l1

C∆
L CdT,dT

l1

(
KL

ll1

)2
GLl1 ,

GLl1 ≡
[
(2L+ 1) (2l1 + 1)

4π

]
, (18)

δC
(2)
l ≡ ∆2

bcC
T,d2T
l . (19)

The CIP power spectrum C∆
L and total variance ∆2

bc
obey

〈
|∆LM |2

〉
b
≡ C∆

L , (20)

∆2
bc =

∑

L

(
2L+ 1

4π

)
C∆

L , (21)

while the CMB derivative power spectra are given by

CdX,dX′

l =
2

π

∫
k2 dk PΦ(k)

dXl(k)

d∆

dX ′
l(k)

d∆
, (22)

CX,d2X′

l =
2

π

∫
k2 dk PΦ(k)Xl(k)

d2X ′
l(k)

d∆2
, (23)

where d2Xl/d
2∆ are defined analogously to the first-

derivative transfer function in Eq. (16). Appendix B de-
tails the calculation of the derivative power spectra.

III. PERTURBED LINE-OF-SIGHT
FORMALISM: POLARIZATION

We now generalize the analysis above to the CMB po-
larization. In addition to inducing off-diagonal correla-
tions in the polarization spherical-harmonic coefficients,
CIPs will induce B modes. We begin by reviewing the
LOS solution for polarization under the null hypothesis of
no CIPs. We then compute the effects of CIPs, both for
a single realization of the CIPs, and then for an average
over realizations of a spectrum of CIPs.
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A. Polarization anisotropies with homogeneous
baryon fraction

Polarization is a spin-2 tensor field and can be ex-
panded as [67, 68]

Pab (n̂) =
∑

lm

(
ElmY E

lm,ab +BlmY B
lm,ab

)
, (24)

where Y E
lm,ab and Y B

lm,ab are the E- and B mode (“grad”

and “curl”, respectively) tensor spherical harmonics, as
defined in Appendix A. The right-most indices after the
comma are tensor indices. In terms of the Stokes polar-
ization parameters Q and U , the polarization tensor is
[67, 68]

Pab (n̂) =
1

2

(
Q (n̂) −U (n̂) sin θ

−U (n̂) sin θ −Q (n̂) sin2 θ

)
, (25)

where θ is the polar angle of the LOS with respect to
some origin.
Under the null hypothesis, the polarization pattern at

the surface of last scatter is a pure E mode, with multi-
pole moments given by

Elm =
4πil

(2π)
3

∫
dη fE(η)

∫
d3kΦ~kjl(x)Y

∗
lm(k̂), (26)

where x ≡ k(η0 − η), and fE(η) is the E-mode transfer
function, obtainable numerically from Boltzmann codes.
The polarization covariance and TE covariance are de-
rived analogously to the results for temperature, yielding
[58]

〈E∗
l′m′Elm〉 = CEE

l δll′δmm′ ,

CEE
l =

2

π

∫
k2dkPΦ(k)[El(k)]

2,

El(k) =

∫
dηfE(η)jl[k(η0 − η)], (27)

and [58]

〈E∗
l′m′Tlm〉 = CTE

l δll′δmm′ ,

CTE
l =

2

π

∫
k2dkPΦ(k)Tl(k)El(k). (28)

B. Polarization anisotropies with CIPs: single CIP
realization

We now generalize the analysis to include the effects of
CIPs. In the presence of a CIP field ∆(n̂), the real-space
polarization tensor may be Taylor expanded as

Pab(n̂) = P
(0)
ab (n̂) +

dP
(0)
ab

d∆
(n̂)∆(n̂)

+
1

2

d2P
(0)
ab

d∆2
(n̂)∆2(n̂) + · · · . (29)

Just as in the case of temperature, when considering a
single realization, we need only consider the first-order
terms in Eq. (29). We then utilize Eqs. (24), (26), and
the first-derivative piece of the usual expansion for ∆(n̂)
[see Eq. (8)] to obtain an expansion for the polarization
tensor Pab in the presence of CIPs:

Pab (n̂) = Pab|∆=0 + δPab|1 + δPab|2 + · · · , (30)

δP
(1)
ab ≡

∑

l1m1

dEl1m1

d∆
Y E
l1m1,ab(n̂)∆ (n̂)

=

LM∑

l1m1

dEl1m1

d∆
Y E
l1m1ab(n̂)∆LMYLM (n̂) .(31)

We may now pick off the induced E- and B-mode mul-

tipole moments δE
(1)
lm and δB

(1)
lm at order ∆, using the

appropriate integral over a tensor spherical harmonic:

δE
(1)
lm =

∫
dn̂ Y E,∗

lm,ab (n̂) δP
(1)
ab , (32)

Blm = δB
(1)
lm =

∫
dn̂ Y B,∗

lm,ab (n̂) δP
(1)
ab . (33)

We evaluate Eqs. (32)–(33), calling on Eqs. (A10)–(A12),
yielding

δE
(1)
lm =

L+l1+l even∑

LM,l1m1

ξLM
lm,l1m1

HL
ll1∆LM

dEl1m1

d∆
, (34)

δB
(1)
lm =

L+l1+l odd∑

LM,l1m1

(−i) ξLM
lm,l1m1

HL
ll1∆LM

dEl1m1

d∆
, (35)

where

HL
ll1 ≡

(
l L l1
2 0 −2

)
. (36)

We now evaluate the induced correlations between dif-
ferent temperature/polarization moments. At first order

in ∆(n̂), 〈B∗
l′m′Blm〉 ∝ 〈B∗(0)

l′m′δB
(1)
lm 〉 = 0. The remaining
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covariances are

〈E∗
l′m′Elm〉 = CEE

l δll′δmm′

+

L+l+l′ even∑

LM

∆LMξLM
lm,l′m′S

L,EE
ll′ ,

SL,EE
ll′ ≡

(
CE,dE

l + CE,dE
l′

)
HL

ll′ , (37)

〈E∗
l′m′Blm〉 =

L+l+l′ odd∑

LM

∆LMξLM
lm,l′m′S

L,EB
ll′ ,

SL,EB
ll′ ≡− iCE,dE

l′ HL
ll′ , (38)

