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We show that in networks with a hierarchical architecture, critical dynamical behaviors can emerge

even when the underlying dynamical processes are not critical. This finding provides explicit insight

into current studies of the brain’s neuronal network showing power-law avalanches in neural

recordings, and provides a theoretical justification of recent numerical findings. Our analysis shows

how the hierarchical organization of a network can itself lead to power-law distributions of avalanche

sizes and durations, scaling laws between anomalous exponents, and universal functions—even in the

absence of self-organized criticality or critical points. This hierarchy-induced phenomenon is

independent of, though can potentially operate in conjunction with, standard dynamical mechanisms for

generating power laws.VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793782]

Many real-world networks are hierarchically organized
into layers of modules and submodules, one prominent
example being the neuronal network of the human brain.
A central but still largely unexplored question is how an
underlying hierarchical structure can affect a network’s
dynamical behavior. In this paper, we develop a renorm-
alization analysis to uncover some important implications
of hierarchical architecture in a network. Our main
result reveals the interesting role of hierarchy in generat-
ing robust power-law behavior in networks, a fact which
helps explain recent results on neuronal cascades in
human brains. In addition, we show that other properties
of these networks are consistent with the experimental
data on brain networks and suggest new experiments to
improve our understanding of brain networks and behav-
ior. The ideas developed in this paper should be broadly
applicable to many other network settings which exhibit
a hierarchical modular (HM) structure, ranging from
engineered to biological to social systems.

I. INTRODUCTION

The existence and interpretation of power-law distributions

in physical, biological, and social systems are an important and

sometimes controversial10 subject. While power laws may

potentially signal the presence of underlying critical dynamics

in a system (i.e., self-organized criticality3 or a critical point), a

variety of other processes—including some commonly used

data sampling, filtering, and thresholding methodologies—have

also been found capable of generating power-law-like behav-

ior.4,21,25,28,29 Hence, power laws are suggestive of, but not con-

clusive evidence of, critical behavior. The issue of criticality is

particularly relevant to current experimental studies of neuronal

avalanches in brain networks, where it is being vigorously

investigated.4,5,14,28,29 A definitive determination of criticality

would have important implications for our understanding of

brain function and neural information processing—but when

and whether criticality can be properly inferred from experi-

mental power-law data remains an unsettled and sometimes

contentious matter.

In this paper, we introduce an interesting new wrinkle (and

obstacle) to the detection of standard models of criticality in

brain networks and related systems. There is a strong evidence

that the neuronal network of the brain, like that of many real-

world networks (e.g., protein networks, genomes, modern soft-

ware design, VLSI chips, business organizational structures, the

internet, social networks13,15,17–19), is not “flat,” but rather hier-

archically organized into layers of modules and submodules.

We show here how the HM architecture of a network can natu-

rally induce several of the hallmark signatures of criticality—

including not only power laws but also relationships between

different scaling exponents—even if the underlying dynamics

is simple and non-critical. We do this by constructing a simple

prototype of a hierarchical modular network (HMN) and carry-

ing out a renormalization-inspired analysis.

Our finding of a structural mechanism capable of gener-

ating power laws provides explicit insight into recent obser-

vations of realistic networks of spiking neurons6,26 which

suggest that power laws seem to be enhanced by the presence

of a hierarchical modular structure in the underlying net-

work. We remark that the presence of this structural mecha-

nism does not rule out the possibility that observed power

laws in a network may also have a dynamical origin—in

fact, the two effects might work in tandem as suggested by

Refs. 26 and 30—but it does raise the bar for proof for prop-

erly ascribing the origin of power-law behaviors in neuronal

networks with hierarchical structure. Our work, for example,

provides theoretical support for recent numerical observa-

tions30 showing that hierarchical structure can improve the

robustness of observed criticality. We also show how a

network’s hierarchical modularity can obfuscate even

sophisticated attempts to assess the origin of critical behav-

ior. For example, a recent study by Friedman et al. involving

cultured cortical networks looked beyond simple power laws

and instead turned to universal scaling exponents and
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functions for more definitive evidence of intrinsic critical-

ity.14 However, we demonstrate here that a network’s hier-

archical structure is also capable of producing similar

(universal scaling) results, and hence even these more so-

phisticated measures can be inconclusive.

