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ABSTRACT

We have investigated the radio polarization properties of PSR J1119�6127, a recently discovered young
radio pulsar with a large magnetic field. Using pulsar-gated radio imaging data taken at a center frequency of
2496 MHz with the Australia Telescope Compact Array, we have determined a rotation measure for the
pulsar of +842� 23 rad m�2. These data, combined with archival polarimetry data taken at a center
frequency of 1366 MHz with the Parkes telescope, were used to determine the polarization characteristics of
PSR J1119�6127 at both frequencies. The pulsar has a fractional linear polarization of �75% and �55% at
1366 and 2496 MHz, respectively, and the profile consists of a single, wide component. This pulse
morphology and high degree of linear polarization are in agreement with previously noticed trends for young
pulsars (e.g., PSR J1513�5908). A rotating vector (RV) model fit of the position angle of linear polarization
over pulse phase using the Parkes data suggests that the radio emission comes from the leading edge of a
conal beam. We discuss PSR J1119�6127 in the context of a recent theoretical model of pulsar spin-down,
which can in principle be tested with polarization and timing data from this pulsar. Geometric constraints
from the RV fit are currently insufficient to test this model with statistical significance, but additional data
may allow such a test in the future.

Subject headings: polarization — pulsars: individual (PSR J1119�6127) — radio continuum: stars —
stars: neutron

1. INTRODUCTION

Pulsar polarimetry is one of the keys to understanding the
process and geometry of radio emission from pulsars. In the
rotating vector (RV) model (Radhakrishnan &Cooke 1969)
the polarization of pulsar radio emission is linked to the
emission geometry in such a way that as the pulsar rotates,
the axis of linear polarization is aligned with the projected
direction on the sky of the pulsar’s magnetic dipole axis.
The pulsar’s emission geometry itself may be described by
two angles, each measured from the pulsar’s angular
momentum vector: the magnetic inclination angle � is the
angle between the spin axis and the magnetic dipole axis,
and the angle � measures the separation between the spin
axis and an observer’s line of sight. Given this geometric
description, the RV model defines the linear polarization
position angle (P.A.)  as a function of pulse phase �
according to

tanð �  0Þ ¼
sin� sinð�� �0Þ

sin � cos�� cos � sin� cosð�� �0Þ
; ð1Þ

where  0 is the P.A. corresponding to the projected direc-
tion of the pulsar’s rotation axis on the sky, and �0 is the
pulse phase at which the P.A. swings most rapidly, corre-
sponding to the magnetic axis sweeping past the line of
sight. P.A. is measured from north to east on the sky, fol-
lowing the usual convention (e.g., Everett & Weisberg
2001). A more observationally useful replacement for � is
the impact parameter �, defined as the smallest angle
between the magnetic axis and the line of sight as the dipole
rotates, � � � (Everett & Weisberg 2001). A small value of
j�j corresponds to a steep P.A. swing as the magnetic axis
sweeps past the line of sight.

With sufficient coverage over pulse phase, a fit for RV
model parameters  0, �0, �, and � may be performed. Since

�0 is the phase corresponding to the center of the magnetic
pole, the fit determines the geometry not only of the pulsar
itself, but of the pulsar’s regions of radio emission, which
can lie at various positions relative to the pulsar’s magnetic
axis. Emission at the magnetic axis is not always present,
and emission may not be symmetrical about the axis, in
some cases giving rise to one or more pulses that lead or trail
the beam center (Lyne &Manchester 1988).

One possible geometric interpretation of the phenomen-
ology of pulsar polarization profiles is that emission can
come from either core or conal beams. While a core beam is
a narrow, solid cone of radio emission extending outward
along the pulsar’s magnetic dipole axis, a conal beam is in
the form of a larger, hollow cone that circumscribes the core
beam. In this interpretation, conal emission tends to have a
steeper spectral index and a higher degree of linear polariza-
tion than core emission (Lyne & Manchester 1988). While
Rankin (1983) has proposed that core and conal compo-
nents arise from differing emission mechanisms, Lyne &
Manchester (1988) contend that there is a continuous varia-
tion in radiation properties between core and cone and that
all radio beam emission shares the same mechanism. Lyne
& Manchester (1988) also suggest that emission beam pat-
terns may be ‘‘ patchy,’’ such that only one side of an ideal
hollow cone beammight be active.

