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Whole organism–based small-molecule screens have proven pow-
erful in identifying novel therapeutic chemicals, yet this approach
has not been exploited to identify new cognitive enhancers. Here
we present an automated high-throughput system for measuring
nonassociative learning behaviors in larval zebrafish. Using this
system, we report that spaced training blocks of repetitive visual
stimuli elicit protein synthesis–dependent long-term habituation
in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic
stimulation induces robust short-term habituation that can be
modulated by stimulation frequency and instantaneously dishabi-
tuated through cross-modal stimulation. To characterize the
neurochemical pathways underlying short-term habituation, we
screened 1,760 bioactive compounds with known targets. Al-
though we found extensive functional conservation of short-term
learning between larval zebrafish and mammalian models, we
also discovered several compounds with previously unknown
roles in learning. These compounds included a myristic acid analog
known to interact with Src family kinases and an inhibitor of cyclin
dependent kinase 2, demonstrating that high-throughput chemi-
cal screens combined with high-resolution behavioral assays pro-
vide a powerful approach for the discovery of novel cognitive
modulators.

acoustic startle response | sensorimotor gating

All organisms, from protozoa to humans, use nonassociative
habituation learning as a means to update behavioral re-

sponses to sensory input based on recent stimulation history (1).
Considered a simple form of learning, habituation reflects a
suppressed behavioral response to repeated inconsequential stim-
ulation and serves as a mechanism by which the nervous system
filters irrelevant stimuli. Defective habituation not only is indic-
ative of a learning deficit, but also is prevalent in neuropsychiatric
conditions, such as schizophrenia, attention deficit hyperactivity
disorder, posttraumatic stress disorder, and drug addiction (2–5).
Numerous assays have shown that the parameters and rules for
habituation learning are similar across phyla (6–9), suggesting
conservation of the underlying molecular mechanisms. For
example, training session design and stimulation frequency is
predictive of the time scale of memory retention. Massed expo-
sure to repeated stimulation at short interstimulus intervals (ISIs)
elicits an acquisition of learned information with short-term recall
memory, indicated by a change in behavior that does not persist
for long after the repeated stimulation is terminated. In contrast,
a distributed training protocol with multiple training sessions
consisting of stimulation at longer ISIs and rest periods between
training blocks induces the acquisition and storage of learned
behavior that is capable of being recalled for a more extended
period. Thus, intrasession, short-term habituation represents
working memory, whereas intersession, long-term habituation
includes the storage and retrieval of memory.
Existing strategies to measure vertebrate learning behaviors

are time-consuming and difficult to apply to large-scale genetic
or small-molecule screens. Despite the abundance of established
habituation learning assays for adult rodent and zebrafish mod-
els, scaling these assays for systematic approaches is challenging
given the inherent complexity and variability of adult behaviors,

as well as the time required to train and test large numbers of
animals (10–16). Larval zebrafish execute a repertoire of simple,
well-defined, and stereotyped sensorimotor behaviors that have
accessible and characterized circuitry and provide a vertebrate
system amenable to large-scale forward genetic and chemical
screening (17–24). Although some studies have explored the
capacity of zebrafish larvae for various forms of short-term
learning and sensory conditioning, these assays have not been
adapted to systematic approaches (25–27). Moreover, whether
zebrafish larvae display long-term habituation, and thus the
ability for memory storage and retrieval, is unclear.
In the present work, using high-speed video recording and au-

tomated behavioral analysis, we demonstrate that larval zebrafish
have the capacity for long-term memory recall. Moreover, we
show that zebrafish larvae exhibit robust short-term habituation of
a kinematically distinct, simple sensorimotor behavior with known
underlying circuitry. Using a high-throughput habituation assay to
screen libraries of small molecules with identified targets, we find
profound pharmacologic conservation of learning between larval
zebrafish and adult mammalian vertebrates and reveal additional
molecular substrates of nonassociative learning.

Results and Discussion
Zebrafish Larvae Demonstrate Long-Term Habituation to Visual
Stimuli. To determine whether larval zebrafish have the capacity
to acquire, store, and later recall learned information, we exposed
larvae at 6 d postfertilization (dpf) to repetitive visual stimulation
and then tested for responsiveness to the trained stimulus.
Equilibrating larvae to a uniformly illuminated testing chamber
and then abruptly extinguishing the light for 1 s (dark flash) elicits
a unique turning maneuver called the O-bend (28). Larvae were
exposed to 120 total min of dark flashes with ISIs ranging from 15 s
to 60 s in either a massed or spaced dark flash-training format, and
then tested for O-bend responsiveness to 10 dark flashes delivered
at a 60-s ISI (Fig. 1A). Maximal long-term habituation was
observed when dark flashes were delivered at a 15-s ISI during
training. Consistent with habituation paradigms for other organ-
isms (29), a spaced training protocol yielded a longer-lasting
response decrement, up to 24 h posttraining, compared with only
1 h using a massed training protocol (Fig. 1B).
Unlike short-term habituation, long-term habituation requires