Note that the distinction we draw between structurally

versus dynamically induced criticality is not formally sharp,

since in a general network there is always interplay between

the network’s structure and the intrinsic dynamics of its nodes,

and both contribute to its overall behavior. However, in the

following, we will demonstrate the existence of critical behav-

ior which is driven mainly by the network’s (HM) structure—

i.e., criticality appears in HM models whose intrinsic nodal

behaviors are so simple that they would be incapable of gener-

ating critical avalanching in ordinary (non-HM) networks

(such as a regular lattice). This distinction is particularly rele-

vant, since to date most analyses of critical avalanching in the

brain (with the notable exceptions of Refs. 26 and 30) have

looked to intrinsic nodal dynamics (of the sort commonly

associated with self-organized criticality) as being the root

source of the criticality, rather than the network structure

itself. Our finding shows that a hierarchical modular structure

in a network can be an equally important contributor to crit-

icality. This is particularly germane to current studies on the

brain, where at the micro-scale level it is widely believed that

groups of 80–120 neurons are organized into minicolumns,

and groups of 50–100 minicolumns are organized into col-

umns;9,16 at higher levels, there is evidence from both cyto-

architecture and MRI of modular structure.8,16

II. HIERARCHICAL MODULAR NETWORKS

To begin, we define a HMN to be a network whose nodal

connections are such that it naturally decomposes into a nested

series of (possibly self-similar) modules. Here, we present a

basic random HMN model motivated by the work of Refs. 26

and 30, among others.1,17,31 While this model and its subse-

quent analysis can be easily generalized in many ways, for il-

lustrative purposes, we focus here on a simple, restricted

version. We consider a random HMN organized into sets of

modules at different levels k ¼ 0…k̂. Each module at level k,

denoted Mk, is composed of r “children” modules (with

r � 1). Each such child moduleMk�1 itself contains r children

modules, and so on. At the lowest level in this nested hierarchy

are the M0 modules, each containing a single node. Note that

each module Mk at level k (for k < k̂) has a unique “parent”

module Mkþ1, and that the size of Mk is jMkj ¼ rk. At the top-

most level in the hierarchy is a single module Mk̂ that contains

all the nodes (see Figure 1(a)). Note that one can easily gener-

alize this model and our subsequent analysis (at the cost of

additional notation) in several ways, including allowing r to

vary by module and truncating the branching structure asym-

metrically to create unbalanced trees.

Edges between nodes are added based on their level of sepa-

ration within the hierarchy, so nodes in the same module are

more likely to be connected to one another than to nodes in

distant modules. Given any 2 nodes v; v0 let Kðv; v0Þ to be the

smallest k such that v; v0 2 Mk. Add an edge between v; v0 with
probability pk ¼ aqk�1, where k ¼ Kðv; v0Þ; we call this a

“level- k edge.” We let dk denote the expected number of level-k

edges per node, and dk the expected number of level-k edges

from an entire Mk�1 module to sibling modules within Mk. Note

that since a moduleMk�1 contains r
k�1 nodes, dk ¼ dkr

k�1.

We now consider what happens if we impose a very

simple, seemingly non-critical dynamical process on such a

HM network (i.e., so simple that—were the network just a

regular lattice—no critical (SOC-like) behavior would be

generated). We will illustrate with a rudimentary nodal-

dynamics process originally used to study disease (or rumor)

propagation.2 In particular, we assume that a single random

node fires and sends signals to each of its neighbors which

can be in one of two states, primed or quiescent. If primed, a

neighbor will fire upon receiving the signal and then become

quiescent; if quiescent, it will not fire. This activity may

propagate through the network, generating an avalanche.