A model of pulsar spin-down proposed by Melatos
(1997) connects pulsar timing with geometry such that its
predictions may be tested through observation. The model
treats the pulsar and its inner magnetosphere as a single per-
fectly conducting sphere rotating in a vacuum. The model
thus differs from the standard vacuum-dipole theory of pul-
sar spin-down (Ostriker &Gunn 1969) in which the rotating
magnetic dipole is treated as pointlike. In the Melatos
model, the components of the electric and magnetic fields
exterior to the rotating conducting sphere are modified
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according to calculations first performed by Deutsch
(1955). The resulting modified electromagnetic torque is
also dependent upon the magnetic inclination angle �; the
strongest braking occurs when the magnetic and spin axes
are orthogonal (i.e., when sin� is a maximum).

Using the modified torque expression derived from these
fields, the Melatos model predicts the values of the first and
second braking indices n and m, which are determined
observationally by n ¼ �€��= _��2 and m ¼ �2�ð3Þ= _��3, where � is
the observed pulsar rotation frequency. The model deter-
mines n and m using only three observable parameters: the
period P ¼ 1=�, the period derivative _PP, and �. In the point-
dipole spin-down model, theory predicts n ¼ 3 and
m ¼ nð2n� 1Þ ¼ 15 (Blandford & Romani 1988). However,
in the Melatos model, the decreased braking torque produ-
ces values for n and m that are smaller than these, and there
are no free parameters in the model. The model is thus
highly falsifiable if adequate constraints can be placed on a
pulsar’s emission geometry. The model has so far been
applied with some success to the Crab pulsar, PSR
B0540�69, and PSR J1513�5908 (B1509�58).

PSR J1119�6127 is a 408 ms radio pulsar that was
discovered in 1997 August using the Parkes 64 m radio tele-
scope during the Parkes Multibeam Pulsar Survey (Camilo
et al. 2000). The pulsar is suitable for the study of pulsar
spin-down: it is one of the youngest known pulsars, with an
estimated age from timing of 1:7� 0:1 kyr, and is notable
for having one of the strongest surface magnetic field
strengths of any known radio pulsar [B � 3:2�
1019ðP _PPÞ1=2 ¼ 4:1� 1013 G under the magnetic dipole
assumption]. A measured second period derivative for the
pulsar (Camilo et al. 2000) can in principle be used in combi-
nation with a constraint on � to test the Melatos model of
pulsar spin-down (see x 3.3).

2. OBSERVATIONS AND DATA REDUCTION

We have analyzed polarimetry data taken with the Aus-
tralia Telescope Compact Array (ATCA; Frater, Brooks, &
Whiteoak 1992) and the Parkes radio telescope at center fre-
quencies of 2496 and 1366 MHz, respectively. Details of the
data analysis are presented below.

2.1. ATCA 2496MHzData

Data were taken of PSR J1119�6127 with the ATCA
using a 128 MHz bandwidth centered on a frequency of
2496 MHz1 as part of a radio imaging campaign in which
supernova remnant SNR G292.2�0.5 was discovered; this
is a young remnant associated with the pulsar (Crawford et
al. 2001a). The ATCA observations were conducted on
1998 October 30 and 31 in the 6D array configuration using
pulsar gating. The observing parameters, given in Table 1,
are outlined with more extensive details of the data analysis
elsewhere (Crawford 2000; Crawford et al. 2001a).

Frequency channels contaminated with self-generated
radio frequency interference were automatically excised at

the start of the analysis, and alternating channels from the
remaining set were preserved as a set of 13 channels of width
8 MHz each, giving 104 MHz of usable bandwidth. Since
there is overlap between original adjacent channels, no sen-
sitivity penalty was incurred in the selection of alternate
channels. After the data were flagged and edited, the on-
pulse data were selected from the pulsar gating, and Stokes
parameters were extracted for each frequency channel at the
pulsar’s position. These were used to compute the rotation
measure (RM) for the pulsar. Using the MIRIAD data
analysis package,2 Stokes Q and U from each channel were
converted into a P.A.  according to

 ¼ 1

2
arctan

U

Q

� �
: ð2Þ

An uncertainty in each P.A. was also computed using this
routine, and the resulting P.A. for each channel was plotted
against the square of the wavelength for each channel (see
Fig. 1). A linear fit of the form  ¼  0 þRM�2 was then
performed on the 13 data points to determine the RM. The
best-fit slope gave RM = +842� 23 rad m�2. The resulting
Faraday depolarization across the bandwidth at 2496 MHz
was �4%, indicating that the polarization profile retains
fidelity even in the absence of a Faraday rotation
correction.

