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ABSTRACT
The damping of primordial perturbations at small scales gives rise to distortions of the cosmic
microwave background (CMB). Here, the dependence of the distortion on the different types
of cosmological initial conditions is explored, covering adiabatic, baryon/cold dark matter
isocurvature, neutrino density/velocity isocurvature modes and some mixtures. The radiation
transfer functions for each mode are determined and then used to compute the dissipative
heating rates and spectral distortion signatures, utilizing both analytic estimates and numeri-
cal results from the thermalization code CosmoTherm. Along the way, the early-time super-
horizon behavior for the resulting fluid modes is derived in conformal Newtonian gauge, and
tight-coupling transfer function approximations are given. CMB spectral distortions caused
by different perturbation modes can be estimated using simple k-space window functions
which are provided here. Neutrinos carry away some fraction of the primordial perturba-
tion power, introducing an overall efficiency factor that depends on the perturbation type.
It is shown that future measurements of the CMB frequency spectrum have the potential
to probe different perturbation modes at very small scales (corresponding to wavenumbers
1 Mpc−1 . k . few × 104 Mpc−1). These constraints are complementary to those obtained at
large scales and hence provide an exciting new window to early-universe physics.

Key words: Cosmology: cosmic microwave background – theory – observations

1 INTRODUCTION

It is well-known that energy release in the early Universe leads
to spectral distortions (SDs) of the CMB (Zeldovich & Sunyaev
1969; Sunyaev & Zeldovich 1970b; Illarionov & Sunyaev 1975a,b;
Danese & de Zotti 1982; Burigana et al. 1991; Hu & Silk 1993a).
At early times, a µ-type distortion is created, while energy release at
lower redshifts (z . 5×104) results in a y-type distortion, similar to
the Sunyaev-Zeldovich effect from galaxy clusters. Constraints on
the µ- and y-parameters obtained with COBE/FIRAS (Mather et al.
1994; Fixsen et al. 1996) limit possible deviations from a black-
body to µ . 9× 10−5 and y . 1.5× 10−5 at 95% confidence (Fixsen
et al. 1996). At slightly lower frequencies, there are similar limits to
µ from the ARCADE (Kogut et al. 2004, 2006; Seiffert et al. 2011)
and TRIS (Zannoni et al. 2008; Gervasi et al. 2008) experiments.

Improvements in experimental design and technology may
soon allow much more sensitive (a factor of ' 103 − 104 in µ be-
yond the FIRAS limit!) measurements of the CMB frequency spec-
trum, as suggested for the proposed experiment PIXIE (Kogut et al.
2011). This has spurred renewed theoretical interest in the cosmo-
logical thermalization problem (e.g., Chluba & Sunyaev 2012; Pa-
jer & Zaldarriaga 2012; Khatri & Sunyaev 2012b) and the use of

? E-mail: jchluba@pha.jhu.edu
† E-mail: dgrin@ias.edu

SDs to probe new physics. For instance, energy injection from dark
matter annihilation or decay at redshifts z . few × 106 (Hu &
Silk 1993b; McDonald et al. 2001; Chluba 2010; Chluba & Sun-
yaev 2012), cosmic strings (Ostriker & Thompson 1987; Tashiro
et al. 2012b,a), primordial magnetic fields (Jedamzik et al. 2000),
but also more exotic possibilities (Lochan et al. 2012; Bull &
Kamionkowski 2013) could produce a detectable SD signal.

It has long been known that Silk damping (Silk 1968) of pri-
mordial small-scale perturbations also causes energy release in the
early universe (Sunyaev & Zeldovich 1970a; Daly 1991; Barrow &
Coles 1991; Hu et al. 1994a). The SD signal depends on the ampli-
tude and shape of the primordial fluctuation power spectrum, which
in turn depend sensitively on the early-universe physics seeding
these perturbations. The detection and characterization of CMB
SDs could thus offer a powerful new probe of inflationary mod-
els (Chluba & Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldar-
riaga 2012; Dent et al. 2012; Ganc & Komatsu 2012; Chluba et al.
2012a; Powell 2012). The proper interpretation of measurements
of the CMB frequency spectrum in the context of early universe
physics requires an accurate treatment of acoustic mode dissipa-
tion (as developed in Chluba et al. 2012b; Khatri et al. 2012b; Pajer
& Zaldarriaga 2013), which we follow here.

The amplitude of the distortion also depends on the type of
perturbation modes (Barrow & Coles 1991; Hu & Sugiyama 1994;
Dent et al. 2012). The combined system of fluid + Einstein equa-
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2 Chluba and Grin

tions for cold dark matter (CDM), baryons, neutrinos, and photons1

has a variety of propagating (and growing) normal modes.
Empirically, the most prominent is the adiabatic (AD) mode,

for which the curvature perturbation ζ is non-zero, but all initial
entropy fluctuations of other species relative to photons vanish:
S iγ = δni/ni − δnγ/nγ = δρi/[(1 + wi) ρi] − (3/4) δργ/ργ ≡ 0. Here,
wi denotes the equation of state of the ith species. The other well-
behaved fundamental modes (on super-horizon scales) are known
as isocurvature or entropy fluctuations, and are characterized by
initial values ζ = 0 and S iγ , 0. They may be simply thought of as
spatial fluctuations in the composition (or its time derivative) of the
Universe (e.g., see Ma & Bertschinger 1995; Bucher et al. 2000, for
additional details on perturbation equations and definitions). The
most straightforward isocurvature modes are density isocurvature
fluctuations, which naturally sort into the CDM isocurvature (CI),
the baryon isocurvature (BI), and the neutrino density isocurvature
(NDI) mode. Additionally, there is a neutrino velocity isocurvature
mode (NVI), with initial ζ = δρ = 0, but a relative velocity 3ν − 3γ
perturbation between photons and neutrinos.

The standard lore is that isocurvature fluctuations behave
differently from adiabatic perturbations, sourcing a much larger
Sachs-Wolfe effect at large angular scales in the CMB, and acous-
tic peak phases that are out of phase with those produced by adia-
batic fluctuations (Hu & Sugiyama 1995, 1996; Kodama & Sasaki
1986; Efstathiou & Bond 1986, 1987). Indeed, this is true of BI and
CI perturbations. NDI modes, on the other hand, behave more like
adiabatic modes, since the initially perturbed species (neutrinos) is
relativistic, and the isocurvature condition (δρ = 0) requires an ini-
tial energy density perturbation in the photons (δργ = −δρν). Sim-
ilarly, for the NVI a significant CMB dipole is present. The phase
structure of the CMB anisotropy transfer functions for NDI and
NVI perturbations thus bears a closer resemblance to the adiabatic
transfer function than do the transfer functions for BI/CI modes (for
examples, see Kawasaki et al. 2012).

At large scales, corresponding to 10−4 Mpc−1 . k . 1 Mpc−1,
these important differences are readily probed by precise measure-
ments of CMB anisotropies, and are highly constrained by the
Boomerang (Jones et al. 2006) and WMAP (Larson et al. 2011)
experiments, as well as large-scale structure (LSS) measurements
(Beltrán et al. 2005; Seljak et al. 2006; Zunckel et al. 2011; Muya
Kasanda et al. 2012) and other CMB experiments (Moodley et al.
2004; MacTavish et al. 2006; Bean et al. 2006; Dunkley et al.
2009). We thus know that at large scales the primordial fluctuations
are predominantly adiabatic, and there is no evidence of a signif-
icant isocurvature component to the primordial initial conditions.
Recent results from the Planck collaboration (Planck Collabora-
tion et al. 2013c) strengthen this view, although the hemispherical
power asymmetry (Eriksen et al. 2004; Planck Collaboration et al.
2013d) could be interpreted as a hint for a modulated large-scale
isocurvature mode (Dai et al. 2013).

The implications of this fact are dramatic. In the simplest in-
flationary models, fluctuations in all species are seeded by quantum
fluctuations of a single scalar field; the consistency of observations
with adiabatic initial conditions supports these scenarios (Bardeen
et al. 1983; Guth & Pi 1985; Lyth 1984; Maldacena 2003). Indeed,
the Boomerang, WMAP and Planck data impose very strong con-
straints on topological defect-dominated models for cosmic struc-
ture formation (Contaldi et al. 1999; Albrecht 2000; Fraisse 2005;

1 In the following, for associated variables we use subscripts c, b, ν and γ,
respectively.

Planck Collaboration et al. 2013f). Therefore, a detection of a sub-
dominant but non-zero isocurvature component would imply devia-
tions from the simplest inflationary picture. For example, dark mat-
ter could be composed of axions (Sikivie 2008; Cadamuro 2012).
The axion field would be present and energetically sub-dominant
during inflation, exciting the CI mode (Axenides et al. 1983; Linde
1985; Seckel & Turner 1985; Turner & Wilczek 1991). Isocurva-
ture constraints thus limit the parameter space available for axion
dark matter, and SDs might help shed light on this.

Alternatively, in the curvaton model, a sub-dominant scalar
field (the curvaton) picks up quantum fluctuations, comes to dom-
inate the cosmic energy budget and then seeds a correlated mix-
ture of adiabatic and isocurvature fluctuations. The amplitudes of
CI, BI and NDI fluctuations are then set by the relative placement
of the epochs of dark matter production, lepton number creation,
or baryon number creation, relative to the time of curvaton decay
(Lyth & Wands 2002; Lyth et al. 2003; Gordon & Lewis 2003; Gor-
don & Pritchard 2009). It would be useful to determine if SDs offer
any additional leverage on curvaton parameter space.

The curvaton model may also excite compensated isocurva-
ture perturbations (CIPs), for which δρ = ζ = 0, and δS '

δnc/nc − δnb/nb , 0. Surprisingly, current CMB data analyses do
not impose constraints to CIPs, but they could soon be detected us-
ing higher order correlations of the CMB (Holder et al. 2010; Grin
et al. 2011a,b). It would be interesting to see if SDs could be used
to detect CIPs or other curvaton-induced modes on small scales, a
possibility analyzed in this work. We find that SDs are only useful
for this purpose at very futuristic sensitivity levels.