Though simple, this dynamical model captures the fast time-

scale behavior of integrate-and-fire models under the simpli-

fying assumption that the phases are set at random and

ignoring the effect of repeated triggerings.20,26

III. AVALANCHING IN A HMN

A. A non-HMN example

Our goal is to understand the nature of the network ava-

lanches that can result from simple underlying dynamical

FIG. 1. HM structure and renormalization procedures (a) schematic of a hierarchical modular network. Shown is a HMN with r¼ 9, k̂ ¼ 2, and

d1 ¼ 2; d2 ¼ 2=9; d1 ¼ 2; d2 ¼ 2. Dots represent individual nodes (level-0 modules); each 3� 3 grouping of nodes is a level-1 module M1 (small square); a

3� 3 grouping of M1 modules forms an M2 module (large square). Level-1 edges (solid lines) connect nodes within a given M1 module; level-2 edges (dashed

lines) connect nodes from different (i.e., “sibling”)M1 modules within a given M2 module. (b) First step of renormalization procedure: only edges between the

giant components of the level-1 modules are retained. In the figure, d̂2 ¼ 4=3 < d2 ¼ 2. (c) The reduced network. Here, the giant component of each M1 is

contracted into a single meta-node (large dot).
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processes like that described above in networks with a HM

structure. For comparative purposes, first consider these

same dynamics on a non-HM network: an Erdos-Renyi ran-

dom network with n � 1 nodes and edge probability p.

Letting q denote the probability of a node being primed, the

statistics of the avalanching process can be computed from

the statistics of the connected components of the subnet-

work generated by removing each node with probability

1� q (Figure 2). If the average degree of the subnetwork

d ¼ nqp > 1, then the network will consist of a giant

component of approximate size nqh(d), where h(d) is the

solution of

h ¼ 1� e�dh; (1)

all other components will be small, O(log(n)) in the worst

case and O(1) on average.12 If d ¼ nqp < 1, then all compo-

nents will be small (O(log(n))). Therefore, when d > 1, the

dynamical avalanches will also have an essentially bimodal

distribution: with probability h(d) a single firing neuron will

trigger a large avalanche of size nqh(d), while with probabil-

ity 1� h(d) the avalanche will involve a negligible fraction

of the nodes, O(log(n)/n). When d < 1, all avalanches will

contain a negligible fraction of the nodes. In either case, this

example shows that, for non-HM networks, when the under-

lying nodal dynamics is sufficiently simple, then the result-

ing avalanching distribution (as described by the distribution

of connected components) tends to be bimodal or trivially

unimodal, but not critical. (We remark that while power-law

scaling does appear exactly at d¼ 1, this is a non-generic

special case that is not relevant to the analysis.)

B. HMNs: A renormalization approach

The above example foreshadows a key difference

between most standard (non-HM) network behaviors22 and

HMNs: As we demonstrate next, if a network has a HM

structure, then even if the underlying nodal dynamics is

extremely simple (as above), the resulting avalanching

behavior naturally scales over a wide range of sizes, and

under some parameter specifications the distribution of

connected components formally satisfies a power law. In

this way, the hierarchical structure itself can induce

behavior which mimics that of self-organized criticality.

Hints that this might be possible can be found in a some-

what different context—hierarchical percolation models—

where some similar-in-spirit behaviors appear (e.g., Refs. 7

and 23).

Our analysis of the distribution of connected components

in a HMN is based on a renormalization-inspired approach.

The intuition behind this approach is as follows: Starting from

the lowest level in the network hierarchy, one recursively gen-

erates a series of renormalized (i.e., “reduced”) networks by

treating the largest connected component in each module (at a

given level) as a single “meta-node” in a reduced network

(see Figures 1(a)–1(c)). This level-by-level iterative approach

is possible because of the system’s underlying hierarchical

structure, wherein intra-module connections dominate inter-

module connections. Analysis of these renormalized networks

will yield the desired component distribution. For ease of ex-

position, in what follows we will omit some of the details of

these calculations, but note that rigorous error bounds can be

computed for r � 1, which is the main case of interest.

We begin our analysis of HMNs by recalling that a mod-

ule Mk has rk nodes, so each node in Mk has a “level-k

degree” dk, where

dk ¼ rkpk ¼ raðrqÞk�1
(2)

on average, neglecting O(1/r) terms. Assuming rq � 1, we

see that nodes have many more edges at level k than at k0 for

k < k0, allowing the system to be treated level by level. In

our iterative renormalization scheme, at level k, we contract

each module Mk�1 into a single “meta”-node of a reduced

network. We define the level-k degree of these meta-nodes

inside Mk to be dk, where dk ¼ dkr
k�1. As noted previously,

in terms of the original (non-reduced) network, dk represents

the expected number of edges from all nodes in module

Mk�1 to nodes in its sibling modules in Mk.