protein synthesis (29, 30). To determine whether the O-bend
habituation after a spaced training protocol requires protein
synthesis, we bathed larvae in 10 μM cyclohexamide (CHX)
during a spaced training protocol, washed out the CHX after the
fourth training session, and tested for O-bend responsiveness 4 h
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later by delivering 10 dark flashes at a 60-s ISI. CHX treatment
significantly reduced the degree of O-bend response attenuation,
suggesting that protein synthesis is required for the observed
habituation (Fig. 1C). Notably, CHX treatment did not reduce
intra–training session habituation, suggesting that short-term
habituation is unaffected by CHX treatment (Fig. S1). These
results demonstrate that larval zebrafish can store and retrieve
visual memory information up to 24 h.
Previous studies in larval zebrafish have shown that retinal

circuits can memorize stimulus time intervals; however, the time
scale for this memory is w20 s (27), and thus this property likely
does not account for the memory recall that we observed up
to 24 h after training. Here, we demonstrate that 6-dpf larval
zebrafish exhibit long-term habituation, consistent with the idea
that the neural circuits regulating O-bend behavior are compe-
tent for memory storage and retrieval at the larval stage.

Repetitive Acoustic Stimulation Decreases Short-Latency C-Start
Responses. We next asked whether larval zebrafish also exhibit
short-term habituation of a simple sensorimotor behavior. Best
et al. (25) previously used low–temporal resolution motion
analysis to measure a gradual decrement in larval spatial dis-
placement in response to repetitive acoustic stimuli. However,
zebrafish larvae demonstrate multiple kinematically different
responses in response to acoustic stimuli (18), necessitating the
use of high-resolution motion and kinematic analyses to distin-
guish between these different responses and to focus on a single
sensorimotor behavior with known underlying circuitry (24).
Five-dpf zebrafish larvae exhibit a highly stereotyped acoustic

startle response characterized by a kinematically unique maneu-
ver known as short-latency C-start (SLC), which is maintained
through adulthood (18, 31, 32). To execute the larval and adult
SLC behavior, acoustic or tactile sensory input is transmitted di-
rectly to the hindbrain, where the Mauthner cells, the command
neurons of the SLC response, process the input and subsequently
activate contralateral motor neurons and muscle contraction (18,
33–36). Despite the circuit’s simplicity, the larval zebrafish’s SLC
response shows a remarkable capacity for sensorimotor gating
processes, such as prepulse inhibition, indicating that the circuit
can modulate responsiveness based on experience (18). More-

over, repeated delivery of acoustic stimuli at short ISIs attenuates
the SLC response, suggesting that the simple, Mauthner-driven
SLC response circuit may have the capacity for nonassociative
learning (18).
To examine key kinematic parameters associated with startle

attenuation, 5-dpf larvae were exposed to a series of 60 acoustic
stimuli of varying intensity and ISI (Fig. 2A). Responses of in-
dividually housed larvae were recorded at millisecond resolution
and analyzed with automated tracking software for SLC respon-
siveness (Fig. 2 B and C and Movie S1) (18). First, larvae were
exposed to 10 “subthreshold” stimuli (SI Experimental Procedures),
delivered at a 20-s ISI, to test startle sensitivity. Stimuli 11–20
(prehabituation phase) consisted of “above-threshold” stimuli (SI
Experimental Procedures) with a 20-s ISI to determine various
kinematic parameters of the SLC response (including latency,
turning angle, and velocity) under nonhabituating conditions.
Stimuli 21–50 (habituation phase), consisted again of above-
threshold stimuli, now delivered with a 1-s ISI. As shown in Fig.
3A, stimulation at a 1-s ISI elicited a robust SLC response dec-
rement, reaching an asymptotic level by the 10th–15th stimulus at
a 1-s ISI (the 30th–35th overall stimulus), suggesting the larvae
were habituated. After the 50th stimulus, larvae were given a 3-
min rest period, after which they were exposed to an additional set
of 10 above-threshold stimuli with a 20-s ISI (recovery phase).
During this last phase, larvae had recovered and resumed execu-
tion of SLCs at a frequency identical to that observed during
the prehabituation phase, consistent with the observation that
animals should spontaneously recover from short-term habitua-
tion (Fig. 3A) (9).
Quantitative analysis of 3,590 responses from more than 180

larvae demonstrated that the kinematics of the SLC response,
including latency, duration, turning angle, and angular velocity of
the C-bend, as well as the overall distance the fish travels as a re-
sult of performing a SLC, were identical at all phases of the assay
(Fig. S2). To quantify the degree of habituation for each individual
tested, we calculated the ratio of the average SLC responsiveness
during the last 10 habituation phase stimuli (i.e., stimuli 41–50) to
the 10 prehabituation phase stimuli (i.e., stimuli 11–20). The
extent of habituation was similar in animals at 5, 10, and 14 dpf
(Fig. 3B), demonstrating that our behavioral assay measures be-

Fig. 1. Six-dpf larval zebrafish demonstrate protein synthesis–dependent
long-term habituation to visual stimuli. (A) Massed training regimen of 480
total 1-s dark flashes at a 15-s ISI or a spaced training protocol of four sessions,
each consisting of 120 1-s dark flashes at a 15-s ISI, with 10 min between
sessions. Larvae were tested 1–48 h later for O-bend behavior to a series of 10
1-s dark flashes delivered at a 60-s ISI. (B) Mean O-bend habituation 1–48 h
after trainingwith amassedor spaced training paradigm. O-bendhabituation
percentagewas determined by calculating the ratio of O-bend responsiveness
during testing to the O-bend responsiveness to thefirst 10 training stimuli. (C)
Mean O-bend habituation at 4 h after CHX exposure during a spaced training
paradigm. n = 6 dishes of 20 larvae for all experimental groups. Error bars
denote SEM. *P < 0.001, Student t test.