Another interesting theoretical possibility is inhomogeneous
baryogenesis, which predicts the existence of BI modes (Peebles
1999a,b; Koyama & Soda 1999). More broadly, multi-field infla-
tionary models excite isocurvature fluctuations (Gordon 2001; Gor-
don et al. 2001). Constraints to all these possibilities from CMB
data are informative, and promise to be even more sensitive with
the next Planck cosmology data release, including the full temper-
ature and polarization information.

CMB SDs could allow the characterization of primordial fluc-
tuations on length-scales far smaller than possible with CMB
anisotropy measurements. Most recent work on CMB SDs explores
their dependence on the power spectrum of primordial fluctuations,
restricting attention to the adiabatic mode (Chluba et al. 2012b,a;
Powell 2012; Khatri & Sunyaev 2013). SDs could, however, also
test for the presence of isocurvature initial conditions, providing a
complementary probe to measurements of CMB anisotropies and
cosmological large-scale structure on radically different length-
scales than those measurements.

The imprint of isocurvature fluctuations on the CMB spec-
trum was first studied in detail by Hu & Sugiyama (1994), where
BI models were tightly constrained. In BI models, stars would form
early, leading to early reionization and a detectable Compton y-type
distortion of the CMB frequency spectrum. More recently, the early
energy release from BI/CI fluctuations was investigated by Dent
et al. (2012), using a simplified treatment of both the transfer func-
tion that maps primordial fluctuations to moments of the radiation
field, and of the heating rate itself.

Recent work has shown the heating process is only 3/4
as efficient as previous estimates, and that closer to recombina-
tion, baryon loading and second-order Doppler terms are impor-
tant to the heating rate calculation (Chluba et al. 2012b). Fur-
thermore, free-streaming relativistic particles, like neutrinos, carry
away some fraction of the perturbation power, introducing a depen-
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Isocurvature modes 3

dence on the effective number of relativistic species. These details
are carefully considered here but were omitted in previous work.

Here, we revisit the problem, using the perturbation and heat-
ing modules of the SD code CosmoTherm2 (Chluba & Sunyaev
2012; Chluba et al. 2012b) to precisely calculate both the evolu-
tion of fluid and radiation variables from isocurvature initial con-
ditions, as well as the resulting effective plasma heating rate and
CMB spectral distortion signal. We compute the SD signal from BI
and CI models, improving the estimates of Dent et al. (2012), and
extend our reach to the SD signature of NDI and NVI modes, as
well as the CIP (baryon-CDM isocurvature) mode. We expand on
Dent et al. (2012) to compute both µ and y-type SDs for adiabatic
and isocurvature modes, exploring the dependence of the signal on
the spectral index of the initial power spectrum of each mode. We
compare these different possibilities with the sensitivity of the pro-
posed PIXIE mission and existing limits to the chemical potential
µ and Compton y-parameter from COBE/FIRAS. We also provide
simple analytic expressions for the heating rate of different pertur-
bation types, as well as k-space window functions which may be
used to estimate the SD (µ and y) signal of arbitrary power spectra.

We begin in Section 2 with a review of acoustic mode dis-
sipation and the resulting plasma heating responsible for SDs. In
Section 3, we move on to discuss the different families of cosmic
initial conditions, and the resulting acoustic mode amplitudes at
small scales. We also consider mode mixtures in this section, but
restrict ourselves to the simplest cases, providing a simple recipe
for correlated, uncorrelated and anticorrelated modes. In Section 4,
we present the precise numerical heating rates produced by differ-
ent acoustic modes. In Section 5, we discuss possible constraints to
the power spectra of different pure modes and some representative
mixtures of different modes, as well as implications of SD exper-
iments for specific early-universe scenarios, such as the curvaton
model. We conclude in Section 6.

2 CMB SPECTRAL DISTORTIONS CAUSED BY THE
DISSIPATION OF ACOUSTIC MODES

In this section, we briefly review how the dissipation of acous-
tic modes creates spectral distortions. For a more in-depth dis-
cussion, see Chluba et al. (2012b) and Khatri et al. (2012b). The
problem boils down to computation of the effective heating rates
for different perturbation modes. These are obtained both numeri-
cally, by solving the cosmological perturbation equations (see Ma
& Bertschinger 1995, for details) with CosmoTherm, and analyt-
ically in the tight-coupling approximation. With the heating rates
in hand, we use simple analytic estimates to compute the result-
ing chemical potential, µ, and Compton y-parameter. Generally, the
detailed shape of the distortion is not just represented by a simple
superposition of µ- and y-distortion, as shown in Chluba & Sun-
yaev (2012, e.g., see Figs. 15 and 19) and more recently by Khatri
& Sunyaev (2012a) or Chluba (2013). These details will, however,
be addressed in some future work, since for estimates the approach
presented here suffices.

2 CosmoTherm is available at www.Chluba.de/CosmoTherm.

2.1 Estimates for the µ- and y- parameters caused by early
energy release

At high redshifts, z � zµ ≈ 1.98 × 106, the thermalization process
is extremely efficient. As a result, any energy release just increases
the specific entropy of the Universe, and thus raises the average
temperature of the CMB without producing SDs. For lower red-
shifts, z . zµ, thermalization becomes less efficient, and energy
release can produce SDs. For all z � zµ, energy injection initially
appears as a y-distortion to the CMB blackbody. If additionally,
z � zµ,y ≈ 5 × 104, Comptonization of the radiation field is still ef-
ficient and the initial y-distortion is mostly converted into a chem-
ical potential µ. On the other hand, if z � zµ,y, Comptonization
is inefficient, and the SD take the form of a non-zero Compton y-
parameter, and essentially amounts to an early-universe analogue to
the Sunyaev-Zeldovich effect. Thus, a µ-distortion is created by en-
ergy release at 5×104 . z . 2×106 and a y-distortion at z . 5×104

(see Hu & Silk 1993a, for more details).
To estimate the values of the chemical potential, µ, and Comp-

ton y-parameter, it is sufficient to compute the effective energy re-
lease during the corresponding epochs. Defining the distortion visi-
bility function, Jbb(z) ≈ exp

(
−[z/zµ]5/2

)
, the weighted total energy

release in the µ- and y-era is

∆ργ

ργ

∣∣∣∣∣∣
µ

≈

∫ ∞

zµ,y

Jbb(z)
a4ργ

d(a4Qac)
dz

dz (1a)

∆ργ

ργ

∣∣∣∣∣∣
y

≈

∫ zµ,y

0

1
a4ργ

d(a4Qac)
dz

dz. (1b)

We introduced the energy release caused by the dissipation of pri-
mordial acoustic modes3, a−4ρ−1

γ d(a4Qac)/ dz; however, any pro-
cess leading to energy release can be added here. The factors of the
scale factor (normalized to unity today) a = (1 + z)−1 cancel the
main redshift dependence of the background radiation field, which
is irrelevant for the creation of SDs. The factorJbb(z) parametrizes
the thermalization efficiency accounting for the effects of photon
production/destruction by double Compton scattering (see Danese
& de Zotti 1982; Burigana et al. 1991; Hu & Silk 1993a; Chluba &
Sunyaev 2012; Khatri & Sunyaev 2012b, for more details).

With the simple expressions from Sunyaev & Zeldovich
(1970b), µ ≈ 1.4 ∆ργ/ργ |µ and y ≈ 1

4 ∆ργ/ργ |y, Eq. (1) can be
used to estimate the expected distortion at high frequencies. This
imposes upper limits to any energy-releasing process in the early
Universe. The relative ratio of the µ- and y-parameters in principle
can be further used to distinguish different sources of early energy
release via their redshift dependence, although this is possible only
for specific models of the thermal history. At low redshifts, after
the recombination epoch, many mechanisms [e.g., reionization (Hu
et al. 1994b); supernova heating (Oh et al. 2003); large-scale struc-
ture formation shocks (Sunyaev & Zeldovich 1972; Cen & Ostriker
1999; Miniati et al. 2000); unresolved Sunyaev-Zeldovich clusters
and the warm-hot intergalactic medium (Markevitch et al. 1991; da
Silva et al. 2000; Zhang et al. 2004)] give rise to large average y-
type distortions. As a result, early-universe processes which gener-
ate a µ-type SD are more readily constrained with measurements of
the CMB frequency spectrum, although useful bounds may still be
derived from measurements of or limits on y-type distortions. One
way to distinguish y-distortions from the pre-recombination epoch
from those created at later stages might be the cosmological re-
combination radiation (Chluba & Sunyaev 2006, 2009; Sunyaev &

3 Alternatively, one can write a−4ρ−1
γ d(a4Qac)/ dz ≈ d(Qac/ργ)/ dz.
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4 Chluba and Grin

Chluba 2009; Chluba 2010); also spectral-spatial information could
be used to disentangle different sources of y-distortions, but a more
detailed discussion is beyond the scope of this paper. To make fur-
ther progress, we must specify the effective heating rate, Qac, and
its dependence on the cosmological initial conditions.

2.2 The effective heating rate from acoustic damping

Small-scale perturbations of the photon temperature are completely
erased by shear viscosity and thermal conduction (Weinberg 2008).
These processes isotropize the photon-baryon fluid and lead to the
mixing of blackbodies with slightly different temperatures (Zel-
dovich et al. 1972; Chluba & Sunyaev 2004) causing an increase of
the local average photon temperature and a y-type SD. The spatially
averaged SD source function, 〈Sac〉, directly depends on the am-
plitude and shape of the primordial perturbation power spectrum,
Pi(k), as well as the detailed evolution of moments of the radiation
field for given initial conditions. It is determined by (Chluba et al.
2012b; Khatri et al. 2012b):

〈Sac〉 =

∫
k2 dk
2π2 Pi(k)

[
(3Θ1 − 3)2

3
+

9
2

Θ2
2

−
1
2

Θ2

(
ΘP

2 + ΘP
0

)
+

∑
`≥3

(2` + 1)Θ2
`

 , (2)

where Θ` and ΘP
` denote the photon temperature and polarization

transfer functions and 3 the one for the baryon velocity. This source
function can be computed accurately using the cosmological ther-
malization code CosmoTherm.