The frequency channels were then summed, and Stokes
parameters were preserved for each of 32 pulse phase bins.
A mean off-pulse baseline was subtracted from the total

1 Data were taken simultaneously at 1384 MHz with the ATCA using
the dual-band feed, but Faraday smearing across the bandwidth from the
large rotation measure (see rotation measure estimate below) reduced the
measured linear polarization to less than 5% of the intrinsic value. We
therefore do not use the 1384 MHz ATCA data in the analysis here and do
not mention it further in this paper.

2 See R. J. Sault & N. E. B. Killeen, 1999, The MIRIAD User’s Guide
(Sydney: Australia Telescope National Facility), found at http://
www.atnf.csiro.au/computing/software/miriad.

TABLE 1

Observing Parameters and Measured Polarization Parameters

for PSR J1119�6127

Telescope

Parameter Parkes ATCA

Receiver ................................................ Multibeam 13 cm

On-source integration time (hr) ............. 0.8 9

Center frequency (MHz) ....................... 1366 2496

Bandwidth (MHz)................................. 128 104

Number of frequency channels.............. 8 13

Number of bins in pulse profile.............. 256 32

Pulse width at 50% of peak (deg) ........... �20 �15

Pulse width at 10% of peak (deg) ........... �45 �35

hLi=Sa (%) ............................................ 77� 10d 56� 6

hVi=Sb (%)............................................ �8� 15d �22� 6

hjV ji=Sc (%) .......................................... 10� 15d 22� 6

Rotationmeasure, RMe (radm�2) ........ +842� 23

Mean line-of-sight magnetic field,

hBkif (lG).......................................... +1.47� 0.04

Note.—The ATCA observing parameters are also presented in detail in
Crawford et al. 2001a.

a Fractional on-pulse linear polarization. Corrected for channel/band-
width depolarization.

b Fractional on-pulse circular polarization. Positive values correspond
to left circular polarization.

c Fractional absolute on-pulse circular polarization.
d Quoted uncertainty includes the contribution from multibeam

receiver instrumental effects (e.g., Johnston 2002).
e Determined from 2496MHz pulsar-gated ATCA data.
f Positive values correspond tomagnetic field lines toward the observer.
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intensity profile, and the magnitude of the linear polariza-
tion for each phase bin, L ¼ ðQ2 þU2Þ1=2, was computed
and corrected for positive bias as follows:

L ¼ ðjL2
obs � hL2ioff jÞ

1=2 : ð3Þ

hL2ioff is the average value of the square ofL for all off-pulse
bins. Stokes V represents the circularly polarized intensity,
with positive values corresponding to left-circularly polar-
ized radiation. The percentage of linear polarization in the
pulse profile, hLi=S, was computed as the mean fractional
linear polarization for all on-pulse bins, where S is the flux
from Stokes I. The percentages of circular and absolute cir-
cular polarization were likewise computed as hVi=S and
hjV ji=S, respectively.

2.2. Parkes 1366MHzData

Data were taken of PSR J1119�6127 with the Parkes
radio telescope on 1999 January 16 and 18. The observa-
tions were conducted using the multibeam receiver
(Staveley-Smith et al. 1996) and Caltech Correlator
(Navarro 1994; Navarro et al. 1997) at a center frequency of
1366 MHz covering a bandwidth of 128 MHz. Eight chan-
nels of width 16MHz each were preserved.

Four separate integrations of 12 minutes each were
summed, totaling 48 minutes. The four observations were
taken in two sets of two consecutive observations. The first
set (taken on 1999 January 16) was separated by two days
from the second set (taken on 1999 January 18). Feed rota-
tion provided correction for parallactic angle variation dur-
ing the observations. The observing parameters are
presented in Table 1, and the observing technique was simi-
lar to the one described by Manchester, Han, & Qiao (1998)
and Crawford, Manchester, & Kaspi (2001b). 256 pulse
phase bins were preserved across the full profile, allowing a

high-resolution study of the behavior of the P.A. over the
pulse phase.