Fig. 2. Acoustic startle habituation assay and testing apparatus. (A) Larvae
were exposed to 60 repetitive acoustic stimuli delivered at varying intensities
and ISIs to evaluate startle sensitivity and nonassociative learning. (B and C)
Testing apparatus for the acoustic startle experiments. Using stimulus trig-
gering software (SI Experimental Procedures), we simultaneously controlled
the precise intensity and ISI of the acoustic stimuli delivered by a vibrational
excitor and triggered video recording to capture larval motor behavior
30 ms before and 90 ms after each acoustic stimulus.
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havioral responses of a mature nervous system. Thus, we observe
a robust attenuation of a kinematically distinct, simple behavior to
acoustic stimulation that is consistent with the idea that our assay
measures short-term habituation.

SLC Response Attenuation Assay Measures Nonassociative Learning.
To further validate that the SLC response attenuation assay
measures nonassociative learning, we examined additional hall-
mark criteria of habituation. One such criterion is that short-
ening the ISI should increase habituation and decrease the time
required for the animal to spontaneously recover (9). Indeed,
stimulating the larvae at a 1-s ISI elicited a significantly greater
degree of habituation, with a shorter time required for complete
recovery, compared with stimulation with an ISI of 5 s (Fig. 3 C
and D). Habituation also potentiates with repeated sessions of
stimulus exposure (9). To validate this criterion, we exposed

larvae to three separate sessions of 20 stimuli delivered at a 1-s
ISI with 3–60 min between sessions. Quantitative analysis
revealed a potentiated increase in the rate of habituation (Fig.
3E). For example, larvae exposed to only one training session
reached 80% habituation after 20 stimuli, whereas larvae ex-
posed to two training sessions exhibited 80% habituation already
after 13 stimuli, and larvae exposed to a third session reached
this level of habituation after only 5 stimuli. Treatment with
CHX before and during the assays (as outlined in Figs. 2A and
3E) did not influence SLC attenuation or potentiation, re-
spectively, suggesting that SLC short-term habituation and po-
tentiation do not require protein synthesis (Fig. S3). Notably,
further increasing the ISI and/or using a spaced training protocol
did not increase SLC habituation or potentiation beyond a 60-
min period. This result may not be surprising, given that the
innate function of the startle circuit is to mediate escape from
predators, and that habituating to a threatening stimulus for an
extended period likely constitutes an evolutionary disadvantage.
Finally, to confirm that SLC response attenuation is indeed

learning and not a result of sensory or motor fatigue, we tested
whether SLC response attenuation is instantly reversible through
cross-modal stimulation (9). To test for cross-modal dishabitua-
tion, we presented control larvae with 30 acoustic stimuli at a 1-s
ISI and then delivered a 31st acoustic stimulus at 3 s after the 30th
acoustic stimulus (Fig. 3F). As expected, control larvae displayed
SLC response attenuation at the 31st acoustic stimulus. To pro-
vide a cross-modal stimulus, between the 30th and 31st acoustic
stimuli we applied a brief tactile stimulus that efficiently elicits an
SLC response (36). In contrast to control larvae, application of
a tactile stimulus with a handheld poker to the larval head during
the 3-s period restored SLC responsiveness to the 31st acoustic
stimulus, demonstrating that the attenuated SLC response reflects
habituation, not fatigue. Consistent with the defined parametric
habituation criteria, larvae also habituated to the dishabituating
tactile stimulus. Interestingly, replacing the dishabituating tactile
stimulus with a visual, dark-flash stimulus was not sufficient to
dishabituate acoustic startle habituation; larvae failed to respond
to the 31st acoustic stimulus nearly identically to when no dis-
habituating stimulus was given (Fig. 3F). Dishabituation to
acoustic stimulation via dark-flash stimulation may be unlikely,
given that the dark-flash–induced O-bend behavior is Mauthner-
independent (37), whereas the tactile dishabituating stimulus
elicits a Mauthner-mediated response, and thus a tactile stimulus
“resets” the appropriate, habituated circuit. Thus, examination of
several hallmark criteria for habituation, including modulation of
habituation intensity and spontaneous recovery by varying stim-
ulation frequency (Fig. 3 C and D), habituation potentiation (Fig.
3E), and cross-modal dishabituation (Fig. 3F), provides compel-
ling evidence that zebrafish larvae display nonassociative learning.
Moreover, these results demonstrate that our assay readily
measures short-term habituation at the level of an individual, ki-
nematically distinct behavior.

NMDA-Type Glutamate Receptor Antagonists Reduce Startle Habit-
uation. Pharmacologic manipulation of glutamate neurotransmis-
sion has been shown to modulate habituation in various model
systems, and also has proven effective in treating human neuro-
psychological disorders that manifest with habituation deficits
(38–43). To investigate whether key pharmacologic substrates of
mammalian habituation are conserved in zebrafish, we tested the
effects of two NMDA-type glutamate receptor antagonists, MK-
801 and ketamine, on SLC habituation. A 15-min incubation in
either MK-801 or ketamine did not alter the kinematic perfor-
mance of the SLC behavior (Movie S2), nor did it affect the
spontaneous initiation of turning or swimming bouts (Fig. S4A).
However, MK-801 and ketamine each caused a dose-dependent
and reversible reduction (via washout) in startle habituation and
increased startle sensitivity (Fig. 4 A and B; data not shown).