Given 〈Sac〉, the required effective energy release rate caused
by the damping of acoustic modes is determined by

1
a4ργ

d(a4Qac)
dz

=
4τ̇ 〈Sac〉

H(1 + z)
, (3)

where τ̇ = σTNec ≈ 4.4 × 10−21(1 + z)3 sec−1 denotes the rate of
Thomson scattering and H ≈ 2.1 × 10−20 (1 + z)2sec−1 is the Hub-
ble expansion rate4. The factor of 4 arises because a y-distortion
causes a change in the photon energy density by ∆ργ ' 4ργ. The
factor τ̇ arises because the source function, 〈Sac〉 > 0, is defined
with respect to the Thomson-scattering time-scale and the factor
1/[H(1 + z)] is needed for the conversion to dz.

Below we compute the effective heating rate for different ini-
tial perturbation modes, with particular focus on AD, BI, CI, NDI,
NVI modes (see Sect. 4 and Fig. 3), and simple mode mixtures.
The important differences are caused by the transfer functions and
their relation to the initial power spectra, which can be understood
using some simple analytic approximations deep into the radiation-
dominated era, when photons and electrons are tightly coupled.

2.3 Source term before recombination

In this work we are particularly interested in energy release well
before the recombination epoch (z & 104). At that time, the Uni-
verse is still radiation-dominated and with small baryon loading
R = 3ρb/4ργ ≈ 673 (1 + z)−1 . 7%. Also, photons and baryons
are tightly coupled so that (3Θ1 − 3) ' 0. Furthermore, higher or-
der temperature perturbations with ` > 2 are negligible (Thomson
scattering isotropizes the radiation field) and the dissipation physics

4 The approximations for τ̇ and H are only valid at high redshifts, during
the radiation-dominated era.

is mainly determined by the quadrupole anisotropy. In this limit5,
τ̇Θ2 '

8
15 kΘ1 and ΘP

2 + ΘP
0 '

3
2 Θ2 (Hu & Sugiyama 1996), so that

〈Sac〉 ≈

∫
k2 dk
2π2 Pi(k)

15
4

Θ2
2 ≈

1
τ̇2

∫
dk

2π2 k4Pi(k)
16
15

Θ2
1. (4)

This result shows that an approximation for the source term can
be obtained using analytic expressions for the CMB dipole trans-
fer function. Inside the horizon, Θ0 and Θ1 ' −∂ηΘ0/k have the
generic form (Hu & Sugiyama 1996)

Θ0 ≈
1

(1 + R)1/4 [A(k) cos(krs) + B(k) sin(krs)] e−k2/k2
D (5a)

Θ1 ≈
cs

(1 + R)1/4 [A(k) sin(krs) − B(k) cos(krs)] e−k2/k2
D (5b)

where (cs/c)2 = 1/[3(1 + R)] ≈ 1/3 is the photon-baryon sound
speed, η =

∫
c dt/a denotes conformal time and the damping scale,

kD, is determined by

∂tk−2
D =

c2
s

2τ̇

[
R2

1 + R
+

16
15

] R'0
↓
≈

8
45τ̇

. (6)

Furthermore, rs is the sound horizon, and the WKB amplitudes A(k)
and B(k) are determined by the initial condition (see Sect. 3).

For a given wavenumber k the source function oscillates
rapidly, but for the net effect of many modes on the CMB spectrum
we are only interested in time-averaged values. Squaring Eq. (5)
and averaging over many periods, interference terms vanish and by
replacing sin2(krs)→ 1/2 and cos2(krs)→ 1/2 we obtain

〈Sac〉 ≈
8

45τ̇2

∫
dk
2π2 k4Pi(k)

[
A2(k) + B2(k)

]
e−2k2/k2

D

≈
1
τ̇
∂tk−2

D

∫
dk
2π2 k4Pi(k) C2(k) e−2k2/k2

D

≈ −
1
2τ̇

∫
Pi(k) C2(k) ∂te−2k2/k2

D d ln k. (7)

Here, we defined C2(k) = A2(k) + B2(k) and Pi(k) = k3Pi(k)/(2π2).
This expression can be used to estimate the effective heating rate
caused by initial fluctuations, characterized by their power spectra
and perturbation type (Sec. 4). Furthermore, since a separation of
time and scale dependent terms is achieved, it is possible to de-
fine k-space window functions that can be pre-computed once the
cosmology is fixed (Sect. 5.1). Differences between various per-
turbation modes are then determined by the overall normalization,
C2(k), specifying a mode dependent heating efficiency.

3 DEPENDENCE ON THE POWER SPECTRUM AND
FLUID MODES AT SMALL SCALES

As equations (2), (3) and (7) show, the energy release depends di-
rectly on the primordial perturbation power spectrum, Pi(k), which
we characterize using the simple parametrization (Kosowsky &
Turner 1995),

Pi(k) = 2π2k−3Ai(k/k0)ni−1+ 1
2 ni,run ln(k/k0) (8)

with amplitude Ai, spectral index ni, running ni,run ≡ dni/ d ln k,
and pivot scale k0, which we set to k0 = 0.002 Mpc−1.

The definition of the power spectrum, Pi(k) (in particular,
whether or not Pi(k) describes density fluctuations or fluctuations
of a gauge-invariant variable like ζ or the entropy S iγ) may vary,

5 Note that in our definition ΘHu
`

= (2` + 1)Θ`.
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Isocurvature modes 5

depending on the perturbation type (see below). For adiabatic per-
turbations, SD constraints for a variety of theoretically instructive
values of ni and ni,run were recently discussed by Chluba et al.
(2012b,a), in the context of inflationary theory. Here, we focus on
the dependence of the heating rate on different perturbation types,
and provide simple expressions for the sub-horizon amplitudes,
C2(k) = A2(k) + B2(k), defined by Eq. (7), of small-scale modes.
These allow comparing the heating rates of different perturbation
types and also provide simple means for understanding the depen-
dence on the spectral index (Sect. 4).

To determine the coefficients, A(k) and B(k), of Eq. (5), we can
resort to analytic approximations (e.g., Hu & Sugiyama 1996), or
simply solve the evolution equations for the fluid and metric vari-
ables (see Ma & Bertschinger 1995, for definitions) numerically
for different initial conditions (see Appendix A for pure modes)
to determine the main dependences on scale and cosmology. The
evolution of the potentials and their decay during horizon crossing
affect the mode amplitudes in a non-trivial way, and so we use the
latter approach to obtain a more accurate but simple description.
Given approximations for A(k) and B(k), the heating rates for gen-
eral mode mixtures at high redshifts can be constructed. Here, we
restrict ourselves to simple mode mixtures, although more general
cases with off-diagonal correlations could be of theoretical interest
(Moodley et al. 2004).

3.1 Adiabatic mode (AD)

For adiabatic (isentropic) perturbations, we consider the power
spectrum of curvature perturbations, Pζ(k). The WKB mode am-
plitude at small scales is (Hu & Sugiyama 1996)

A '
(
1 +

4
15

Rν

)−1

(9)

and B ' 0. Here, Rν = ρν/(ργ + ρν) ≈ 0.41 denotes the fractional
contribution of massless neutrinos to the energy density of relativis-
tic species, for effective number of relativistic degrees of freedom,
Neff ' 3.046. The term 4Rν/15 accounts for the correction caused
by anisotropic stress in the neutrino fluid. It allows neutrinos to
carry away some part of the perturbation power, without sourcing
any CMB SD. Increasing the effective number of neutrinos there-
fore decreases the net heating rate and SD.

Although the initial temperature perturbation of the monopole
is about three times smaller than A, decay of the potentials after
horizon crossing boosts the mode amplitude to this larger value by
gravitational forcing. Numerically, we find a small admixture of
the sine term, i.e. B , 0, to the photon monopole transfer function,
Eq. (5a), caused by the driving term. As shown in Fig. 1, the overall
amplitude of the small-scale mode is well represented by |C| ' (1+

4Rν/15)−1, but

A ' 1 − 0.338 Rν, B ' −7.16 × 10−2 − 0.418 Rν (10)

provide better approximations for the sine and cosine terms. At
Rν = 0.41, this gives A ' 0.86, B ' −0.24 and C2 ' 0.81. The
dependence of A(k) and B(k) on Rν is illustrated in Fig. 2.

3.2 Baryon and CDM isocurvature mode (BI/CI)

For BI and CI perturbations, the situation is very different. In this
case, Pi(k) is defined as the power spectrum of density perturba-
tions, and the WKB mode amplitudes are roughly given by (Hu &

Sugiyama 1996)

B ≈ −

√
6

4
Ωi

Ωm

keq

k

(
1 −

4
15

Rν

)
, (11)

and A ' 0. Here, keq ' 9.46 × 10−2Ωmh2 √1 − Rν Mpc−1 ' 9.56 ×
10−3 Mpc−1 is the wavenumber of a mode crossing the horizon at
matter-radiation equality, and i = {b, c} for baryons and cold dark
matter, respectively. As this expression shows, for scales k � keq

the amplitude of photon temperature perturbations is suppressed.
This occurs because these modes enter the horizon during radiation
domination, when the gravitational sourcing of photon temperature
perturbations by baryon/CDM density fluctuations is suppressed. In
this case, the dissipative heating rate is larger at late times (during
matter domination), when smaller k modes enter the horizon.

From the WKB solution, we can also see that the heating rate
decreases as the number of effective neutrino species increases6.
Numerically, we find that the total mode amplitude is represented
slightly better by replacing (1 − 4Rν/15) → (1 + 2Rν/5)−1, but the
difference is only a few percent. For the WKB amplitudes, we find

A ' −
Ωi

Ωm

keq

k

[
4.79 × 10−2 + 0.195 Rν

]
(12a)

B ' −
Ωi

Ωm

keq

k
[0.613 − 0.235 Rν] , (12b)

which gives A ' −0.13(Ωi/Ωm)(keq/k), B ' −0.52(Ωi/Ωm)(keq/k)
and C2 ' 0.28(Ωi/Ωm)2(keq/k)2 for Rν = 0.41 (see Fig. 2).