〈T ∗
l′m′Blm〉 =

L+l+l′ odd∑

LM

∆LMξLM
lm,l′m′S

L,TB
ll′ ,

SL,TB
ll′ ≡− iCT,dE

l′ HL
ll′ , (39)

〈T ∗
l′m′Elm〉 = CTE

l δll′δmm′

+

L+l+l′ even∑

LM

∆LMξLM
lm,l′m′S

L,TE
ll′ ,

SL,TE
ll′ ≡

(
CT,dE

l′ HL
ll′ + CE,dT

l KL
ll′

)
. (40)

C. Polarization anisotropies with CIPs: Average
over CIP realizations

We now extend the ensemble average to multiple real-
izations of the CIP field. We do this in order to compare
the polarization power spectrum induced by CIPs at the
surface of last scatter with that induced at reionization.
For temperature, the average over realizations of both the
CIP and primordial-potential perturbations is given by
Eq. (17). Extending this average to X,X ′ ∈ {T,E,B},
we obtain the XX′ power spectra, averaged over the en-
tire sky, to second order in ∆:

C
XX′,(2)
l ≡

〈
XlmX

′∗
lm

〉
bc

≃ C
XX′,(0)
l +

〈
δX

(1)
lm δX

′(1)
lm

〉
bc

+
〈
X

(0)∗
lm δX

′(2)
lm

〉
bc

+
〈
δX

(2)∗
lm X

′(0)
lm

〉
bc

, (41)

where C
XX′,(0)
l is the power spectrum computed with no

CIP contribution.

We evaluate Eq. (41) with Eqs. (A12) and (A13) and
Wigner-3J relations to simplify the resulting integrals
and sums. Superscript indices (1) and (2) indicate the
order of the derivative dnf (0)/d∆n used to derive the
indicated term, as in Sec. II D. The resulting nonzero

power spectra are

CTE
l ≃ C

TE,(0)
l + δC

TE,(1)
l + δC

TE,(2)
l (42)

δC
TE,(1)
l ≡

L+l1+l even∑

L,l1

C∆
L CdT,dE

l1
GLl1H

L
ll1K

L
ll1

δC
TE,(2)
l ≡ ∆2

bc

2

(
CT,d2E

l + CE,d2T
l

)
,

CEE
l ≃ C

EE,(0)
l + δC

EE,(1)
l + δC

EE,(2)
l , (43)

δC
EE,(1)
l ≡

L+l1+l even∑

L,l1

C∆
L CdE,dE

l1
GLl1

(
HL

ll1

)2
,

δC
EE,(2)
l = ∆2

bcC
E,d2E
l ,

and

CBB
l ≃

L+l1+l odd∑

L,l1

C∆
L CdE,dE

l1
GLl1

(
HL

ll1

)2
. (44)

The CIP field ∆(n̂) is a scalar and cannot statistically
change the parity of polarization perturbations. This re-
quires that CTB

l and CEB
l vanish when averaging over

CIP realizations. Algebraically, this is enforced by the
vanishing of the relevant Wigner-3J symbols, as occurs
with optical-depth fluctuations at reionization [44, 69]
and with gravitational-potential perturbations in weak
lensing [70, 71]. Indeed, the geometric (Wigner-3J) sym-
bols obtained are the same as for those effects. CIPs give

rise to different ll′ dependences for the functions SL,XX′

ll′ ,
however, through the dependence on the derivative power
spectra CXX′

l , allowing them to be disentangled obser-
vationally from gravitational-potential fluctuations along
the LOS or optical-depth fluctuations at reionization.

IV. NUMERICAL RESULTS FOR B- MODE
POWER SPECTRA

We now apply the formulas derived in Secs. II D and
III C to compute the power spectra for B modes induced
by CIPs at decoupling. We first discuss the form of
the angular CIP power spectrum C∆

L . We then present
numerical results for B modes induced at decoupling.
For comparison, we then reproduce the calculations of
Ref. [35] of the B modes induced at reionization.

A. Power spectrum of compensated perturbations

1. Three-dimensional CIP power spectrum

To proceed further, we must make an ansatz for the
spectrum of CIPs. Motivated by the curvaton model
(which produces a nearly scale-invariant spectrum of
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CIPs) [34, 36, 47], we assume a scale-invariant spectrum
for the three-dimensional CIP field ∆(x); that is,

〈
∆̃∗(k′)∆̃(k)

〉
=(2π)3δ3D (k− k

′)P∆(k)

P∆(k) = Ak−3, (45)

where ∆̃(k) is the Fourier transform of ∆(x), and A is a
dimensionless CIP amplitude.
As discussed in the introduction, the strongest con-

straint to A comes from cluster baryon fractions. This
constraint tells us that the variance,

∆2
cl =

1

2π2

∫
k2 dk [3j1(kR)/(kR)]

2
P∆(k), (46)

in the baryon–to–dark-matter ratio onR ∼ 10 Mpc scales
is ∆cl . 0.08. The integral has a formal logarithmic di-
vergence at low k which is cut off, however, by the vol-
ume occupied by the clusters surveyed. Taking this to
be the horizon, kmin ≃ (10 Gpc)−1, we find A . 0.017.
Since the cosmological baryon fraction Ωb determines pri-
mordial abundances via BBN, there is an additional con-
straint from astrophysical measurements of these abun-
dances [35]. However, this constraint is less stringent
than the one from cluster gas fractions.