Fig. 3. Larval zebrafish SLC habituation to acoustic stimulifits nonassociative
learning parametric criteria. (A) Mean SLC response trend of 180 5-dpf larvae
to the acoustic stimulation protocol described in Fig. 2A, showing exponential
response decrement during habituation phase and spontaneous recovery
after a 3-min rest period between stimulus 50 and stimulus 51. (B) Mean de-
gree of SLC habituation is equivalent in 5- to 14-dpf larvae. N larvae shown
within each bar in graph. (C andD)Mean SLC response trend (C) and degree of
habituation (D) of 30 5-dpf larvae exposed to acoustic stimuli at a 1-s, 5-s, or
20-s ISI during the habituation phase. Mean SLC responses are binned by sets
of 10 successive stimuli. SLC habituation is greater and spontaneous recovery is
more robust after a 3-min rest period when larvae are stimulated more fre-
quently. *P < 0.001 vs. 20-s ISI group, Student t test. (E) Mean SLC habituation
trend of 48 5-dpf larvae during three sets of 20 acoustic stimuli delivered at
a 1-s ISI, separated by 3-min rest periods, indicates potentiation of habitua-
tion. The degree of habituation at stimuli 2–7 and 15–17 of set 2 and at stimuli
2–12 and 16–18 of set 3 differed significantly from that at the corresponding
stimulus during the initial set of 20 stimuli (P < 0.01, Student t test). (F) Mean
SLC responsiveness of 10 5-dpf larvae to acoustic stimuli. Larvae were sub-
jected to 30 acoustic stimuli at a 1-s ISI, then a 3-s window during which either
no stimulus or a head touch with a hand-held poker was given, followed by
a final acoustic stimulus. Larvae dishabituated to the acoustic stimulus via
cross-modal, tactile stimulation. Error bars indicate SEM.
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These results demonstrate that MK-801– and ketamine-treated
larvae were able to execute a normal response, but were unable to
modulate their responsiveness properly, providing strong evidence
that the lack of SLC response attenuation was not attributable to
hyperactivity. Thus, brief exposure to known chemical modulators
of habituation influences the modulation of the larval zebrafish
SLC response without disrupting SLC response performance.

Conservation of Neural Substrates of Learning Between Zebrafish and
Mammals. To test the feasibility of our habituation assay for large-
scale systematic approaches, we screened two small bioactive
compound libraries consisting of 1,760 compounds with defined
targets. Five-dpf larvae were incubated in each compound for 15
min before and during the acoustic stimulation assay described in
Fig. 2A. Among the 1,760 compounds screened, 11 compounds
reduced startle habituation and 19 compounds increased startle
habituation (Fig. 4 C–G and Tables S1 and S2). Overall, com-
pounds with similar or common targets often had a comparable
influence on habituation rate, whereas compounds with converse
effects on identical targets usually caused opposing effects on
habituation. Consistent with their high representation in the two
chemical libraries, the majority of the compounds affecting
habituation were those targeting neurotransmitter systems, in-
cluding those previously identified to affect mammalian startle
modulation (44, 45). For example, compounds antagonizing 5HT-
2 serotonin receptors (e.g., pirenperone, ritanserin) or L-type
calcium channels (e.g., verapamil, nimodipine) increased habitu-
ation, whereas compounds antagonizing glutamate receptors (e.g.,
MK-801, ketamine, L-701,324) or potassium channels (e.g., lino-
pirdine, meclofenamic acid) reduced habituation. Whereas the
adrenergic receptor antagonists BMY 7378 dihyrochloride, pra-
zosin hydrochloride, yohimbine hydrochloride, and verapamil
increased habituation, one adrenergic receptor antagonist, phen-
oxybenzamine, attenuated the habituation rate, suggesting that
phenoxybenzamine also may interact with additional targets,
such as calmodulin (46), to directly or indirectly antagonize ha-
bituation. Finally, compounds agonizing or antagonizing similar
targets, such as L-type calcium channels, GABA receptors, and
dopamine signaling, exhibited opposite effects on habituation
(Tables S1 and S2). For example, the GABA-A receptor antag-
onist hydrastine reduced habituation, whereas the GABA-A
receptor agonists 5-α-THDOC and allopregnan-3α-ol-20-one
increased habituation.
The ability to rapidly evaluate phenotypic specificity at the