Our calculations also show that, in contrast to the AD mode,
the potentials do not decay as fast after entering the horizon. Con-
sequently, the zero-point of the monopole transfer function is off-
set by ' ψ, in agreement with previous analysis (e.g., see Hu &
Sugiyama 1995; Kawasaki et al. 2012). For the heating rate this as-
pect is not important, since the local monopole does not source any
significant distortion (Chluba et al. 2012b).

3.3 Neutrino density isocurvature mode (NDI)

Unlike BI/CI modes, NDI modes begin with non-vanishing initial
(super-horizon) potential perturbations φ and ψ, which immediately
source photon perturbations close to horizon crossing. Addition-
ally, as a result of the isocurvature condition (δρ = 0), the initial
neutrino density perturbation δρν requires an equal but opposite
photon energy density perturbation δργ = −δρν (see Appendix A).
The non-zero photon energy density perturbation means that in
principle both the sine and cosine parts of the monopole transfer
function are excited. Thus, perturbations in the neutrino density im-
mediately start oscillating with appreciable amplitude after horizon
crossing, rendering the sine part sub-dominant. From our numeri-
cal solutions, we find that at small scales the total amplitude of the
neutrino density isocurvature mode is well represented by

|C| '
2Rν/Rγ

5(1 + 3Rν/5)
, (13)

with Rγ = 1 − Rν ' 0.59. Since small-scale NDI modes behave
similar to AD modes, the SD caused by NDI modes (up to an over-
all efficiency factor) is also expected to be comparable. The cosine
and sine amplitudes of the monopole transfer function are

A ' −(Rν/Rγ)
[
0.316 − 5.25 × 10−2 Rν

]
(14a)

B ' −(Rν/Rγ) [0.267 − 0.297 Rν] , (14b)

6 For small changes, ∆Rν/Rν � 1, the scaling is similar to that of the
adiabatic modes.
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Figure 1. Amplitude of cosine and sine parts in the WKB approximation of the sub-horizon monopole transfer functions, Eq. (5a). The CI mode amplitudes are
equal to the BI amplitudes times Ωcdm/Ωb. We numerically solved the fluid and potential equations for k = 10 Mpc−1 as representative example for small-scale
modes varying Rν.

which gives A ' −0.2, B ' −0.1 and C2 ' 0.052 (see Fig. 2).

3.4 Neutrino velocity isocurvature mode (NVI)

NVI modes are excited by initial perturbations in the neutrino ve-
locity, and in this case Pi(k) is a power spectrum of the fluid ex-
pansion of the photon-neutrino relative velocity, θν − θγ. Like NDI
modes, NVI perturbations immediately start oscillating upon hori-
zon entry, exciting sine and cosine terms comparable with relative
amplitudes, depending on Rν. In the limit of Rν � 1 mainly the
cosine part of Θ0 is excited, while for Rν ' 1 it is the sine part (see
Fig. 1). We find that the total amplitude is well approximated by

|C| '
3
√

3 Rν/Rγ

5(1 + 6Rν/5)
. (15)

The overall heating caused by the NVI mode (like the NDI mode)
is thus expected to generate SDs similar to those caused by the AD
and NDI mode. For the WKB amplitudes, we find

A ' −(Rν/Rγ) [0.935 − 1.06 Rν] (16a)

B ' (Rν/Rγ) [0.349 + 0.369 Rν] , (16b)

yielding A ' −0.35, B ' 0.35 and C2 ' 0.25. The heating effi-
ciency for NVI is thus ' 5 times larger than for the NDI.

3.5 Mixture of different perturbation modes

Assuming that initial perturbations are created by a single field, the
different pure modes can be excited in different proportions. With
the expressions for A(k) and B(k) given above it is thus straightfor-
ward to compute the heating efficiencies. The WKB amplitudes are
simply given by coherent superposition

A(k) '
∑

i

αi(k)Ai(k) (17a)

B(k) '
∑

i

βi(k)Bi(k), (17b)

where the sum runs over AD, BI, CI, NDI, and NVI mode ampli-
tudes. The mixing coefficient, αi and βi are determined by the ini-
tial conditions. This superposition respects the phase of the transfer
functions and the effective small-scale mode amplitude and heating
efficiency is directly determined by C2(k) ' A2(k) + B2(k). For the
special case of totally uncorrelated modes (created by statistically
independent processes), one finds

C2
uncorr '

∑
i

α2
i (k)A2

i (k) +
∑

i

β2
i (k)B2

i (k) ≡
∑

i

C2
i , (18)

where destructive and constructive interference terms average out.
One simple example for a mode mixture is the CIP, for which

(without the loss of generality) the relative ratio of BI and CI am-
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Figure 2. Effective mode amplitude, C2, for mixture of AD with either
NDI or NVI modes. We chose Rν = 0.41 for which we have AAD = 0.86,
BAD = −0.24, ANDI = −0.2, BNDI = −0.1, ANVI = −0.35, and BNVI = 0.35.

plitude is αCI = βCI = 1 and αBI = βBI = −Ωcdm/Ωb, which
gives A(k) ' B(k) ' 0, and thus very small net heating. We con-
firmed this statement numerically, finding that the CIP heating rate
is suppressed by at least two orders of magnitude relative to the CI
mode, which is itself expected to give a very small distortion (see
Sect. 5.2). We therefore omit CIP modes below.

As an additional simple example, we consider mixtures of AD
with either NDI or NVI modes. We can parametrize the relative
amplitudes as αAD = βAD = α = const and α j = β j = 1 − α, where
j ∈ {NDI,NVI} and α ∈ [0, 1]. For fully correlated modes, we find:

Acorr ' αAAD + (1 − α)A j (19a)

Bcorr ' αBAD + (1 − α)B j. (19b)

Similarly, for fully anticorrelated perturbations, we have

Aanti ' αAAD − (1 − α)A j (20a)

Banti ' αBAD − (1 − α)B j. (20b)

These expressions directly determine the effective mode amplitude,
C2(k), which we show in Fig. 2 for Rν = 0.41. For the correlated
AD and NDI modes, the net amplitude has a minimum at α ' 0.17
or an isocurvature-adiabatic ratio of (1 − α) /α ' 4.9, but due to the
phase difference of the AD and NDI transfer functions the ampli-
tude does not vanish completely. Comparing with the heating rate
of the uncorrelated mode, this is C2

corr ' (1/4)C2
uncorr. On the other

hand, the anticorrelated mode heating rate is about C2
anti ' 1.7C2

uncorr
at α ' 0.2, with constructive interference dominating. Similarly,
for the AD plus NVI mode, the net amplitude becomes small for
α ' 0.35 or (1 − α) /α ' 1.9. Relative to the uncorrelated mode
amplitude this is C2

corr ' 0.13C2
uncorr. For the AD with NVI anti-

correlated mode case, we again find constructive interference with
C2

anti ' 1.9C2
uncorr at α ' 0.35.

The examples above are just meant to illustrate the computa-
tion of the effective mode amplitudes, C2, at small scales for differ-
ent mode mixtures. In a similar way, one can consider AD plus CI
or BI modes or even modes with three perturbation types excited.
A detailed analysis is beyond the scope of this paper.

4 HEATING RATES FOR PURE MODES

We now compute the effective heating rates for different perturba-
tion modes using CosmoTherm, evaluating Eqs. (2) and (3), and
comparing with results obtained with the analytic approximations
[Eqs. (5), (7) and mode amplitudes of Sect. 3]. To initialize confor-
mal Newtonian (CN) gauge fluid and metric variables in CosmoTh-
erm for the different perturbation modes, we require super-horizon
power-series solutions for each mode, as a function of conformal
time η. Using a matrix normal-mode analysis followed by a gauge
transform, we obtain these power-series solutions7 in Appendix A.

In Fig. 3, we show our numerical results for pure adiabatic,
BI/CI and NDI/NVI modes. We assumed a scale-invariant pertur-
bation power spectrum with normalization Ai = 1 to allow a com-
parison of the different heating efficiencies. For the CI mode, we
also varied the spectral index, ni. A cosmology with Ωm = 0.26,
Ωb = 0.044, Ωk = 0, ΩΛ = 0.74, h = 0.71, Yp = 0.24, Neff = 3.046,
T0 = 2.726 K and improved recombination history (Chluba &
Thomas 2011; Ali-Haı̈moud & Hirata 2011) was used in all cases.

Since for scale-invariant curvature perturbations the effective
heating rate caused by adiabatic perturbations scales roughly as
d(Qac/ργ)/ dz ∝ (1 + z)−1 at early times (e.g., see Khatri et al.
2012a), we multiplied all rates by (1 + z). As Fig. 3 shows, for
scale-invariant primordial fluctuations not only for AD but also for
NDI/NVI modes, this means (1 + z) d(Qac/ργ)/ dz ' const before
recombination. The sub-horizon mode amplitudes for AD, NDI
and NVI modes only depend on Rν. As a result, C2 ' const [cf.
Eqns. (9), (13), and (15)]. Using Eqs. (3) and (7), the (1 + z)−1 red-
shift dependence of these heating rates can thus be easily derived.
On the other hand, BI and CI modes show a steeply increasing heat-
ing rate towards lower redshift. This is because for ni ' 1, the
amplitude of the photon temperature perturbations is suppressed
by ' keq/k [see Eq. (11)] at early times, and C2(k) scales like
' (keq/k)2. Consequently, for ni = 3 (i.e. with strongly increased
small-scale density perturbations) one again expects a nearly con-
stant heating rate (1 + z) d(Qac/ργ)/ dz ' const, as found in our
calculation (cf. the lower panel of Fig. 3).