2. Angular CIP power spectrum

When the 3-dimensional field is projected onto a nar-
row spherical surface, the resulting angular power spec-
trum for ∆ will be C∆

L ≃ A/(πL2) for mulipole moments
L . (η0 − ηls)/ση ≃ 870, where ηls and η0 are the con-
formal time at last scatter and today, respectively, and
ση is the rms conformal-time width of the surface of last
scattering (SLS). At smaller angular scales (larger L),
the angular variation in ∆ is suppressed by the finite
width [72] of the scattering surface. Using the Limber
approximation, the angular power spectrum for ∆ can
be approximated by C∆

L ≃ A(η0 − ηls)/(2
√
πL3ση) for

L & 870. The exact analytic expression we use is ob-
tained from the Limber approximation, approximating
the visibility function as a Gaussian. It is

C∆
L =

A

2
√
πL2

U

[
1

2
, 0,

(
Lση

η0 − ηsls

)2
]
, (47)

where U(a, b, x) is a confluent hypergeometric function.
We use η0 − ηls = 14100 Mpc and ση = 16.2 Mpc for de-
coupling. We use η0−ηls = 9760 Mpc and ση = 448 Mpc
for reionization. These values are obtained by directly fit-
ting to the visibility function output by the camb code
[61]. Of course, Eq. (47) is an approximation, and the
precise shape of the transition from C∆

L ∝ 1/L2 → C∆
L ∝

1/L3 near L ∼ 870 depends on the interference of Fourier
modes of ∆ with those of Φ, averaged over the SLS. This
issue warrants future study, but the asymptotic behavior
at low and high L is correct (as shown for an analogous

computation in Ref. [73]). Moreover, as we shall see
in Sec. VI, most signal-to-noise in CIP reconstruction
comes either from L . 100 or L ∼> 2000, and so the main
conclusions of this work should not be affected.

FIG. 2: CMB B-mode polarization power spectra induced
by CIP perturbations at decoupling (black solid line), com-
pared with the effects of CIPs at reionization, for which two
contributions are shown: patchy screening (red dotted line),
and patchy scattering (blue short-dashed line). The ampli-
tude for the CIP power spectrum is that which saturates the
∆cl . 0.08 bound from clusters [35].

B. Numerical result for B modes from CIPs at
decoupling

Using the Limber approximation with values η0−ηls =
14100 Mpc and ση = 16.2 Mpc appropriate for decou-
pling, Eqs. (42)–(44) can be used to obtain predictions
for the B modes induced by CIPs at decoupling. The
results are shown in Fig. 2 for A = 0.017, the largest
CIP amplitude consistent with the galaxy-cluster con-
straint. Appendix B details the calculation of the requi-
site derivative power spectra. We use a maximum l value
of lmax = 10000.

C. Reionization

In Ref. [35], it was noted that spatial inhomogeneities
in the baryon density give rise to angular variations in
the optical depth τ for rescattering of CMB photons
at reionization. It was also noted that these inhomo-
geneities would give rise to B modes primarily at large
angular scales by patchy rescattering of CMB photons
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and at smaller angular scales through patchy screen-
ing of the primary CMB polarization from the decou-
pling epoch. These calculations build upon calculations
in Refs. [44, 69, 74–76] where optical-depth fluctuations
were postulated to arise from inhomogeneities in the free-
electron fraction due to inhomogeneous reionization.
In our notation, the contribution of patchy screening

is [44, 69]

CTT
l =τ2e−2τ

∑

L,l1

C∆
L CTT,rec

l1

(
KL

ll1

)2
GLl1 (48)

δCTE
l =τ2e−2τ

L+l1+l even∑

L,l1

C∆
L CTE,rec

l1
KL

ll1H
L
ll1GLl1 ,

(49)

δCEE
l =τ2e−2τ

L+l1+l even∑

L,l1

C∆
L CEE,rec

l1

(
HL

ll1

)2
GLl1 ,

(50)

δCBB
l =τ2e−2τ

L+l1+l odd∑

L,l1

C∆
L CEE,rec

l1

(
HL

ll1

)2
GLl1 , (51)

where τ = 0.086 is the mean optical depth, and C∆
L

is here the angular CIP power spectrum for reioniza-

tion; i.e., obtained with η0 − ηls = 9760 Mpc and
ση = 448 Mpc. These values are obtained by fitting a
Gaussian visibility function to the reionization model of
Ref. [77].
The contributions of patchy scattering are

δCBB
l = δCEE

l =
3τ2

100
C∆

l Q2
rmse

−2τ , (52)

where Qrms ≃ 17.9µK is the rms temperature
quadrupole at reionization.
Figure 2 shows the B modes induced by patchy scatter-

ing and screening at reionization again using A = 0.017.
We see that at all but the largest scales, the decoupling-
induced B modes are larger (by up to ∼ 3 orders of mag-
nitude) than those induced at reionization.
We thus conclude that the effects of CIPs on CMB fluc-

tuations would be much larger than found in Ref. [35],
particularly at the small scales most important for detec-
tion and reconstruction (to be discussed below) of CIPs
from the CMB. We thus now move on to show how spa-
tial fluctuations in the baryon–to–dark-matter ratio can
be measured with CMB maps.

V. MEASUREMENT OF CIPS WITH THE CMB

In this section, we show how the CIP field ∆(n̂) can be
measured with off-diagonal CMB correlations, building
upon analogous prior work on measurement of cosmic-
shear fields [70, 71, 78–81], departures from statisti-
cal isotropy [82–84], and cosmic birefringence [85–88].
Having concluded that the decoupling signal is much

TABLE I: The “response functions” SL,XX′

ll′
of CMB fluctu-

ations to CIPs, defined in Eqs. (13) and (37)–(40), for the
various correlation functions.

XX′ SL,XX′

ll′

TT
(

CT,dT
l′ + CT,dT

l

)

KL
ll′

EE
(

CE,dE
l +CE,dE

l′

)

HL
ll′

EB −iCE,dE
l′ HL

ll′

TB −iCT,dE
l′ HL

ll′

TE
(

CT,dE
l′ HL

ll′ + CE,dT
l KL

ll′

)

bigger than that from reionization, we consider detec-
tion/measurement of CIPs at the surface of last scatter.

In Sec. VA, we construct a minimum-variance

quadratic estimator ∆̂LM for the multipole moments of
the CIP field. In Sec. VB, we explicitly calculate the
noise covariance (due both to cosmic variance and exper-
imental noise) needed to evaluate the errors and optimal
weights of Sec. VA. Finally, in Sec. VC, we use the re-
sults of the preceding sections to derive an expression
for the signal-to-noise ratio (SNR) with which a CMB
experiment can detect CIPs.