An independent estimate of the RM using the Parkes
data gave RM ¼ þ823� 6 rad m�2 (see, e.g., Man-
chester, Han, & Qiao 1998 and Crawford et al. 2001b for
details on the technique of how the RM was estimated).
Although this RM is consistent with the ATCA RM esti-
mate, the very small uncertainty in the Parkes estimate
cannot be readily believed. Multibeam receiver instru-
mental effects were present that affect the measured RM
at a level significantly greater than the quoted uncer-
tainty, which is less than 1% (see, e.g., Johnston 2002 for
details). We instead use the more reliable RM estimate
from the ATCA data. However, a phase-rotation correc-
tion could still be applied to the Parkes data prior to
channel summing. Trial phase rotations were applied
until the resulting measured linear polarization L in the
profile from the sum across channels was maximized,
indicating constructive addition of the linear polarization
(and the proper correction for Faraday rotation). Uncor-
rectable Faraday smearing within the frequency channels
accounted for a reduction in the measured fractional
linear polarization of �4%.

After phase rotation and channel summing, the Stokes
parameters were used to determine polarization parame-
ters for each bin in the same way as for the ATCA data
(described above). The uncertainty in  for each profile
bin was based on the scalar uncertainty determined from
the off-pulse rms of Stokes I. The linear polarization vec-
tor for a given bin could deviate in any direction by this
uncertainty, and the corresponding deviation in the vec-
tor’s P.A. was taken to be the uncertainty in  . These
uncertainties were used when computing the RV best fit
for the Parkes data. Thirty-three data points in the pro-
file had P.A. uncertainty less than 15�, indicating signifi-
cant and measurable linear polarization. These points
were used in the P.A. fit (see x 3.2). Only the Parkes data
were used for this fit since the ATCA profile had
insufficient resolution.

3. RESULTS AND DISCUSSION

3.1. Radio Polarization Properties of PSR J1119�6127

Measured polarization parameters for PSR J1119�6127
from the 1366 MHz Parkes data and the 2496 MHz ATCA
data are presented in Table 1, and the Parkes and ATCA
polarization profiles are shown in Figures 2 and 3, respec-
tively. The on-pulse emission has strong linear polarization
at both frequencies, with a fractional linear polarization
(scaled upward by 4% in each case to correct for Faraday
smearing across finite bandwidths) of 77%� 10% and
56%� 6% at 1366 and 2496 MHz. The uncertainty in the
linear polarization fraction measured in the Parkes data
includes the error introduced by multibeam receiver polar-
ization impurities. These impurities affect the measured cir-
cular polarization and, to a lesser extent, the linear
polarization (Johnston 2002). It is clear that the pulsar
remains highly polarized at high radio frequencies. The
circular polarization is weaker in both cases. The RM,
measured using the 2496 MHz ATCA data, is +842� 23
rad m�2. The relation of the RM to the mean line-of-
sight interstellar magnetic field is given by (Manchester &

Fig. 1.—P.A. as a function of wavelength squared for the 2496 MHz
pulsar-gated ATCA data. Thirteen frequency channels of on-pulse data at
the pulsar’s position were used. The best-fit line is overlaid, with a slope
(RM) ofþ842� 23 radm�2.
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Taylor 1977)

hBki ¼ 1:232
RM

DM
lG ; ð4Þ

where DM is the dispersion measure in units of pc cm�3

(DM = 707 pc cm�3 for PSR J1119�6127); hBki for PSR
J1119�6127 isþ1:47� 0:04 lG, where a positive value cor-
responds to field lines pointing toward the observer. This
value is consistent with typical galactic magnetic field
strengths (Han,Manchester, & Qiao 1999).

The profile’s high degree of linear polarization is particu-
larly noteworthy. Another young radio pulsar, PSR
J1513�5098, has similar characteristics to PSR J1119�6127
(i.e., a �2 kyr age, a very large magnetic field, and a
relatively long period for such a young pulsar). Crawford,
Manchester, & Kaspi (2001b) report on radio polarization
observations of PSR J1513�5908 taken with Parkes at 1350
MHz and show that the pulsar is essentially completely line-
arly polarized at this frequency. At 1366 MHz, PSR
J1119�6127 has a single, wide pulse, with a width of �20�

as measured at 50% of the peak, and a width of �45� as
measured at 10% of the peak. This wide pulse is again simi-
lar to the morphology of PSR J1513�5908, which at 1350

MHz has pulse widths of�35� and�95� at 50% and 10% of
the peak, respectively. In general, the pulse morphology of
PSR J1119�6127 is similar to the single, wide, highly line-
arly polarized profiles of the young pulsars presented by
Crawford,Manchester, &Kaspi (2001b).