overall activity level, behavioral execution, and behavioral mod-
ulation is critical to teasing apart the relationship between
molecular and cellular mechanisms underlying behavior. Impor-
tantly, none of the compounds reported to affect habituation al-
tered the kinematic performance of the SLC response, including
response latency, C-bend turn duration, turning angle, angular
velocity, or the distance moved as a result of performing a SLC
(selected compounds, Fig. S4 D and E). We noted that many of
the compounds reducing habituation also increased startle sen-
sitivity, but did not cause hyperactivity (Table S1). The phenotypic
overlap between hypersensitivity and a habituation deficit is
consistent with the notion that neural targets and substrates for
startle sensitivity and habituation are intricately linked, and that
the identification of targets specific for habituation requires be-
havioral screens designed to instantly distinguish between both
processes in vivo. Indeed, we identified several compounds that
reduced habituation without increasing startle sensitivity (i.e.,
hydrastine, SU-9516, and butaclamol; Fig. 4 C and D and Table
S1). Finally, our screen was completed in 25 experimental days,
which included simultaneous testing of 32 larvae with two be-
havioral apparatuses, confirming the scalability of our learning
assay to large-scale genome-wide or systematic approaches. Thus,
using a high-throughput chemical screening assay for short-term
habituation modifiers, we have demonstrated a high degree of
overlap between the substrates underlying nonassociative learn-
ing in larval zebrafish and adult mammals.

Identification of Compounds Regulating Nonassociative Learning.Our
screening identified two classes of compounds previously not
known to modulate learning behaviors. First, we identified three
compounds targeting cell cycle regulators that modulate SLC
habituation. SU-9516, kenpaullone, and indirubin-39-monoxime

Fig. 4. Pharmacologic modulation of SLC habituation and SLC response
sensitivity in 5-dpf larvae. (A) Mean SLC habituation after a 15-min incubation
in 1% DMSO vs. varying doses of MK-801 or ketamine. (B) Mean SLC re-
sponsiveness to 10 low-level, subthreshold acoustic stimuli after a 15-min in-
cubation in 1% DMSO vs. 100 μM MK-801 or 500 μM ketamine/1% DMSO.
(C–F) Mean SLC responsiveness (binned by responses to 10 successive stimuli)
to above-threshold acoustic stimulation (C and E) at a 20-s ISI (prehabituation
phase) and a 1-s ISI (habituation phase) and to 10 low-level, subthreshold
stimuli (D and F) after a 15-min incubation in hydrastine (C and D) or 12-MDA
(E and F) at varying concentrations. (G) Chemical structure of the tested
myristic acid analogs. (H) Mean SLC habituation after a 15-min incubation in
combinations of varying concentrations of NMDA, ketamine, and/or 12-MDA.
The number of larvae are shown in the bars inA and B; n = 32 larvae per group
for C–F and H. *P < 0.01; **P < 0.001, Student t test vs. the DMSO group or
indicated control group. #P< 0.001 vs. additive effect of the 5-μM12-MDAand
50-μM ketamine groups, Student t test. Error bars indicate SEM.
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are ATP-competitive inhibitors of serine/threonine cyclin-de-
pendent kinase (Cdk) (47–49). SU-9516, an inhibitor of Cdk2 and,
to a lesser extent, of Cdk1 and Cdk4 (48), reduced SLC habitua-
tion without altering sensitivity, reducing baseline motor activity,
or affecting SLC performance kinematics (Table S1 and Fig. S4).
In contrast, both indirubin-39-monoxime and kenpaullone, which
inhibit Cdk1, Cdk2, and Cdk5 (47, 49, 50), increased SLC habit-
uation during the prehabituation phase (Table S2). Indirubin-39-
monoxime and kenpaullone also have been reported to inhibit
glycogen synthase kinase 3 beta (GSK3B) (51–53), which has
known effects on learning as well as on prepulse inhibition of the
mammalian acoustic startle response (54). GSK3B hyperactivity is
thought to impair memory formation in neuropsychiatric con-
ditions such such as Alzheimer’s disease (55). Consistent with this
idea, indirubin-39-monoxime has been shown to reduce learning
deficits in Alzheimer’s disease models (56), but neither indirubin-
39-monoxime nor kenpaullone has been shown to increase short-
term learning in WT animals.
Despite the potential promiscuity of small-molecule kinase

inhibitors, the brief exposure to SU-9516, indirubin-39-monoxime,
and kenpaullone during a period in which all neurons of the SLC
circuit are postmitotic suggests a possible cell cycle–independent
role for these compounds in mediating learning. Consistent with
this, many Cdks are expressed in terminally differentiated neurons
(57–61), and furthermore, Cdk5, the sole non–cyclin-activated
member of the Cdk family, has been shown to regulate synaptic
plasticity and learning (62–67). Notably, neither SU-9516 nor its
primarily characterized target, Cdk2, has been implicated in syn-
aptic plasticity or learning. However, without direct evidence that
SU-9516 is inhibiting Cdks within the SLC circuit, we cannot ex-
clude the possibility that SU-9516 influences learning through
Cdk-independent targets.
Second, we identified the myristic acid analog 12-methox-

ydodecanoic acid (12-MDA), which reduced SLC habituation and
increased SLC sensitivity without affecting hyperactivity or SLC
kinematic performance (Fig. 4 E and F and Fig. S4). Myristic acid
compounds are 13- or 14-carbon saturated fatty acids that are
cotranslationally added to the N terminus of membrane-associ-
ated proteins and are also common food and cosmetic additives
(68). The libraries tested contained two other myristic acid ana-
logs, 4-oxatetradecanoic acid and 2-hydroxymyristic acid, which
are structurally similar to 12-MDA (Fig. 4G). Interestingly, nei-
ther of these related compounds altered SLC habituation or
sensitivity (Fig. S4), suggesting that the position of the oxygen
residue within the 12-MDA backbone is important for conferring
substrate specificity. 12-MDA has been investigated primarily for
its action in inhibiting virus replication (69, 70), although this is
unlikely to be themechanism underlying its effects on habituation.
12-MDA also has been shown to bind and redistribute Src