The dependence of the pre-recombination heating rate on the
type of perturbation can be captured by substituting the fits of Sec. 3
into Eq. (7) and defining an effective spectral index n∗i , yielding

D2 '
1

(1 + 4Rν/15)2 ' 0.81 n∗i = ni (AD) (21a)

D2 '
3
8

(
Ωb keq

Ωm k0

)2

βν ' 0.19 n∗i = ni − 2 (BI) (21b)

D2 '
3
8

(
Ωc keq

Ωm k0

)2

βν ' 4.7 n∗i = ni − 2 (CI) (21c)

D2 '
4(Rν/Rγ)2

25(1 + 3Rν/5)2 ' 0.05 n∗i = ni (NDI) (21d)

D2 '
27(Rν/Rγ)2

25(1 + 6Rν/5)2 ' 0.23 n∗i = ni (NVI) (21e)

with βν = (1 − 4Rν/15)2 ' 0.79. At early times, we therefore have
the effective heating rates

1
a4ργ

d(a4Qac)
dz

≈ 2D2
∫
P∗i (k) ∂ze−2k2/k2

D d ln k (22)

7 To our knowledge, this is the first published summary of early-time CN
gauge super-horizon solutions for this system which includes all fluid vari-
ables, in addition to the metric perturbations.
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Figure 3. Effective heating rate, d(Qac/ργ)/ dz, for different pure perturbation modes. We multiplied by (1+z) and set the overall amplitude of the perturbation
power spectrum to unity, i.e. Ai = 1. We also used ni,run = 0 in all cases. For the upper panel, we used spectral index ni = 1 while in the lower we
varied it for the CDM isocurvature modes as labeled. The annotated factors are roughly fcb ' (Ωc/Ωb)2, fc ' (3/8)(Ωc/Ωm)2(keq/k0)2[1 − (4Rν/15)2]2,
fν ' 25(1 + 3Rν/5)2/[4(Rν/Rγ)2(1 + 4Rν/15)2] and fd ' 27(1 + 3Rν/5)2/[4(1 + 6Rν/5)2]. These illustrate the relative heating efficiencies for different
perturbation modes with the same overall amplitude. The results were obtained by direct integration of the perturbation equations using CosmoTherm.

whereP∗i (k) ≡ Ai (k/k0)n∗i −1+ 1
2 ni,run ln(k/k0). We confirmed numerically

that at redshifts z & 104 these approximations work pretty well,
giving ' 10% − 15% precision for the effective heating rate. Here,
ε = 2D2 ' const defines a mode dependent heating efficiency.
This implies that the early SDs produced by the different modes
considered here are all degenerate with an overall normalization
when comparing AD, NDI and NVI for n∗i = ni on one hand, with
BI and CI modes for n∗i = ni − 2 on the other. The differences
derive from how much of the initial perturbations in the different
fluid variables at small scales actually appear as perturbations in
the photon field.

Comparing the heating efficiencies, Eq. (21), shows that AD
modes dissipate their energy roughly 16 times more efficiently than

NDI fluctuations. Similarly, NVI modes have ' 4.7 times higher
heating efficiency than NDI modes. Furthermore, BI modes source
early SDs at about (Ωc/Ωb)2 ' 24 lower efficiency than CI modes,
while in comparisons to AD modes CI fluctuations for n∗i = ni − 2
cause ' 5.6 times larger heating. All these statements are confirmed
by our numerical results (cf. Fig. 3).

Closer to the recombination epoch baryon loading no longer
is negligible and we see a suppression of the heating rate relative to
the high-redshift scaling (cf. Fig. 3). After the recombination epoch
(z . 1000), the effective heating rates drop significantly as photons
begin free streaming. At this late stage, the second-order Doppler
effect starts contributing significantly (Chluba et al. 2012b). For the
baryon and CDM isocurvature modes, the post-recombination heat-
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ing rate is relatively larger than for the adiabatic case, emphasizing
the importance of late bulk motions for these perturbation modes.
The neutrino isocurvature modes also result in relatively less heat-
ing at the late stages. This implies that the relative ratio of µ- and
y- parameters is slightly mode dependent; however, from the obser-
vational point of view, the differences are too small and degenerate
with the shape of the power spectrum itself to allow distinguishing
different scenarios in a model-independent way.

4.1 Approximations for power-law perturbation spectra

One can gain additional insight by considering primordial fluctua-
tions with power-law perturbation power spectra (nrun,i = 0). From
Eq. (22), it is straightforward to show that the pre-recombination
heating rate is roughly given by (cf. Chluba et al. 2012b, for adia-
batic modes):

1
a4ργ

d(a4Qac)
dz

≈
3Ai D2

1 + z
Γ

(
1 + n∗i

2

) [
(1 + z)3

2k2
0AD

] n∗i −1
2

. (23)

where D2 and n∗i > −1 are mode dependent [see Eq. (21)] and

AD ≈
(16/15) c

18H0Ω
1/2
r Ne,0σT

≈ 5.92 × 1010 Mpc2.

Here, H0 is the Hubble parameter, Ωr is the density of relativistic
species and Ne = Ne,0(1 + z)3 is the number density of electrons
(bound and free). Equation (23) explicitly shows that for AD, BI,
CI, NDI, and NVI modes and n∗i ≡ 1 the heating rate indeed scales
like d(Qac/ργ)/ dz ∝ (1 + z)−1. In terms of the power spectrum,
Pi(k), this mean scale-invariant perturbations for the AD, NDI, and
NVI modes, while for BI and CI mode a very blue primordial power
spectrum with ni = 3 is necessary. Also, for BI and CI fluctuations
with spectral index ni ' 1 (n∗i ' −1), from Eq. (23) we find a
redshift scaling d(Qac/ργ)/ dz ∝ (1 + z)−4, while for ni = 2 (n∗i = 0)
one has d(Qac/ργ)/ dz ∝ (1 + z)−5/2. Our numerical calculations
confirm this dependence (cf. Fig. 3); these scalings are, however,
only valid at early time, before the recombination era (z & 104).
Especially, when ni ' 1, large-scale modes contribute strongly to
the total heating integral. The transfer functions of these modes are
not well represented by the simple approximations given above, so
that the integral formally diverges, unless a cutoff is introduced at
small k. In this case, one has to resort to full numerical integration
of the perturbation equations. Still for ni > 1, Eq. (23) provides a
fairly accurate estimate for the effective heating rate.

Equation (23) also shows that the main dependence of the
heating rate (for ni,run = 0) for the adiabatic and neutrino isocur-
vature modes is due to the overall amplitude of the perturbations
power spectrum, Ai, the spectral index, ni, and the value of Rν,
which changes the heating efficiency, ε ' 2D2. The dependence on
the dissipation scale (related to A−1/2

D ' 4.1 × 10−6 Mpc−1) is much
weaker unless the small-scale spectral index, ni, differs strongly
from unity. For the BI and CI modes Ωb and Ωc as well as keq be-
come important. Cosmology dependence introduced by the dissi-
pation scale is again less important for ni ' 3.

5 SPECTRAL DISTORTION CONSTRAINTS ON
EARLY-UNIVERSE COSMOLOGY

At large scales, k . 1 Mpc−1, constraints derived from CMB
anisotropies and large-scale structure measurements are pretty tight
already, suggesting nearly scale-invariant adiabatic perturbation

with amplitude of the primordial curvature power spectrum Aζ '

2.4× 10−9 (Dunkley et al. 2011; Keisler et al. 2011; Planck Collab-
oration et al. 2013a). On the other hand, at small scales constraints
are much weaker (see Bringmann et al. 2012, for some discussion)
and SDs provide a complementary (if not the only), strong probe
for the primordial power spectrum.

The discussion of Sect. 4 already indicates that the heating
caused by very different perturbations modes and their mixtures
can lead to similar distortions. For example, given Pi(k) the time
dependence of the heating rates for AD, NDI and NVI modes im-
plies that from the practical point of view the SD signal should be
indistinguishable, up to an overall efficiency factor that is degener-
ate with the power spectrum amplitude. Similarly, the SD arising
from dissipation of BI and CI modes should be practically indistin-
guishable (small differences might arise in the post-recombination
epoch, where non-linear effects will become important). Compar-
ing the SD from AD, NDI and NVI modes with those from BI and
CI modes for given primordial power spectrum the former produce
a much larger µ distortion due to the ' keq/k suppression of the
BI/CI mode amplitude. This is, however, degenerate with the over-
all spectral index of the perturbations. Still, on a model-by-model
basis interesting constraints on the small-scale power spectrum can
be derived for each case, as we illustrate here.

5.1 Estimates for the µ- and y-parameters and the definition
of k-space window functions for pure modes

We already showed that the pre-recombination heating rates from
different perturbations can all be represented by one single ex-
pression, Eq. (22), with heating efficiency, ε ' 2D2, according to
Eq. (21). For power-law power spectrum one obtains the compact
expression, Eq. (23). Here, we generalize to arbitrary shapes of the
primordial power spectrum and estimate the SD by computing the
redshift integrals, Eq. (1). For the y-parameter the integral can be
performed analytically, while for the µ-parameter the spectral dis-
tortion visibility function, Jbb(z), requires numerical integration.
This reduces the problem to a 1-dimensional integral over k-space
window functions for the effective µ- and y-parameters:

µac ≈

∫ ∞

kmin

k2 dk
2π2 Pi(k) Wµ

i (k) (24a)

yac ≈

∫ ∞

kmin

k2 dk
2π2 Pi(k) Wy

i (k), (24b)

where the k-space window functions are

Wµ
i (k) ≈ 2.8 C2(k)

∫ ∞

zµ,y
Jbb(z) ∂ze−2k2/k2

D dz (25a)

≈ 2.8 C2(k)

exp

−
[

k̂
1360

]2

1 +
[

k̂
260

]0.3
+ k̂

340

 − exp

− [
k̂

32

]2


Wy
i (k) ≈

C2(k)
2

e−2k2/k2
D(zµ,y) ≈

C2(k)
2

exp

− [
k̂

32

]2 , (25b)

with k̂ = k/[1 Mpc−1] and cutoff scale, kmin ' 1 Mpc−1, both be-
cause modes at k < 1 Mpc−1 are already tightly constrained by
CMB measurements at large scales, and because the analytic ap-
proximations for the photon transfer functions introduced above
become inaccurate. The approximations for W(k) are for the con-
cordance cosmology. These expressions are similar to those given
by Chluba et al. (2012a), but for Wµ

i (k) we matched the numerical
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10 Chluba and Grin

results well not only in the small and large k limits but also at inter-
mediate scales. In Eq. (25), the k-dependent factor C2(k) depends
on the perturbation type. For AD and NDI/NVI modes one has
C2(k) = D2, while for BI/CI modes C2(k) = D2(k) (k0/k)2 with the
values of D2 given by Eq. (21). The values of µ- and y-parameters
for different modes can thus be estimated knowing D2 and rescal-
ing the primordial power spectrum by appropriate powers of k0/k.
Mode mixtures can be treated in a similar way (see Sect. 5.3).