A. Minimum-variance estimators for ∆LM

The total correlation between multipole moments (in-
cluding the contribution induced by a given realization
of CIPs) takes the form [see Eq. (13) and (37)–(40)],

〈
X

′∗
l′m′Xlm

〉
=

CXX′

l δll′δmm′ +
∑

LM

DLM,XX′

ll′ ξLM
lm,l′m′ , (53)

where

DLM,XX′

ll′ ≡ ∆LMSL,XX′

ll′ .

As before, X,X′ ∈ {T,E,B}. As discussed in Secs. II

and III, the functions SL,XX′

ll′ map ∆LM to observed off-

diagonal CMB anisotropies. The SLM,XX′

ll′ are assembled
in Table I.

The spherical-harmonic coefficients Xmap
lm obtained by

a given CMB experiment are related to the true coeffi-

cients Xlm by Xmap
lm = WlXlm, where Wl = e−l(l+1)σ2

b
/2

is the window function, and σb = θfwhm/
√
8 ln 2 ≃

0.00741 (θfwhm/1
◦) is related to the beam’s full width at

half maximum (FWHM) θfwhm. The observed two-point
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correlations are then

〈
X ′,map∗

l′m′ Xmap
lm

〉
= (54)

CXX′

l W 2
l δll′δmm′ +

∑

LM

DLM,XX′,map
ll′ ξLM

lm,l′m′ ,

DLM,XX′,map
ll′ = DLM,XX′

ll′ WlWl′ . (55)

Following Refs. [44, 69, 84–86, 88], the minimum-variance

quadratic estimator for the rotational invariant DLM,XX′

ll′,map
is

D̂LM,XX′,map
ll′ = (Gll′)

−1
∑

mm′

Xmap
lm X ′,map∗

l′m′ ξLM
lm,l′m′ . (56)

To extract ∆LM , CMB temperature and polarization

maps must be used to reconstruct D̂LM,XX′,map
ll′ by ap-

plying Eq. (56). Then, through the estimator ∆̂ll′,XX′

LM ≡
D̂LM,XX′,map

ll′ /
(
WlWl′S

L,XX′

ll′

)
, we obtain many mea-

surements of ∆LM . These measurements are generally
correlated (even for fixed l, l′), so we must take care to

construct an optimal estimator ∆̂LM for CIPs when using
the full set of available maps for a given experiment. Gen-
eralizing the estimator and error formulae in Refs. [84, 86]
to our case of interest, we obtain the optimal estimator

∆̂LM and its rms error σ∆L
, taking into account all pos-

sible correlations between X and X′:

∆̂LM = σ2
∆L

∑

l′≥l

Gll′

∑

AA′

ZL,A′

ll′ D̂LM,A,map
ll′

[
C−1
ll′

]
AA′

,

σ−2
∆L

=
∑

l′≥l

Gll′

∑

AA′

ZL,A′

ll′ ZL,A
ll′

[
C−1
ll′

]
AA′

, (57)

where {A,A′} ∈ {EB,BE,TB,BT,TT,EE,TE,ET}
when l 6= l, {A,A′} ∈ {EB,TB,TT,EE,TE} when l = l′,
and

ZL,A
ll′ ≡ SL,A

ll′ WlWl′ . (58)

The inequality l′ ≥ l is imposed so that we do not double
count correlations. Sums are subject to the additional
restriction that for {A,A′} ∈ (TE,ET,EE,TT), l+ l′+L
is even, while for {A,A′} ∈ (BE,EB,BT,TB), l + l′ + L

is odd. The appropriately normalized covariance matrix

for D̂LM,AA′,map
ll′ is

CAA′

ll′ ≡ Gll′

(〈
D̂LM,A,map

ll′ D̂LM,A′,map∗
ll′

〉
(59)

−
〈
D̂LM,A,map

ll′

〉〈
D̂LM,A′,map∗

ll′

〉)
.

We now proceed to compute the covariance matrix
CAA′

ll′ .

B. Off-diagonal covariances

To numerically evaluate Eq. (59), we must have a
model for the statistics of the observed map covariances,
including noise. We assume the noise in each pixel is sta-
tistically independent, Gaussian, and uncorrelated with
the signal, and we assume no coupling between the noises
in {T, E, B}. In this case, the noise power spectra are
[89]

CBB,noise
l = CEE,noise

l = 2CTT,noise
l

= 8π
fsurvey(NET)

2

tobs
, (60)

where NET is the (effective) noise-equivalent tempera-
ture for the experiment, tobs the duration of the exper-
iment, and fsurvey is the fraction of sky surveyed. The

cross spectra CXX′,noise
l = 0 if X 6= X′. The power spectra

for the map are

CXX′, map
l ≡ CXX′

l |Wl|2 + CXX′, noise
l . (61)

It is useful to explicitly evaluate Eq. (59) using
Eq. (56). Since all fields involved are Gaussian, all the
four-point functions that arise may be evaluated using
Wick’s theorem. Wigner-3J identities may then be fruit-
fully applied to obtain all the elements of CAA′

ll′ expressed

in terms of CXX′,map
l . If l = l′, then Cll is a 5× 5 diago-

nal matrix, with rows/columns in the order TT, EE, TE,
BE, BT, and entries

Cll =
(

Fll 0

0
∗ Gll

)
, Fll = 2




(
CTT,map

l

)2 (
CTE,map

l

)2
CTT,map

l CTE,map
l(

CTE,map
l

)2 (
CEE,map

l

)2
CEE,map

l CTE,map
l

CTT,map
l CTE,map

l CEE,map
l CTE,map

l

[(
CTE,map

l

)2
+ CTT,map

l CEE,map
l

]
/2




, (62)

Gll =




CEE,map
l CBB,map

l CBB,map
l CTE,map

l

CBB,map
l CTE,map

l CBB,map
l CTT,map

l


 . (63)

If l 6= l′, Cll′ is an 8 × 8 block-diagonal matrix, with
rows/columns in the order TT, EE, TE, ET, BE, EB,
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BT, TB, and entries