With its relatively large spin-down luminosity
_EE � 3:94� 1046 _PP=P3 ¼ 2:3� 1036 ergs s�1, the pulsar fits a
positive trend noticed previously at 1400 MHz between
spin-down luminosity and degree of linear polarization (see,
e.g., Fig. 2 of Crawford, Manchester, & Kaspi 2001b). The
pulsar also fits the association between small characteristic
age (in this case, �c � P=2 _PP ¼ 1:6 kyr) and strong linear
polarization noticed by Gould & Lyne (1998). Since spin-
down luminosity and characteristic age are correlated by
definition (�c � 1=P2 _EE), this is not surprising.

3.2. P.A. Swing and RV Fit from the Parkes Data

Measured position angles with uncertainty less than 15�

are shown as a function of pulse phase in Figure 4 for the
1366 MHz Parkes data. Overlaid is the best-fit RV model.
The fit used a downhill simplex �2-minimization algorithm
in four dimensions (e.g., Press et al. 1992). The model fits
well, with a best-fit �2 of 16.5 with 29 degrees of freedom.
The characteristic swing in P.A. is noticeable, with a maxi-
mum swing occurring at �0, as determined by the best fit.
There is almost no radiation at the point � ¼ �0 and after;
the pulse peak leads the P.A. swing. This is consistent with
the partial conal beam structure interpretation set forth by
Lyne &Manchester (1988) and is similar to the P.A. behav-
ior seen for other young pulsars (Crawford, Manchester, &
Kaspi 2001b).

PSR J1119−6127 1366 MHz

Fig. 2.—1366 MHz polarization profile of PSR J1119�6127 from the
Parkes data. The full 360 degrees of phase of the profile spans 256 bins, but
only the portion in which the pulse appears is shown. In the lower part of
the plot, the solid line indicates total intensity as a function of pulse phase
in degrees. The dashed and dotted lines indicate the linearly and circularly
polarized intensity, respectively. Positive values of circular polarization
correspond to left-circular polarization. The height of the box in the lower
left-hand corner is twice the baseline scatter and does not reflect the
additional uncertainty in the measured polarization arising from multi-
beam receiver instrumental effects. The upper part of the plot shows the
P.A. plotted as a function of pulse phase on the same axis. The pulsar is
highly linearly polarized, consistent with trends noticed for young
energetic pulsars.

Fig. 3.—2496 MHz polarization profile of PSR J1119�6127 from
pulsar gated ATCA data. The profile for one period (360 degrees of phase)
is shown, corresponding to 32 phase bins. The solid line indicates total
intensity while the dashed and dotted lines indicate the linearly and circu-
larly polarized intensity, respectively. Positive values of circular polariza-
tion correspond to left-circular polarization. The baseline scatter is
indicated by the error bar to the left of the profile. The pulsar remains
highly polarized at high radio frequencies.
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Constraints from the RV fit on the parameters � and
� ¼ � � � are shown in Figure 5. The statistical constraints
on the fit parameters imply j�jd20� at the 3 	 confidence
level. However, � can only be constrained to �d140� at the

3 	 level owing to the limited data available. It is important
to note that while � and � display little covariance, � and �
have concomitantly great covariance.

3.3. Testing theMelatosModel of Pulsar Spin-down

We have attempted to test the Melatos model of spin-
down using an estimate of � from the RV fit of the Parkes
P.A. data (described in x 3.2) and measurements of n and m
from previous timing observations. Camilo et al. (2000)
measured a braking index n ¼ 2:91� 0:05 for PSR
J1119�6127, which included uncertainty from a glitch and
timing noise. Within the Melatos model, this value of n
implies that � should lie between 10� and 32� (see Fig. 6).

A measurement of the second braking index m is unavail-
able from the current timing data; furthermore, possible
future glitches make the prospect of accurately measuringm
uncertain. If m were to be estimated from future timing
observations, a significant test of the spin-downmodel using
m would still require an independent geometry constraint
that excludes very small values of �; for � less than a few
degrees, the model’s prediction ofm fluctuates across a wide
range of values.