family kinases (SFKs) from the membrane to the cytosol (71).
The SFKs Src and Fyn contribute to the scaffolding of the
NMDA receptor complex, and modulate synaptic efficacy by

regulating postsynaptic glutamate receptor expression (72).
Thus, it is conceivable that 12-MDA alters SFK localization,
thereby affecting NMDA receptor signaling and thus reducing
habituation. To further explore this potential functional link
between 12-MDA and NMDA receptor signaling during habit-
uation, we tested whether 12-MDA can modulate the function of
NMDA receptors in vivo. We found that coincubation of larvae
in 100 μM NMDA with 50 μM 12-MDA reversed the SLC ha-
bituation deficit observed after incubation in 50 μM 12-MDA
alone (Fig. 4H). Furthermore, coincubation of larvae in sub-
effective concentrations of 12-MDA (5 μM) and ketamine (50
μM) produced a significantly greater attenuation of SLC habit-
uation than the additive effect of each individual compound at
these doses (Fig. 4H). Similarly, the startle hypersensitivity
phenotype was suppressed by coincubation of 100 μM NMDA
and 50 μM 12-MDA and enhanced by treatment with 5 μM 12-
MDA/50 μM ketamine (Fig. S5). Taken together, these results
reveal a role for a myristic acid analog in learning, and may
suggest new therapeutic approaches to regulating postsynaptic
glutamate receptors.
In summary, our high-resolution behavioral assay has shown

that larval zebrafish robustly exhibit nonassociative learning, with
landmark parametric criteria and conserved pharmacologic
characteristics. By scaling our behavioral assay to screen small-
molecule libraries with high throughput, we have demonstrated
the feasibility of this approach for large-scale genome-wide or
systematic approaches that can identify new compounds with
specific effects on nonassociative learning in vivo. Several small-
molecule screens for basic behaviors, such as sleep/resting and
phototactic responses, have been performed in zebrafish (21, 23).
Importantly, our assay distinguishes between the effects of a
compound on behavioral modulation (e.g., habituation, sensi-
tivity) and alterations in kinematic performance. Given that
deficits in modulation of the mammalian acoustic startle re-
sponse represent an endophenotype common to many neuro-
psychiatric disorders (73–75), future screening with the assay
described here can be applied to distinguish between many ki-
nematic and behavioral processes as the primary target of
already available drugs, and also can be applied toward the
systematic identification of more “behavior-specific” compounds.

Experimental Procedures
All experiments were performed on zebrafish larvae between 5 and 7 days
post fertilization. Fish maintenance, behavioral assays, testing apparatuses,
pharmacologic applications, and behavioral scoring methods have been
described previously (18, 28, 76). Details and any variations in these methods
are provided in SI Experimental Procedures.
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SI Experimental Procedures
Fish Maintenance. The zebrafish (Danio rerio) larvae used in this
study were from intercrosses of Tuebingen long-fin strain pa-
rents. Embryos were collected in the morning and raised at 28 °C
on a 14-h:10-h light:dark cycle. Larvae were raised as described
previously (1). Behavioral experiments were conducted at 5–14
dpf. Larvae tested at 5–6 dpf were raised only in E3, whereas
larvae tested at >7 dpf were fed paramecia beginning on 6 dpf.

Behavioral Assays, Video Recording, and Behavioral Analysis. Dark-
flash–induced O-bend responses were elicited and measured as
described previously (1). Larvae were trained and tested at
a density of 20 larvae per 9 mL E3 in 6-cm Petri dishes and kept
in this dish during training or testing. Larvae were maintained on
a 200- μW/cm2 white light box when not training or testing. For
CHX treatment experiments, 90 μL of 1 mM CHX dissolved in
100% DMSO was added to each dish of 20 larvae in 9 mL E3.
Control dishes received 90 μL of 100% DMSO. CHX/DMSO or
DMSO-only medium was washed out between 15 and 30 min
after the final training session by removing and then replacing 6
mL of the medium with fresh E3 medium 10 times. To evaluate
O-bend responsiveness, images were recorded for the initial 800
ms of each 1-s dark flash.
Acoustic startle responses were elicited and measured as de-

scribed previously (2), with the following modifications. All
startle stimuli were of 3-ms duration, with 1,000-Hz waveforms
of variable intensity. Stimulus intensity was calculated by mea-
suring the approximate displacement of the testing arena caused
by vibration. Subthreshold, low-level acoustic stimuli were de-
signed to elicit a response of w5–20% SLC responses, whereas
above-threshold stimulation typically yielded >75% SLC re-
sponses without causing image distortion from excessive water
disruption. To evaluate SLC behavior, images were recorded 30
ms before and 90 ms after the delivery of the 3-ms acoustic
stimulus. All acoustic behavioral analyses were performed in the
testing arena shown schematically in Fig. 2 B and C, so that
larvae could be tracked and analyzed individually. The 4 × 4
testing grids were laser-cut from acrylic by Pololu Corporation,
and then glued to a circular acrylic base plate (56-mm diameter,
1.5-mm thick; Pololu) with thin acrylic cement (Weld-On #3;
IPS). The base plate was affixed to the inside of a 6-cm Petri dish
lid with a viscous acrylic cement (Weld-On #16; IPS). The Petri
dish lid was then attached to the metal ring with modeling clay.
For image capture purposes, a 96-bulb infrared LED array
(IR100 Illuminator removed from its housing; YYtrade) was
positioned below the testing arena (not shown in Fig. 2). A 3-
mm-thick sheet of white acrylic was positioned w3 cm below the
testing arena to diffuse the IR light. A white LED bulb (PAR38
LED light; LEDlight.com) was positioned above the testing
arena to illuminate the testing arena with white light. Acoustic