Cll′ =
(

Nll′ 0

0 Kll′

)
, Nll′ =




CTT,map
l CTT,map

l′ CTE,map
l CTE,map

l′ CTT,map
l CTE,map

l′ CTE,map
l CTT,map

l′

CTE,map
l CTE,map

l′ CEE,map
l CEE,map

l′ CTE,map
l CEE,map

l′ CEE,map
l CTE,map

l′

CTT,map
l CTE,map

l′ CTE,map
l CEE,map

l′ CTT,map
l CEE,map

l′ CTE,map
l CTE,map

l′

CTE,map
l CTT,map

l′ CEE,map
l CTE,map

l′ CTE,map
l CTE,map

l′ CEE,map
l CTT,map

l′




, (64)

Kll′ =




CBB,map
l CEE

l′ 0 CBB,map
l CTE,map

l′ 0

0 CEE,map
l CBB,map

l′ 0 CTE,map
l CBB,map

l′

CBB,map
l CTE,map

l′ 0 CBB,map
l CTT,map

l′ 0

0 CTE,map
l CBB,map

l′ 0 CTT
l CBB,map

l′




.

In Sec. VIA, we apply the preceding formulae to estimate
the noise in the reconstructed CIP field for a variety of
ongoing and upcoming experiments.

In many cases, most of the sensivity to CIPs comes
from a single combination (e.g., TT or TB) of observ-
ables. It is therefore interesting to consider the constrain-
ing power of a single such combination. In the case of TB,
the error is given by [see Eqs. (57)]

σ−2
∆L

=
l+l′+L odd∑

l′≥l

Gll′

(
SL,TB
ll′

)2

CBB,map
l CTT,map

l′

+ {T ↔ B} .

(65)
To generate the noise curves discussed in Sec. VIA, we
use expressions analogous to Eq. (65) for each pair of ob-
servables. These noise values are then applied to estimate
the SNR with which a given spectrum of CIPs might be
detected.

C. Signal-to-noise formula

Ultimately, we wish to assess the SNR of our estima-
tors for a given CIP power-spectrum amplitude A. Each

estimator ∆̂LM gives an independent estimator for A,
and by adding them all with inverse-variance weighting,
the total SNR with which CIPs can be detected is

S/N =

[
fsky
2

∑

L>Lmin

(2L+ 1)

(
CL

σ2
∆L

)2
]1/2

, (66)

where the error is evaluated using Eq. (57), fsky is the
fraction of sky used in the data analysis, and Lmin ≡
f
−1/2
sky . Modes that vary on scales larger than the area
of sky analyzed will have degraded signal-to-noise. A
minimum value of L is thus imposed to conservatively
account for fractional sky coverage. In practice, these
modes would still contribute to the integrated CIP power
in the area of sky analyzed. In this work, however, we im-
pose a cut at Lmin to avoid an over-estimate of sensitivity,
all the same establishing the utility of CMB observations
for probing CIPs.

VI. EXPERIMENTAL PROSPECTS

We now apply the formalism of Sec. V to assess the
prospects of using CMB experiments to detect CIPs. We
consider specifically the ongoing WMAP [90] and Planck
[42] satellites and a possible future satellite, EPIC [46].
We also consider the following suborbital experiments:
Polarbear [91], Spider [92] and ACT [93] and SPT [94]
and their polarization upgrades ACTPol [43] and SPTPol
[45]. Finally we consider an idealistic cosmic-variance
limited (CVL) experiment, limited only by sky cuts to
avoid galactic foreground emission. We do this to roughly
quantify the lowest CIP amplitudes that could ever be
probed with the CMB.
The experimental parameters assumed for these exper-

iments are given in Table II. For WMAP, Planck, EPIC,
and the CVL case, we assume that fsurvey = 1, while
for Polarbear, SPT, ACT, SPTPol, and ACTPol, we as-
sume that fsurvey = fsky. For WMAP, we assume use
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of the V and W bands in the analysis. For Planck, we
assume that the 143 and 217 Ghz channels will be usable
for CMB anisotropy measurements, and take appropriate
inverse-variance weighted sums of the noise in these chan-
nels. Appendix B details the calculation of the requisite
derivative power spectra. We include BB correlations
induced by gravitational lensing when evaluating CAA′

ll′ ,
using the camb lensing module [61].

Expt. Channel θ NET fsky tobs

WMAP V Band 21 1200 0.65 7

WMAP W Band 13 1600 0.65 7

Polarbear 150 Ghz 4.0 36 0.015 1.0

Planck HFI 143 Ghz 7.1 62 0.65 1.2

Planck HFI 217 Ghz 5.0 91 0.65 1.2

Spider 150 Ghz 30 4.2 0.1 0.016

ACT 148 Ghz 1.4 58 0.0072 0.14

SPT 150 Ghz 1.2 91 0.0024 0.29

ACTPol 150 Ghz 1.4 6.0 0.10 0.21

SPTPol 150 Ghz 1.0 14 0.016 0.75

EPIC 150 Ghz 5.0 2.0 0.65 4.0

CVL ... ... 0.0 0.65 ...

TABLE II: Experimental parameters for the experiments con-
sidered in this work: beamwidth θ (in arcminutes), noise-

equivalent temperature (NET) (in µK sec1/2), and observa-
tion time tobs (in years).