5.2 Constraints on different pure perturbation modes

In this section, we highlight constraints derived from SD measure-
ments of COBE/FIRAS and future PIXIE-type experiments, focus-
ing the discussion on pure perturbation modes. The derived limits
should be interpreted as conservative upper bounds, since not only
can several types of perturbation modes be present at small scales,
but also other sources of early energy release (e.g., decaying or
annihilating relics, superconducting cosmic strings) could increase
the CMB distortion. This would generally tighten the constraint on
each source of energy injection.

5.2.1 Pure AD, NDI and NVI modes

For AD modes, a detailed discussion of SD power spectrum con-
straints derived from COBE/FIRAS and a PIXIE-type experiment
can be found in Chluba et al. (2012a). Since the pre-recombination
heating rate for NDI and NVI modes only differs by an overall
efficiency factor from the one of AD modes, their analysis di-
rectly carries over. For the NDI mode, the relative heating effi-
ciency is fν ' 25(1 + 3Rν/5)2/[4(Rν/Rγ)2(1 + 4Rν/15)2] ' 16,
which can be captured by replacing Aζ → Aζ/ fν ' 16 Aζ in the
work of Chluba et al. (2012a). Similarly, for the NVI mode, we
have f ' 27(Rν/Rγ)2(1 + 4Rν/15)2/[25(1 + 6Rν/5)2] ' 0.29 and
Aζ → 3.5 Aζ . Both for NDI and NVI modes, the constraints are
thus weaker than for the AD mode.

To give some examples, for AD modes PIXIE is able to rule
out a scale-invariant curvature power spectrum with Aζ & 4.3 ×
10−9 at wavenumber k > 50 Mpc−1 with 5σ confidence if no µ-type
distortion is detected (Chluba et al. 2012b,a). This therefore means
that PIXIE would also be able to rule out scale-invariant neutrino
density perturbations with overall amplitude Ai & 7.0 × 10−8 at
wavenumber k > 50 Mpc−1 with 5σ confidence. Even the µ-limit
from COBE/FIRAS already implies Ai . 1.3×10−4 at 2σ level. For
the NVI mode, these amplitude constraints are ' 4.7 times tighter.

5.2.2 Pure BI and CI modes

Also for BI and CI modes, the analysis of Chluba et al. (2012a)
can be directly applied; however, not only are overall factors of
fb ' 0.23 and fc ' 5.6 needed, respectively, for the conversion
of different constraints on adiabatic modes, but also one must use
the effective spectral index n∗i = ni − 2. For instance, for n∗i = 1
PIXIE would be sensitive to Ab & 1.9 × 10−8 for the baryon, and
Ac & 7.3 × 10−10 for the CI modes at wavenumber k > 50 Mpc−1

with 5σ confidence. The limits from COBE/FIRAS are about 1800
times weaker at 2σ level. This value of n∗i means a very blue small-
scale perturbation spectrum with spectral index ni = 3. This blue
spectrum can be realized in certain axion isocurvature models, for
example, in which the Peccei-Quinn symmetry breaking scale is
itself dynamical during inflation (Kasuya & Kawasaki 2009), as

noted in Dent et al. (2012). For ni = 1 the constraints are much
weaker, as shown below.

5.2.3 Simple expressions for power-law perturbation spectra

For pure power-law primordial spectra, Pi = Ai (k/k0)ni−1, we can
simplify the computation of limits from µ and y significantly us-
ing the k-space window functions, Eq. (24). Defining the heating
integrals

Iµ(n) =

∫ ∞

kmin

(k/k0)n−1 Ŵµ
i (k) d ln k (26a)

Iy(n) =

∫ ∞

kmin

(k/k0)n−1 Ŵy
i (k) d ln k, (26b)

with Ŵµ/y
i (k) = Wµ/y

i (k)/D2 and kmin = 1 Mpc−1, limits on the over-
all amplitude of the power spectrum at small scales (k & 1 Mpc−1)
derived from µ and y distortions can be expressed as

Ai .
µlim

D2Iµ(n∗i )
, Ai .

ylim

D2Iy(n∗i )
. (27)

The y-limit probes power at scales 1 Mpc−1 . k . 50 Mpc−1, while
the µ-limit is most sensitive to scales 50 Mpc−1 . k . 104 Mpc−1.
Late energy release (z . 104), during and past the recombination
epoch, is not included here. The corresponding y-distortion can,
however, be computed using CosmoTherm in that case.

In Fig. 4, we illustrate the dependence of Iµ(n∗i ) and Iy(n∗i ) on
the spectral index. These functions have a very steep dependence
on n∗i , which in the range −2 < n∗i < 5 can be approximated by

ln Iµ(n) ≈ 2.73
[
1 + 4.42ξ + 0.444ξ2 − 9.21 × 10−3ξ3

−0.0168ξ4 − 5.38 × 10−5ξ5 + 4.92 × 10−4ξ6
]

ln Iy(n) ≈ 0.504
[
1 + 15.66ξ + 0.845ξ2 + 0.0253ξ3 − 0.0189ξ4

]
,

with ξ = n − 1. These expressions provide a 5% − 10% fit to the
numerical results for Eq. (26). For n = 1, we find Iµ(1) ≈ 14.4 and
Iy(1) ≈ 1.59 numerically.

We can directly check the precision of these approximations
for the heating integrals using CosmoTherm. The results are also
shown in Fig. 4. For the µ-integral, the approximations work very
well. The approximations for the y-integral represent the full nu-
merical result well if dissipation of modes at k < 1 Mpc−1 is ne-
glected (consistent with the approximations made above). At larger
scales, the approximations for the transfer functions are not valid,
since the tight-coupling limit breaks down. Also, baryon loading
and the second-order Doppler effect become important so that we
can only compute the effect accurately using CosmoTherm. Our
result shows that a significant amount of energy is dissipated at
late times if ni . 1. These results are especially important for
the baryon and CDM isocurvature modes, which for scale-invariant
primordial density power spectrum would have n∗i = −1. This ren-
ders a constraint derived from the y-parameter about ' 1500 times
tighter than the limit obtained by only accounting for modes with
k > 1 Mpc−1 and assuming that the power-law spectrum goes all
the way from CMB scales to small-scales. These limits are still not
competitive with those derived at CMB scales. For instance, from
COBE/FIRAS we have |y| < 1.5 × 10−5. For n∗i = −1 this means
Ab . 5 × 10−2 for the baryon and Ac . 2 × 10−3 at 2σ confidence.
With PIXIE this could be improved by a factor of ' 1800, but this
is still far away from current constraints.

For power spectra with n∗i > 1, constraints from µ are gener-
ally expected to be tighter than those obtained with y. Also, since
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Figure 4. Dependence of the heating integrals Iµ(n) and Iy(n) on the spectral index, n. We assumed pivot scale, k0 = 0.002 Mpc−1, to make the spectral
distortion constraint directly comparable with the large-scale CMB constraint; values for k∗0 , k0 can be obtained by rescaling with (k∗0/k0)1−n. For comparison,
we also give the results for the heating integrals obtained with CosmoTherm for the adiabatic modes. We confirmed that the integrals for all the different modes
considered here agree with each other to high precision.

there are many sources of large y-distortions at low redshift, a clean
detection of the primordial signal will be very challenging. In all
these cases one should consider the possibilities to include spatial-
spectral and polarization information to separate the different com-
ponents. For example, the patchiness of the y-distortion (see Planck
Collaboration et al. 2013b, for the first all sky y-map) from reion-
ization depends on the characteristic bubble size (Zhang et al.
2004), which might allow primordial and reionization-induced y-
distortions to be distinguished. A detailed discussion of this possi-
bility is beyond the scope of this paper.

Finally, in Fig. 5 we illustrate 1σ constraints derived from
COBE/FIRAS and PIXIE in the Ai−ni plane. These were computed
using Eqs. (27) and (A1a). Putting experimental obstacles aside,
for AD, NDI and NVI at ni > 0.9 the limits from µ-distortions are
tighter than those derived from a measurement of the y-parameter.
For BI and CI modes, this transition occurs at ni ' 2.9. Further-
more, due to the steep dependence on ni, constraints on the small-
scale amplitude of AD, NDI and NVI modes become very tight at
ni > 1, showing the impressive potential of testing early-universe
models that produce large excess small-scale power.

5.3 Constraints on mixed modes

For the discussion in the previous section, we assumed that only
one type of perturbation was present. Constraints from CMB dis-
tortions on the amplitude of different modes of course can only
limit the total energy release by the mode mixture. The heating ef-
ficiencies can be obtained as explained in Sect. 3.5. If correlations
between modes are neglected, the final heating rates can be de-
scribed using Eq. (22) and adding up the contributions of different
modes.

Mode mixtures can in principle give rise to interesting behav-
ior. For example, a CI/BI isocurvature mode with a very blue spec-

tral index could be mixed with a quasi-scale invariant AD mode.
This means that at small scales the isocurvature mode could dom-
inate, while at large scales, which are well constrained by CMB
experiments, the AD mode is most important.