startle dishabituation was elicited by gently applying a handheld
poker to an individual larval head while the larva was in the 4 × 4
testing grid.
To evaluate the spontaneous initiation of turning and swim-

ming movements (1), larval behavior was recorded for 60 trials of
400-ms duration at 5-s intervals in the acoustic startle testing
arena, without stimulation.
For all behavioral assays, high-speed video imaging was

recorded using a Motionpro camera (Redlake) at 1,000 frames/s
and a 512 × 512 pixel resolution, using a 50-mm macro lens.
Behavioral analysis was carried out with the FLOTE software
package (1–3).

Pharmacology. For acoustic startle and spontaneous movement
pharmacologic experiments, larvae were preincubated in each
compound for 15 min before and throughout the testing para-
digm. MK-801 (M107; Sigma-Aldrich), N-methyl-D-aspartate
(M3262; Sigma-Aldrich), and ketamine (K-2753; Sigma-Aldrich)
were dissolved in 100% DMSO and administered in a final
concentration of 1% DMSO. The small molecule libraries
screened were the LOPAC-1280 (Invitrogen) and ICCB-BIO-
MOL (Enzo Life Sciences) libraries. For first- pass analysis of
the libraries, we tested eight larvae per compound (two com-
pounds per 16-well grid) at a 1:100 dose from the stock con-
centration (usually 1 mM in 100% DMSO). To increase
throughput, larvae were preincubated in 24-plate wells (eight
larvae per well) while other larvae were being tested. Testing
arenas were rinsed repeatedly with E3 between testing sessions.
The sealed 4 × 4 grid walls ensured that compound mixing did
not occur during testing. To wash out compounds and retest
larvae, 50% of the medium in each well was removed with a Pi-
petman (Eppendorf) and replaced with fresh E3 a total of 10
times over the course of 10–20 min. SLC response curves for
each compound screened were compared with the SLC curve for
48 larvae treated with 1% DMSO on the same experimental day
to identify an increase or decrease in SLC habituation by each
compound tested. Increased SLC habituation was evaluated
during the prehabituation phase. If at least six of eight treated
larvae performed an SLC to the first two prehabituating stimuli
(stimuli 11 and 12) and then showed a robust response decre-
ment to continued acoustic stimulation at a 20-s ISI (stimuli 13–
20), then the compound was categorized as increasing SLC ha-
bituation. To determine a reduction in SLC habituation, we
calculated the ratio of the SLC responsiveness during the last 10
habituating stimuli (stimuli 41–50) to the responsiveness during
the 10 prehabituating stimuli (stimuli 11–20) and compared this
ratio to that in DMSO-treated larvae. Larvae not demonstrating
an SLC response to at least 4 of the 10 prehabituating above-
threshold acoustic stimuli (likely due to toxicity of the com-
pound) were eliminated from the habituation analysis.

1. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish
during light adaptation. J Exp Biol 210:2526e2539.

2. Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:
4984e4994.

3. Burgess HA, Johnson SL, Granato M (2009) Unidirectional startle responses and
disrupted left-right coordination of motor behaviors in robo3 mutant zebrafish. Genes
Brain Behav 8:500e511.
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Fig. S3. CHX treatment does not affect startle sensitivity, short-term habituation, or potentiation of short-term habituation. The 5-dpf larval zebrafish were
incubated in 10 μM CHX/1% DMSO (red line) or 1% DMSO (black line) only for 4 h and then exposed to the startle sensitivity and habituation assay (A) or the
short term habituation potentiation assay (B and B9). (A) Mean SLC response trend to startle sensitivity and habituation assay. (B and B9) Mean SLC habituation
trend during three sets of 20 acoustic stimuli delivered at a 1-s ISI, separated by 3-min rest periods. Similar increases in the rate of SLC habituation during sets 2
and 3 were observed in DMSO-treated and CHX-treated larvae. n = 32 larvae per group for all experiments. Error bars denote SEM.
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Fig. S4. Small molecule compounds affecting SLC habituation do not cause spontaneous hyperactivity (A), enhance startle sensitivity (B), or alter SLC be-
havioral kinematic properties (D–G) in 5-dpf larvae after a 15-min incubation in each compound. (A) Mean initiation of spontaneous turning and swimming
bouts. Spontaneous movements captured by video recording 40 trials of 400-ms duration every 5 s. (B) Mean SLC responsiveness to 10 low-level, subthreshold
acoustic stimuli. (C) Mean SLC responsiveness of myristic acid analogs during the startle habituation assay. (D–F) Mean SLC kinematic properties. The following
concentrations were used: 12-MDA, 50 μM; 2-hydroxymyristic acid (2-HMA), 20 μM; 4-oxatetradecanoic acid (4-OTDA), 20 μM; DMSO, 1%; MK-801, 100 μM;
ketamine, 500 μM; SU-9516, 50 μM. Each concentration represents the optimal dose to modulate habituation or highest, subtoxic dose for compounds not
influencing habituation (2-HMA and 4-OTDA). n = 32 larvae per group for all experiments. Error bars denote SEM.
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Fig. S5. The increased SLC response sensitivity to 12-MDA is modulated by an agonist and antagonist of NMDA receptor function. Mean SLC responsiveness to
10 low-level, subthreshold acoustic stimuli after a 15-min incubation in combinations of varying concentrations of NMDA, ketamine, and/or 12-MDA is shown.
n = 32 larvae per group. *P < 0.01; **P < 0.001, Student t test vs. DMSO group or indicated control group. #P < 0.05 vs. additive effect of 5 μM 12-MDA and 50
μM ketamine groups, Student t test. Error bars indicate SEM.