A. Noise curves

We compute the noise curves in the reconstruction

∆̂LM for all experiments under consideration, and show
the results in Figs. 3–6. We plot the noise power spec-
trum

δCL =
σ2
∆L

fsky
√
2L+ 1

(67)

as well as the signal CL. We use the value A = 0.017,
which saturates the galaxy-cluster bound on CIPs. Ex-
periments with larger beams, such as Polarbear and Spi-
der, generally have higher noise levels (for reconstruction
of ∆) than do others. At low L, temperature is generally
the best probe of CIPs. At sufficiently high L, the BT
correlation takes over as the best probe of CIPs. At very
high L, all the noise curves grow very large, indicating
that the fidelity of the reconstruction of the CIP breaks
down at small scales. This is very similar to lensing and
is expected, as fluctuations in the baryon fraction couple

small to large scales. We note that CXX′,map
l is computed

using τ = 0.086, as the observed CMB anisotropies are
affected both by a screening envelope at high l, due to

reionization, and by a reionization “bump” in polariza-
tion at low l. We use camb’s built-in tanh reionization
model with the parameters of Ref. [77].
We then compute the total noise in the reconstruc-

tion ∆̂LM for each experiment, adding the different cor-
relations in quadrature with inverse-variance weighting.
This should be a reasonable approximation to the sum in
Eq. (57), as inverse-variance weighting tends to be domi-
nated sharply by the lowest noise correlation. The results
are shown in the left panel of Fig. 7. We see that broadly
speaking (with some alternation as a function of L), the
best sensitivity is achieved by EPIC, followed by SPT-
Pol, ACTPol, Planck, Polarbear, WMAP, ACT, Spider,
and SPT. Obviously, any specific experimental concept
will be outperformed by the CVL case, as confirmed in
the left panel of Fig. 7.

B. Signal-to-noise

Calling on Eq. (66), we compute the SNR expected for
all the CMB experiments we consider as a function of the
rms CIP fluctuation ∆cl. The results are shown in the
right panel of Fig. 7. Assuming a scale-invariant spec-
trum, we see that already with WMAP, we are able to
probe compensated fluctuations in the baryon fraction of
∼ 10%, the lowest value probed in Ref. [35]. We define a
“detection” as a measurement with S/N ≥ 3. Currently
operating suborbital experiments, like SPT and ACT,
and the upcoming Spider experiment, perform compara-
bly to WMAP. Although these experiments are sensitive
to a fairly large rms CIP amplitude, the cluster constraint
was obtained at a different scale, and it is important to
check the constraint using the independent probe offered
by the CMB.
Planck and Polarbear offer the next major improve-

ment in SNR, probing ∆cl ≃ 3% and higher. The addi-
tion of polarization sensitivity to SPT and ACT lowers
the range of detectable ∆cl to 0.6%. EPIC would be able
to measure ∆cl ≃ 0.4%. This is a factor of 20 lower than
the currently allowed maximum from measurements of
the baryon fraction in galaxy clusters. In the CVL case,
an additional order of magnitude improvement in SNR is
possible.
As discussed in Sec. VC, we conservatively estimated

sensitivity, omitting low-L modes. In practice, all-sky
experiments like WMAP, Planck, and EPIC could probe
even smaller CIP amplitudes than estimated here, as the
L = 1 mode could contribute significantly to the SNR.
If experimental techniques improve (approaching the
cosmic-variance limit at very high l) and a way is found
to disentangle CIPs from secondary CMB anisotropies at
these high l, a further order of magnitude improvement
in sensitivity is theoretically possible, using the estima-
tors developed in this work. Additionally, we have been
conservative in our estimates of SNR, assuming that only
one useful frequency channel is available for EPIC. The
mission concept actually calls for ∼ 7 channels, in order
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FIG. 3: Predicted noise power spectrum δCL in the reconstructed CIP perturbation field ∆LM in four different ongoing/future
CMB anisotropy experiments, as a function of angular scale L. We separately plot the noise for distinct pairs of observables:
TT is shown as an orange (short-dashed long-dashed), TE as a green (dotted-dashed) line, EE as a magenta (short-dashed)
line, BE as a blue (long-dashed) line, and BT as a red (dotted) line. Also shown (black solid line) is the power spectrum C∆

L

, marked signal, for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy clusters. Each panel
shows estimates for a different experiment, as indicated in the figure. The beige (grey) shaded region shows the range of L that
is not included in our estimates, due to finite sky coverage effects, as discussed in Sec. VC.

to achieve good foreground subtraction. It may be that
if EPIC is built, more than one useful channel of signal is
obtained, improving the SNR by a factor of order unity.
It may be that CIPs are not an independent Gaussian

random field (as assumed here), but rather, as in some
curvaton models [34], correlated with the usual adiabatic

fluctuations. In that case, CIPs will induce 3-point cor-
relations between CMB observables, through effects at
decoupling. In future work, we will pursue the possibility
of probing CIPs with the corresponding CMB bispectra.
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FIG. 4: Predicted noise power spectrum δCL in the reconstructed CIP perturbation field ∆LM in four different ongoing/future
CMB anisotropy experiments, as a function of angular scale L. Colors (line styles) are as in Fig. 3. We separately plot the
noise for distinct pairs of observables: TT is shown as an orange (short-dashed long-dashed), TE as a green (dotted-dashed)
line, EE as a magenta (short-dashed) line, BE as a blue (long-dashed) line, and BT as a red (dotted) line. Also shown (black
solid line) is the power spectrum C∆

L for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy
clusters. Each panel shows estimates for a different experiment, as indicated in the figure. The beige (grey) shaded region
shows the range of L that is not included in our estimates, due to finite sky coverage effects, as discussed in Sec. VC.

VII. CONCLUSIONS

Compensated isocurvature perturbations provide an
intriguing empirical possibility for large-amplitude de-
partures from homogeneity in the early Universe. The
current constraint, . 10%, to the amplitude of such
perturbations is surprisingly weak. While Ref. [35] has
pointed out that there may be CMB signatures induced
by CIPs at reionization, we have shown here that the

CMB effects of CIPs at the surface of last scatter would
be several orders of magnitude larger. We then calcu-
lated the full two-point temperature/polarization corre-
lations induced by CIPs on the CMB and developed the
minimum-variance estimators for measuring the CIP field
with the CMB.
The WMAP satellite may be sensitive to a scale-

invariant spectrum of CIPs, but only if the CIP ampli-
tude is close to its current upper bound. In the future,
sensitivity to CIP amplitudes as small as ∼ 3% may be
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FIG. 5: Predicted noise power spectrum δCL in the recon-
structed CIP perturbation field ∆LM for the proposed EPIC
satellite, as a function of angular scale L. Colors (line styles)
are as in Fig. 3. We separately plot the noise for distinct
pairs of observables: TT is shown as an orange (short-dashed
long-dashed), TE as a green (dotted-dashed) line, EE as a
magenta (short-dashed) line, BE as a blue (long-dashed) line,
and BT as a red (dotted) line. Also shown (black solid line) is
the power spectrum C∆

L for a scale-invariant spectrum of CIPs
with the maximum amplitude allowed by galaxy clusters. The
beige (grey) shaded region shows the range of L that is not
included in our estimates, due to finite sky coverage effects,
as discussed in Sec. VC.

achieved by instruments in operation and ∼ 0.1%-level
fluctuations accessible in the near future with precise
ground- and space-based polarization experiments that
are under construction (ACTPol and SPTPol) or in con-
ceptual development (EPIC).