A similar story could be told for the NDI or NVI modes mixed
with AD modes, and the constraints for these cases can be directly
deduced from Fig. 5. If on the other hand the isocurvature mode
is completely sub-dominant, the SD limit will be very weak and
mainly constrain the AD mode amplitude at small scales. For mix-
tures with comparable contributions of AD and another mode, in-
terference terms (destructive and constructive) make things more
interesting. For example, in the curvaton scenario, isocurvature
modes are all correlated with the adiabatic mode, and the precise
correlation coefficients are determined by the curvaton energy den-
sity fraction rD at curvaton decay, the lepton asymmetry parameter
(which sets the number of effective relativistic degrees of freedom
Neff), and whether dark matter density, lepton number and baryon
number are produced before, by, or after curvaton decay.

To determine whether or not curvaton-generated SDs could
ever be detected, we sweep through the model space of 27 (33)
permutations, allowing the neutrino asymmetry parameter to span
the entire (rather permissive) allowed experimental range. We gen-
eralize Eqs. (19) to allow all possible correlated mixtures of adi-
abatic and isocurvature modes, and use the WKB coefficients of
Sec. 3. We self-consistently compute these in the presence of a lep-
ton asymmetry, applying expressions in Lyth & Wands (2002) and
Lyth et al. (2003). To properly compute the curvaton-generated y
distortion, we use the numerically determined Iy(n∗i ).

The curvaton model would also seed local-type non-
Gaussianity with amplitude f local

NL . We thus restrict consideration to
the range rD ≥ 0.15, the range still allowed by Planck constraints
to f local

NL (Planck Collaboration et al. 2013e). Additional limits to rD

could be obtained more directly from Planck constraints to isocur-
vature modes, but these constraints have not been established in
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Figure 5. Limits on the amplitude of the power spectrum at k > 1 Mpc−1 for different pure perturbations modes and spectral indices. The heavy lines show
constraints for a PIXIE-type experiment with 1σ detection limits y = 2×10−9 and µ = 10−8. Light lines are present limits from COBE/FIRAS. Mode amplitudes
above the corresponding lines are/will be ruled out by CMB spectral distortion measurements. Assuming one overall power-law perturbation spectrum at small
scales, the limits derived from µ and y are not independent, and their ratio can in principle be used to distinguish AD, NDI and NVI on the one side from
BI and CI, on the other (see the text for discussion). Interpreting the limits independently, y-distortions constrain power at 1 Mpc−1 . k . 50 Mpc−1, while
the limit from µ probes power at 50 Mpc−1 . k . 11000 Mpc−1. Note also that we assumed pivot scale, k0 = 0.002 Mpc−1, to make the spectral distortion
constraint directly comparable with the large-scale CMB constraint; values for k∗0 , k0 can be obtained by rescaling with (k∗0/k0)1−n.

the presence of all four isocurvature modes with general correla-
tions (Planck Collaboration et al. 2013c). Even though the curva-
ton model can excite the NDI mode, the overall change in µ and y
over the null (adiabatic) hypothesis is of the order of 10%, and thus
undetectable at the sensitivity level possible with PIXIE. Future ad-
vances may change this dim state of affairs. An in-depth discussion
of other correlated models is beyond the scope of this paper.

6 CONCLUSIONS

In the future, spectral distortions of the CMB might provide a pow-
erful new probe of early-universe physics. Here, we studied dis-
tortions produced by the dissipation of small-scale perturbations,
exploring the dependence of the signal on the different types of
cosmological initial conditions. As one main result, we obtained a
unified formalism for the specific heating rates of the modes, allow-
ing us to describe the effect of pure modes but also mode mixtures
in a quasi-analytic manner (see Sects. 3 and 4). Our expressions can
be used for precise computations of the SD signal using CosmoTh-
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erm to make more detailed forecasts, although here we restrict our
attention to estimates of the associated µ- and y-parameters, pro-
viding a simple way to constrain different early-universe models.

We find that for scale-invariant initial conditions of compa-
rable perturbation amplitude, the heating rates from pure BI, CI
and CIP fluctuations are extremely sub-dominant to those from AD
modes. In agreement with Dent et al. (2012), we show that the SD
signal of CI and BI modes falls below PIXIE’s sensitivity, unless
primordial perturbations have a very blue spectral index ni & 3.
The BI SD signature is suppressed by ' (Ωb/Ωc)2 compared to the
CI signal, a factor that is degenerate with the overall amplitude of
the power spectrum. The CIP SD signal is strongly suppressed in
addition by cancellation, and thus is unlikely to ever be detected.
This all can be understood from the fact that neither baryons nor
CDM can dramatically drive the evolution of the other fluid com-
ponents until after matter-radiation equality.

The NDI and NVI modes, on the other hand, yield heating
rates comparable to the AD mode at all times, as neutrinos are rel-
ativistic and similarly important to photons in driving the dynam-
ics of the full coupled fluid system during radiation domination.
We determined mode dependent heating efficiencies [see Eq. (21)]
which weakly depend on the effective number of neutrino species8,
because additional non-interacting relativistic degrees of freedom
carry away part of the initial perturbation power, never sourcing
any perturbations in the photon fluid. Thus, SDs are in principle
sensitive to the presence of dark radiation or sterile neutrinos; how-
ever, this only causes an overall normalization factor that is degen-
erate with the power spectrum amplitude. SDs could in principle
be used to probe parameters of the curvaton scenario for primor-
dial fluctuations, although this would require rather futuristic 10%
level precision in measurements of µ and y, which themselves are
expected at the level ∆I/I ' 10−9 − 10−8 and thus are challenging
to detect.

While rather stringent limits can be derived for specific mod-
els of the small-scale power spectrum (Fig. 5), SDs cannot tell the
signature of different perturbation modes apart. For example, AD,
NDI and NVI modes should all cause a very similar SD signal up
to an overall efficiency factor, assuming that the power spectrum
has the same shape. This is because the heating rate at different
redshifts scales in practically the same way (Fig. 3). Still, limits de-
rived from SDs can be used as powerful tool to rule out different
early-universe models, and more detailed forecasts will be neces-
sary to demonstrate the full potential of this new window.
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8 Changing effective neutrino number from Neff = 3 to Neff = 4 changes
the heating efficiency of the adiabatic mode by ' −3%.

APPENDIX A: INITIAL CONDITIONS IN THE
CONFORMAL NEWTONIAN GAUGE

CosmoTherm uses the conformal Newtonian (CN) gauge to follow the evo-
lution of metric and fluid perturbations. Using the conventions of Ma &
Bertschinger (1995), Bucher et al. (2000), and Shaw & Lewis (2010), we
can determine the required initial conditions for the different perturbation
modes in this gauge, working deep in the radiation dominated epoch, and
in the super-horizon regime. For convenience, we define Rc = Ωc/Ωm,
Rb = Ωb/Ωm, Rγ = 1−Rν, aν = 1+4Rν/15, bν = 1+2Rν/5, cν = 1−4Rν/15,
ω = ΩmH0/[4

√
Ωr c], and τ = ωη. According to these conventions, the

scale factor evolves as ω a(τ) = τ + τ2 at times when only matter and ra-
diation are energetically relevant. In these units, the scale factor at matter-
radiation equality is ω aeq = 1/4. The overall normalization of the scale
factor is irrelevant to the final power-series solution for the fluid and metric
variables in terms of τ, and this convenient choice simplifies the equations.

To obtain a correct power-series for the super-horizon initial condi-
tions, we conduct a normal mode analysis. We begin with synchronous-
gauge fluid and metric variables (Ma & Bertschinger 1995; Bucher et al.
2000; Shaw & Lewis 2010) and equations of motion. We then define x = kη
and new fluid variables, dividing out the relative factors of x. That is, we set

δ̃i = δi/x, (A1a)

ti = θi/x2, (A1b)

σ̃ν = σν/x, (A1c)

F̃(3)
ν = F(3)

ν /x2, (A1d)

where δi, θi, σν and F(3)
ν are the usual fluid variables (e.g., see Ma &

Bertschinger 1995). We then form a vector of the synchronous-gauge fluid
and metric variables, UT

k =
(
δ̃γ, δ̃ν, δ̃c, δ̃b, t̃γb, t̃ν, t̃c, σ̃ν, F̃3

ν ,Θ, ηm
)
, where

for this analysis we work at times early enough that the tightly coupled
photon-baryon fluid has a single velocity. In terms of the synchronous-
gauge metric variable hm, we have Θ = h′m, where ′ denotes a derivative
with respect to x. The full system of ODEs may then be written

dUk
d ln x

=
(
A0 + A1 x + ... + An xn

)
Uk , (A2)

where Ai are matrices containing coefficients of terms of different order
in x; the matrices are obtained by Taylor-expanding the conformal Hubble
parameter H = ȧ/a = ω (2τ + 1) / [τ (τ + 1)], all homogeneous densities
(baryons, CDM, neutrinos and photons), and pressures in powers of τ � 1.
The space of solutions is spanned (to lowest order) by the eigenvectors Uλ

k
(with eigenvalue λ) of A0:

Uk(τ) =
∑
λ

cλxλU(λ)
k . (A3)

Here, cλ are coefficients setting the contribution of each normal mode to the
solution, and can be chosen so that fluid variables match initial conditions.
The physical growing normal modes are 9

• Adiabatic mode (AD): λ = 1,

U(1)
k =

(
−

1
3
,−

1
3
,−

1
4
,−

1
4
,−

1
36
,−

(23 + 4Rν)
36(15 + 4Rν)

,

0,
2

3(15 + 4Rν)
,

4
21(15 + 4Rν)

, 1, 0
)T

, (A4a)

• Baryon isocurvature (BI) mode: λ = −1,

U(−1), BI
k = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)T , (A4b)

• CDM isocurvature (CI) mode: λ = −1,

U(−1), CI
k = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T , (A4c)

• Neutrino density isocurvature (NDI) modes: λ = −1,

U(−1), NDI
k =

(
−Rν/Rγ, 1, 0, 0,−Rν/(4Rγ), 1/4, 0, 0, 0, 0

)T
, (A4d)

9 Modes with λ < 0 may still be ‘growing’ modes, if the physical variables
δ, θ, σ, ... ∝ xγ for γ > 0.
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• Neutrino velocity isocurvature (NVI) mode, λ = −2,