Table S1. Compounds reducing short-term SLC habituation

Compound Sensitivity Spontaneous movement Description/target/function

MK-801 Increased No effect NMDA receptor antagonist
Ketamine Increased No effect NMDA receptor antagonist
L-701,234 Increased Increased NMDA receptor antagonist
BAY K-8644 Increased No effect L-type calcium channel agonist
Hydrastine No effect Decreased GABA-A receptor antagonist
N-phenylanthranilic acid Increased Increased Chloride channel antagonist
Linopirdine Increased No effect Potassium channel antagonist
Meclofenamic acid Increased No effect Potassium channel antagonist
Butaclamol No effect Decreased Dopamine receptor antagonist
Phenoxybenzamine Increased No effect α-Adrenergic receptor antagonist; calmodulin

antagonist
Etazolate Increased No effect Phosphodiesterase 4 inhibitor
SU-9516 No effect Decreased Cdk1, Cdk2, and Cdk4 inhibitor
12-MDA Increased No effect Myristic acid analog

Incubation of 5 dpf larvae in each of these drugs for 15 min before and during the acoustic startle sensitivity and habituation assay
significantly reduced SLC habituation. Each compound also was evaluated for its influence on SLC sensitivity to low-level, subthreshold
stimuli as well as the spontaneous initiation of turning and swimming bouts to evaluate baseline activity levels.

Table S2. Compounds enhancing short-term SLC habituation

Compound Compound target/function

cis-4-Aminocrotonic acid GABA-C receptor agonist
5-α-THDOC Positive allosteric modulator of GABA-A receptors
Allopregnan-3α-ol-20-one Positive allosteric modulator of GABA-A receptors
Citalopram hydrobromide Selective serotonin reuptake inhibitor
Pirenperone 5-HT2 serotonin receptor antagonist
Ritanserin 5-HT2 serotonin receptor antagonist
Urapidil Selective α-1A adrenoreceptor antagonist
BMY 7378 dihydrochloride Partial 5-HT1A serotonin receptor agonist; α-1D adrenoreceptor

antagonist
Prazosin hydrochloride α-1 adrenoreceptor antagonist
Yohimbine hydrochloride α-2 adrenoreceptor antagonist
Verapamil Potent L-type calcium channel antagonist; adrenoreceptor antagonist
Nimodipine Potent L-type calcium channel antagonist
cis(+/−)-8-OH-PBZI hydrobromide D3 dopamine receptor agonist
Trihexyphenidyl hydrochloride Muscarinic acetylcholine receptor antagonist
Olprinone hydrochloride Phosphodiesterase 3 inhibitor
Ammonium pyrrolidinedithiocarbamate Nitric oxide synthase inhibitor
Chelerythrine chloride Protein kinase C inhibitor
Indirubin-39-oxime Cdk inhibitor; GSK3B inhibitor
Kenpaullone Cdk inhibitor; GSK3B inhibitor

Incubation of 5-dpf larvae in each of these drugs for 15 min before and during the acoustic startle sensitivity and habituation assay
caused robust habituation under nonhabituating conditions (prehabituation phase).
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Movie S1. SLC startle responses during startle sensitivity and habituation assay. The 5-dpf larvae were exposed to 60 repetitive acoustic stimuli at varying
intensities and ISIs, described in the top panel. Images were captured at 1,000 frames/s, and the video was captured at 10 frames/s. The video shows movement
of 16 larvae from 30 ms before to 30 ms immediately after exposure to the acoustic stimulus. The time bar represents relative time within this 60-ms period,
and “bump” indicates delivery of a 2-ms long stimulus. Arrow on top indicates stimulus within assay.

Movie S1

Movie S2. SLC startle responses after incubation in DMSO or MK-801. The 5-dpf larvae were incubated in either 1% DMSO (four larvae on the left) or 100 mM
MK-801/1% DMSO (four larvae on the right) for 15 min, and then exposed to an above-threshold, loud acoustic stimulus. Images were captured at 1,000
frames/sec, and the video was captured at 10 frames/s. The video shows movement of eight larvae from 30 ms before to 30 ms immediately after exposure to
the acoustic stimulus. Time bars represent relative time within this 60-ms period, and “bump” indicates delivery of a 2-ms stimulus.

Movie S2
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