Many steps must be taken before such measurements
can be implemented with real data. Techniques to
deal with partial-sky coverage and realistic instrumental
noise properties must be developed, but these techniques
should be similar to those being developed already to
measure the effects of weak gravitational lensing on the
CMB. Likewise, techniques must be developed to distin-
guish the off-diagonal correlations induced by CIPs from
those induced by weak gravitational lensing (e.g., [95]),
which should be comparable in amplitude if the CIP field
∆ is comparable to the lensing potential φ, i.e, ∼ 1%.

Although lensing is already included in our reconstruc-
tion noise estimates [σ∆L

in Eq. (57)], it might also
induce bias in the reconstruction of the CIPs. Gravi-
tational lensing of the CMB will induce correlations of
similar form to Eqs. (53) and (54), with the distinction

that the functions SL,XX′

ll′ will be different for lensing than
for CIPs. In the case of lensing, these functions describe
the remapping of CMB observables on a lensing-deflected

FIG. 6: Predicted noise power spectrum δCL in the recon-
structed CIP perturbation field ∆LM for an ideal cosmic vari-
ance limited experiment, as a function of angular scale L.
Colors (line styles) are as in Fig. 3. We separately plot the
noise for distinct pairs of observables: TT is shown as an
orange (short-dashed long-dashed), TE as a green (dotted-
dashed) line, EE as a magenta (short-dashed) line, BE as a
blue (long-dashed) line, and BT as a red (dotted) line. Also
shown (black solid line) is the power spectrum C∆

L , for a scale-
invariant spectrum of CIPs with the maximum amplitude al-
lowed by galaxy clusters. The beige (grey) shaded region
shows the range of L that is not included in our estimates,
due to finite sky coverage effects, as discussed in Sec. VC.

sky. In the case of CIPs, these functions describe the de-
tailed physical dependence of CMB anisotropies on the
baryon density. If Eq. (57) is applied to the extension of
Eqs. (53)-(54) that includes gravitational lensing, a bias
will be induced in the measurement of ∆LM .

The differing forms of SL,XX′

ll′ will allow lensing and
CIPs to be disentangled. Using a straightforward gener-
alization of the estimator in Eq. (57) that includes terms
for both CIPs and lensing, the bias induced by lensing
on CIP measurements may be removed, simultaneously
reconstructing the lensing and CIP fields. This is anal-
ogous to the estimators discussed in Ref. [95], where it
is shown that if reionization is patchy because of inho-
mogeneity in the distribution of ionized bubbles around
the first sources, the contributions of patchy reionization
and lensing may be distinguished. In future work, we will
explicitly compute the bias in CIP searches that will be
induced by lensing and will construct the estimators that
disentangle lensing from CIPs. As in Ref. [95], we expect
that the signal-to-noise of the biased and unbiased esti-
mators should be nearly the same, and so gravitational
lensing should not affect the signal-to-noise estimates of
this paper.
The measurements we propose in this paper offer a

precise test of how closely the primordial baryon and
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FIG. 7: Combined (predicted) noise power spectrum δCL in the reconstructed CIP perturbation field ∆LM for 9 different CMB
experiments, as a function of angular scale L. Colors and line styles for each experiment are indicated in the legend (center).
Here, noise for the 5 different estimators (TT, TE, EE, BE, and BT) is added in quadrature. Noise curves terminate at L values
where modes become inaccessible due to finite sky effects, as discussed in Sec. VC. Also shown (black solid line) is the power
spectrum C∆

L , marked signal, for a scale-invariant spectrum of CIPs with the maximum amplitude allowed by galaxy clusters.
The left panel shows predicted total errors for the indicated experiments. The right panel shows the predicted signal-to-noise
ratio (SNR) that results from these errors, evaluated using Eq. (66) and assuming a scale-invariant spectrum of CIPs [evaluated
using Eq. (47)]. The SNR is plotted as a function of the rms CIP fluctuation ∆cl on cluster scales. The range of fluctuations
∆cl excluded by cluster measurements [35] is shown as a beige (grey) band, bounded by a vertical black line with rightward
pointing arrows. The black line with upward arrows attached shows the “detection” region, defined by S/N = 3.

dark-matter distributions are matched and approach the
CIP amplitudes allowed in curvaton models. Moreover,
if future CMB experiments detect subdominant isocur-
vature fluctuations between matter and radiation, the
techniques developed in this work could disentangle con-
tributions from the baryon and cold dark-matter (CDM)
isocurvature modes. Even greater gains in sensitivity are
theoretically possible if the cosmic-variance limit is ap-
proached at high l by future experiments. We are op-
timistic that, in the near future, we will learn just how
well baryons trace dark matter in the early Universe.
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Appendix A: Tensors on the sphere

Here we review the tensor spherical-harmonic formal-
ism, following closely Ref. [86]. The metric on the 2-
sphere is

g =

(
1 0

0 sin2 θ

)
, (A1)

where θ is the polar angle defined with respect to the
origin of the orientation vector n̂. It is useful to introduce
the orthonormal basis

êθ =

(
1

0

)
êφ =

(
0

sin2θ

)
. (A2)

The tensor spherical harmonics are [67]

Y E
lm,ab =

Nl

2

(
Ylm:ab −

1

2
gabY

c
lm:cǫ

c
a

)
, (A3)

Y B
lm,ab =

Nl

2
(Ylm:acǫ

c
b + Ylm:bcǫ

c
a) , (A4)
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where the normalization constant is given by

Nl ≡
√

2 (l − 2)!