Although the Parkes P.A. data are fitted well by the RV
model (see x 3.2), the fit does not provide a meaningful stat-
istical constraint on �. At the 3 	 level, �d140� in the fit.
Since the model’s prediction of the braking index n depends
on the sine of �, a useful constraint on n requires a con-
straint on � better than 0� < � < 90�. The 3 	 constraint on
� from these observations is thus insufficient to test the
Melatos model. Additional P.A. data from future polarime-
try observations may be able to sufficiently constrain � and
make a significant test of the model possible. We estimate
that with �12 hr of polarization observations at 1400 MHz

Fig. 4.—P.A. as a function of pulse phase for PSR J1119�6127 from the
1366 MHz Parkes data, with the best-fit RV model overlaid. Data points
with P.A. uncertainty less than 15� are shown and were used in the fit. The
pulse phase point ð�� �0Þ ¼ 0, where the P.A. swing is greatest, corre-
sponds to the magnetic pole sweeping past the line of sight. The peak of the
profile, where the P.A. uncertainty is smallest, leads ð�� �0Þ ¼ 0, suggest-
ing that the emission is emanating from the leading edge of a conal beam.

Fig. 5.—Confidence regions in � (magnetic inclination angle) and �
(impact parameter) for the RV model best fit of the 1366 MHz Parkes P.A.
data. Contours at 1, 2, 3, 4, and 5 	 confidence levels are indicated. At the
3 	 level, �20�d�d0� and �d140�. This constraint on � is not sufficient
to test the spin-downmodel ofMelatos (1997).

Fig. 6.—Plot of magnetic inclination angle � as a function of braking
index n for PSR J1119�6127, as predicted by the model of Melatos (1997).
The vertical lines correspond to the range n ¼ 2:91� 0:05 measured for
PSR J1119�6127 (Camilo et al. 2000). This corresponds to 10�d�d32� in
the model. The greater slope around n ¼ 2:96 indicates that reducing the
uncertainty in n would significantly reduce the range of � that could be in
agreement with the model.
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with a similar system, we could obtain a 3 	 constraint on �
that would be useful for the model test.

As shown in Figure 6, improvements in the measurement
of n itself might also aid a test of this model. Reducing the
uncertainty in n would reduce the range of observed � that
could be in agreement with the model.

4. CONCLUSIONS

Using pulsar-gated 2496 MHz radio imaging data
(Crawford et al. 2001a) taken with the ATCA and archival
1366 MHz polarization data taken with the Parkes tele-
scope, we report on the polarization properties of PSR
J1119�6127, a pulsar notable for its youth and strong mag-
netic field. A Faraday rotation measurement using the
ATCA data gives an RM ofþ842� 23 rad m�2 for the pul-
sar and a corresponding mean line-of-sight magnetic field
strength ofþ1:47� 0:04 lG, consistent with typical galactic
magnetic field values. The pulsar’s polarization profile
shows a high degree of linear polarization (�75% at 1366
MHz and �55% at 2496 MHz), in agreement with previ-
ously noticed trends for young pulsars at 1400 MHz
(Crawford, Manchester, & Kaspi 2001b; Gould & Lyne
1998). The pulsar also has linear polarization and pulse
morphology characteristics that are similar to those seen for
other young pulsars (e.g., PSR J1513�5908). An RV model
fit of the observed P.A. swing from the Parkes data con-

strains the impact parameter to j�jd20� and indicates that
the pulse peak leads the P.A. symmetry axis. In addition,
the pulsar’s profile consists of a single wide component.
These features suggest emission from the leading edge of a
wide hollow cone beam, consistent with the partial conal
interpretation outlined by Lyne &Manchester (1988).

PSR J1119�6127’s measurable braking index and clean
polarization profile suggest that it may be used in the future
to test the model of pulsar spin-down proposed by Melatos
(1997). While constraints on the magnetic inclination angle
� obtained from an RV model fit to the available Parkes
P.A. data are inadequate for a significant test of this model,
further refinements from pulsar timing and additional
polarization observations could make such a test possible.

We thank Andrew Melatos and the referee Simon
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for improving the manuscript. We also thank Bryan
Gaensler for advice on the ATCA data analysis and John
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