U(−2)
k =

(
0, 0, 0, 0,−Rν/Rγ, 1, 0, 0, 0, 0, 0

)T
. (A4e)

Around each normal mode, we can extend to a solution Uλ
k (τ) that

includes higher order corrections:

U
(λ)
k (τ) = U(λ)

k xλ + U(λ)
k,(1) xλ+1 + ... + U(λ)

k,(i) xλ+i + ..., (A5)

where the label U(λ)
k,(i) denotes the ith-order correction. We derive the cor-

rections to the lowest-order solution by applying Eq. (A2) to the ansatz,
Eq (A5), obtaining (Doran et al. 2003):

[
(λ + 1)I − A0

]
U(λ)

k,(1) =A1U(λ)
k , (A6a)[

(λ + 2)I − A0

]
U(λ)

k,(2) =A1U(λ)
κ,(1) + A2U(λ)

k , (A6b)[
(λ + 3)I − A0

]
U(λ)

k,(3) =A1U(λ)
k,(2) + A2U(λ)

k,(1) + A3U(λ)
k,(1), (A6c)[

(λ + 4)I − A0

]
U(λ)

k,(4) =A1U(λ)
k,(3) + A2U(λ)

k,(2)

+ A3U(λ)
k,(1) + A4U(λ)

k . (A6d)

Here, I is the identity matrix in the space of all fluid+metric variables. The
solutions to this linear system can yield higher order corrections to the time-
evolution of the fluid variables for each normal mode. For density isocur-
vature modes, the linear system Eq. (A6b) becomes under-constrained. By
directly applying

k2ηm −
H

2
ḣm = −4πGa2δρ, (A7)

the Einstein constraint equation, however, we may close the system to ob-
tain U(−1)

k,(2) and continue to higher orders using Eqs. (A6c)-(A6d). We thus
reproduce the power series for the adiabatic and isocurvature modes of
Bucher et al. (2000) and Shaw & Lewis (2010).

As a final step, we must perform a gauge transformation to CN gauge,
in order to have initial conditions for CosmoTherm. The gauge transform is
given by

δcon
i = δs

i + α
ρ̇i

ρi
, (A8a)

θcon
i = θs

i + α k2, (A8b)

δPcon
i = δPs

i + α Ṗ, (A8c)

σcon
i = σs

i , (A8d)

α(k, τ) =
ḣm + 6η̇m

2k2 , (A8e)

ψ =
1

2k2

{
ḧm + 6η̈m + 2k2H α

}
, (A8f)

φ =ηm −H α, (A8g)

where superscripts ‘s’ denote synchronous gauge variables, ‘con’ denote
CN-gauge variables, δPi is the pressure perturbation of the ith species andσi
the anisotropic stress in the ith species. The homogeneous density/pressure
of the ith species are marked ρi and Pi, while dots denote derivatives with
respect to conformal time. The results of the gauge transformation are listed
below.

CosmoTherm evolves temperature variables for the photons and neu-
trinos, Θ`, so that for example δγ = 4Θγ,0, θγ = 3kΘ1 and σγ = 2Θγ,2.
The stiff ODE solver of CosmoTherm can readily compute their evolution
correctly, even if the only the leading order terms for the initial conditions
are included. That is, starting the calculation at very early times, well within
the super-horizon regime, terms of order (kη)2 in the initial conditions can
in principle be neglected without significantly affecting the solutions.

A1 Adiabatic mode (AD)

The initial conditions for the well-known adiabatic mode are

ψ =
10

(15 + 4Rν)
=

2
3aν

(A9a)

φ =
(10 + 4Rν)
(15 + 4Rν)

= bν ψ (A9b)

δγ = δν = −
20

(15 + 4Rν)
= −2ψ (A9c)

δc = δb =
3
4
δγ = 3Θγ,0 (A9d)

θγ = θν = θb = θc =
1
2
ψ k2η (A9e)

σν =
2 (kη)2

3 (15 + 4Rν)
=

1
15

ψ (kη)2 =
2
15

θν η. (A9f)

It directly follows that the total initial entropy perturbation vanishes:

S (0, k) = Rcδc + Rbδb − (3/4)(Rγδγ + Rνδν)

= δc + Rb(δb − δc) − (3/4)[δγ + Rν(δν − δγ)] ' 0 (A10)

Thus this is an adiabatic (isentropic) initial condition, and initially only
curvature perturbations are present. A curvature perturbations of amplitude
ζ(0, k) causes a potential perturbation ψ = 2ζ(0, k)/(3aν). Therefore, adia-
batic modes enter the horizon with WKB amplitude A ' −(3/2)ψ(0, k) (Hu
& Sugiyama 1996).

A2 Baryon and CDM isocurvature modes (BI/CI)

For baryon isocurvature modes we have

ψ = −
Rbτ

2
(15 − 4Rν)
(15 + 2Rν)

(A11a)

φ = −
Rbτ

2
(15 + 4Rν)
(15 + 2Rν)

=
aν
cν
ψ (A11b)

δγ = δν = −2Rbτ
(15 + 4Rν)
(15 + 2Rν)

= 4φ (A11c)

δc = δb − 1 = −
3
2

Rbτ
(15 + 4Rν)
(15 + 2Rν)

= 3φ (A11d)

θγ = θν = θb = −
15
2

Rbτ
k2η

(15 + 2Rν)
=
ψ

cν
k2η (A11e)

θc = −
Rbτ

6
(15 − 4Rν)
(15 + 2Rν)

k2η =
1
3
ψ k2η (A11f)

σν = −
2 Rbτ (kη)2

3 (15 + 2Rν)
=

4ψ
45cν

(kη)2 =
4
45

θν η. (A11g)

The initial conditions for CDM isocurvature modes can be obtained from
these expressions by replacing Rb → Rc and setting

δb = δc − 1 = −
3
2

Rcτ
(15 + 4Rν)
(15 + 2Rν)

= 3φ. (A12)

The baryon and CDM isocurvature modes both have vanishing initial po-
tential perturbations (isocurvature condition) but total entropy perturbation
S (0, k) ' Ri + O(τ) for i ∈ {b, c}. This means that a baryon/CDM den-
sity perturbation with amplitude δi(0, k) leads to an entropy perturbation
S i(0, k) = (Ωi/Ωm) δi(0, k) initially. We also compute the gauge-invariant
Bardeen curvature variable, ζ, using the relation (Shaw & Lewis 2010)

ζ = φ + 2

(
ψ + φ̇/H

)
3 (1 + w)

, (A13)

where w is the total cosmic equation of state (equal to 1/3 during radi-
ation domination). Using Eqs. (A11g), it is easy to see that ζ = 0 for
the BI/CI modes when τ = η = 0, as should be the case for isocurva-
ture perturbations. These initial conditions only excite the sin(krs) term
of the photon monopole transfer function. We therefore have A ' 0 and
B ' −

√
6/4(Ωi/Ωm)(keq/k)(1 − 4Rν/15) δi(0, k), where again Rν accounts

for the effect of anisotropic stress (Hu & Sugiyama 1996).
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A3 Neutrino density isocurvature mode (NDI)

Although these modes are called isocurvature modes, they do not have van-
ishing initial potential perturbations:

ψ = −
2Rν

(15 + 4Rν)
= −

2Rν
15aν

(A14a)

φ =
Rν

(15 + 4Rν)
= −

1
2
ψ (A14b)

δγ = −
Rν(11 + 8Rν)
Rγ(15 + 4Rν)

= −
Rν
Rγ

+ φ (A14c)

δν =
(15 + 8Rν)
(15 + 4Rν)

= 1 + φ (A14d)

δc = δb =
3Rν

(15 + 4Rν)
= 3φ (A14e)

θγ = θb = −
19 Rν k2η

4Rγ(15 + 4Rν)
=

19
8Rγ

ψ k2η =
θν
Rγ

+
1

2Rγ
ψ k2η (A14f)

θν =
15 k2η

4(15 + 4Rν)
=

15
8
ψ k2η (A14g)

θc = −
Rν

(15 + 4Rν)
k2η =

1
2
ψ k2η (A14h)

σν =
(kη)2

2(15 + 4Rν)
= −

ψ

4Rν
(kη)2 =

φ

2Rν
(kη)2 =

2
15

θν η. (A14i)

An initial neutrino density perturbation of δν(0, k) leads to entropy pertur-
bation S (0, k) ' 4 φ(0, k) ' Rνδν(0, k)/(15+4Rν) and potential perturbation
ψ(0, k) ' −2Rνδν(0, k)/(15aν). Correspondingly, these modes excite both
sin(krs) and cos(krs) parts of the photon monopole transfer function. As for
the BI/CI modes, ζ = 0 initially for the NDI mode.

A4 Neutrino velocity isocurvature mode (NVI)

The second isocurvature mode for neutrinos is sourced by non-vanishing
velocity perturbations relative to the photons:

ψ = −
4Rν

(5 + 4Rν) kη
(A15a)

φ =
4Rν

(5 + 4Rν) kη
= −ψ (A15b)

δγ = δν =
16

(5 + 4Rν) kη
= 4φ (A15c)

δc = δb =
12

(5 + 4Rν) kη
= 3φ (A15d)

θγ = θb = −
Rν
Rγ

k + ψk2η = −
9 Rν k

Rγ(5 + 4Rν)
=

9
4Rγ

ψ k2η (A15e)

θν =
5k

(5 + 4Rν)
= k + ψ k2η (A15f)

θc = −
4Rνk

(5 + 4Rν)
= ψ k2η (A15g)

σν =
4kη

3(5 + 4Rν)
= −

ψ

3Rν
(kη)2 =

φ

3Rν
(kη)2 (A15h)

These modes are very hard to excite and also show a coordinate divergence
for small kη (Bucher et al. 2000). Numerically, it is straightforward to in-
tegrate the corresponding perturbation equations with CosmoTherm. Also,
all physical quantities are gauge-independent and we find these to converge
very well. As for the NDI mode, ζ = 0 initially for the NVI mode.
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