(l + 2)!
, (A5)

and all indices following “:” denote covariant derivatives
taken on the 2-sphere. The indices l and m are multipole
indices, while a and b are tensor indices.
Using Ref. [70], the covariant derivatives may be ex-

pressed in terms of spin-2 spherical harmonics [68, 70]:

Ylm:ab = − l (l + 1)

2
Ylmgab +

1

2

√
(l + 2)

(l − 2)!

× [2Ylm (m+ ⊗m+) + −2Ylm (m− ⊗m−)]ab . (A6)

The left subscript “2” denotes a spin-weighted spherical
harmonic sYlm of spin s, while ⊗ denotes a tensor prod-
uct. The spherical basis vectors m± are

m± =
1√
2
(êθ ∓ iêφ) . (A7)

In row-column form, the spherical tensor basis functions
are then [86]

Y E =

(
(+2Y + −2Y ) i sin θ (−2Y − +2Y )

i sin θ (−2Y − +2Y ) − sin2 θ (−2Y + +2Y )

)

2
√
2

,

(A8)

Y B =

(
i (+2Y − −2Y ) sin θ (−2Y + +2Y )

sin θ (−2Y + +2Y ) i sin2 θ (−2Y − +2Y )

)

2
√
2

,

(A9)

where we have suppressed the lm indices for the sake of
brevity.
To evaluate the polarization anistropies induced by

CIPs (see Sec. III), it is useful to obtain identities for
the product of two distinct (generally different l and m
values) spherical harmonics. Using Eqs. (A8)–(A9), it
can be shown that [86]

(
XE,ab

)∗
Y E
ab

=
1

2
(+2X

∗ ⊗ +2Y + −2X
∗ ⊗ −2Y ) , (A10)

(
XB,ab

)∗
Y E
ab

= − i

2
(+2X

∗ ⊗ +2Y − −2X
∗ ⊗ −2Y ) , (A11)

where X and Y signify tensor spherical harmonics on
the left-hand side of Eqs. (A10) and (A11) and the corre-
sponding spin-weighted spherical harmonics on the right-
hand side of these equations. Relations such as these help

express the integrals of Sec. III as integrals over 3 spin-
weighted spherical harmonics. These are then evaluated
by applying the relation [70]

∫
dn̂
(
s1Y

∗
l1m1

)
(s2Yl2m2

) (s3Yl3m3
)

= (−1)
m1+s1

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

×
(

l1 l2 l3
s1 −s2 −s3

)(
l1 l2 l3

−m1 m2 m3

)
. (A12)

In evaluating the contribution of terms proportional to
d2f (0)/d∆2 to perturbed LOS solutions for polarization
anisotropies, integrals over 4 spin-weighted spherical har-
monics must be evaluated. They may be simplified using
the identity [96]

−sYl′′−m′′ ⊗ sYl′m′ =
√
(2l′′ + 1) (2l′ + 1)

×
∑

L′′M ′′S′′

(−1)
M ′′+S′′

√
2L′′ + 1

4π
S′′YL′′M ′′

×
(

l′′ l′ L′′

m′′ −m′ M ′′

)(
l′′ l′ L′′

−s s −S′′

)
. (A13)

Appendix B: Derivative power spectra

We wish to estimate the derivatives dnXl (k) /d∆
n of

the transfer functions Xl (k). For the first derivatives,
we use a 5-point approximation, running camb [61] re-
peatedly to obtain the transfer functions at 5 different
values of Ωbh

2 and Ωch
2. The first derivative is then well

approximated by

dXl (k)

d∆
=

2∑

i=−2

ciX
i
l (k)

12∆
. (B1)

HereX i
l (k) denotes the transfer function evaluated under

the transformation Ωb → Ωb (1 + ∆), Ωc → Ωc − ∆Ωb.
We find that the choice ∆ = 0.02 works well to eval-
uate the first derivatives. We run convergence tests by
doubling and halving ∆ and find that dXl (k) /d∆ has
converged to ∼ 5%, which is more than sufficient for our
purposes. We use values c0 = 0, c±1 = ±8, and c±2 = ∓1
[97].
For the second derivatives, we use the 7-point numeri-

cal approximation

d2Xl (k)

d∆2
=

3∑

i=−3

ciX
i
l (k)

180∆2
. (B2)

In this case, we find that the choice ∆ = 0.066 lies com-
fortably in the zone of convergence. The corresponding
coefficients are c0 = −490, c±1 = 270, c±2 = −27, and
c±3 = 2. We run convergence tests by doubling and
halving ∆ and find that d2Xl (k) /d∆

2 has converged to
∼ 5%, which is accurate enough for the work presented
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here. The resulting derivative power spectra, defined by
Eqs. (22)-(23), are shown in Figs. 9–10. All derivative
power spectra are computed using camb, with τ = 0.
These are then multiplied by a homogeneous reionization
damping envelope with mean optical depth τ ≃ 0.086,
given by expressions in Ref. [98]. This was done to isolate
the effects of patchy decoupling, screened by a homoge-
neous optical depth at reionization (with zreion ≃ 10.5),
from additional (smaller) anisotropies induced at reion-
ization.

Appendix C: Harmonic expansion of CMB transfer
functions

The most convenient way to generalize Eq. (2) to in-
clude terms ∝ ∆2(n̂) is to derive second-order corrections
to

fLM ≡
∫

dn̂ Y ∗
LM (n̂)f(η, n̂). (C1)

Using the Taylor expansion in real space defined by
Eq. (8) and Eq. (C1), we obtain

fLM = f
(1)
LM + f

(2)
LM + ...,

f
(1)
LM ≡ ∆LM

df (0)

d∆
,

f
(2)
LM ≡ 1

2

d2f (0)

d∆2

∑

L′M ′,L′′M ′′

βL′′M ′′

L′M ′,LM∆L′M ′∆∗
L′′M ′′ ,

(C2)

where

βL′′M ′′

L′M ′,LM ≡ ξL
′′M ′′

L′M ′,LMKL
L′,L′′′ . (C3)
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