This allows us to compute the distribution of component

sizes. First consider some M1 with only the level-1 edges.

There is a giant component with rhðd1Þ nodes; the remaining

components are all negligible in size. Next, we consider

some M2 and a reduced network where all nodes in the giant

component of each child M1 are contracted into a single

meta-node and, importantly, the remaining nodes in M1

ignored. The key insight is that the effective average degree

for nodes in this reduced network is d̂2 ¼ hðd1Þ
2
d2, not d2,

since nodes not in the giant component have been discarded.

There are rhðd̂2Þ meta-nodes in this reduced network which

corresponds to r2hðd1Þhðd̂2Þ actual nodes. We continue this

iterative process as we work our way up through each level

of the hierarchy: Defining fk to be the fraction of nodes in the

giant connected component (at level k of the reduced net-

work) and d̂k to be the effective average degree of these

FIG. 2. Relationships between dynamics and structure. (a) Initial state of system. Gray nodes are primed; white quiescent. (b) If the node in upper left corner (black,

with gray border) fires, it generates an avalanche (black nodes) by spreading along edges. (c) The subnetwork attained by removing the quiescent nodes from the

network in (a). An avalanche beginning at a given node in the subnetwork will propagate and encompasses the entire connected component containing that node.
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nodes (discarding nodes not in the giant component), we

have

fk ¼ hðd̂kÞfk�1 (3)

and

d̂k ¼ f 2k�1dk; (4)

with initial condition f0 ¼ 1 (see Figures 1(a)–1(c)).

To compute a discretized component distribution for the

HMN, for each k � k̂, let Sk be a giant component (of the

reduced network) at level-k and note that

sk ¼ jSkj � rkfk (5)

up to poly-logarithmic factors. Starting from a random ini-

tial node, the probability of being in some Sk is given by

fkð1� hðd̂kþ1ÞÞ for k < k̂.

Now, suppose that the pk’s are chosen so that d̂k is con-

stant for all k (so that the hierarchical structure is self-similar),

in which case hðd̂kÞ ¼ b, fk ¼ bk, and sk � ðrbÞk. The proba-
bility that a randomly chosen node is in a component of size

sk ¼ jSkj or larger is approximately bk. (To see this, note that

the fraction of nodes in components of size sk is b
kð1� bÞ for

k < k̂ and bk̂ for k ¼ k̂. Thus, the fraction of the nodes in

components of size sk or larger is

Xk̂�1

j¼k

bjð1� bÞ þ bk̂ ; (6)

which simplifies (via telescoping) to bk.) Thus, the cumula-

tive tail distribution is FðskÞ ¼ bk, and the preceding formula

for sk shows that k ¼ lnðskÞ=lnðrbÞ. Writing x ¼ sk this

implies that FðxÞ ¼ blnðxÞ=lnðrbÞ, and thus the cumulative tail

distribution is

FðxÞ � x�s (7)

for s ¼ jlnðbÞ=lnðrbÞj, demonstrating the existence of a

power law distribution for the simple models of avalanches

presented earlier (see Figures 3(a) and 3(b)). Hence, we see

that a HM structure alone (without intrinsic critical dynam-

ics) is capable of mimicking a key attribute of a critical

dynamical system. We note that in simulations finite size

effects are clearly evident, which is to be expected since one

needs modules that are large enough to display stable giant

components and multiple hierarchical levels to attain the

power law. Observe too from the figure that for d̂k ¼ 2, it

shows the expected step behavior while for d̂k ¼ 1:38 it does

not. This effect arises from the relative steepness of the slope

of the function hðd̂Þ for an Erdos-Renyi random graph,

which leads to large fluctuations in the size of the giant com-

ponent, overwhelming the steps that would normally arise.

Generally speaking, we note that steps become more pro-

nounced as both r and b increase, as long as b is not too

small, while the precise interplay between r and b is compli-

cated. (A simple estimate shows that the fluctuations are pro-

portional to r�1=2 and the derivative of hðbÞ at b.)

FIG. 3. Comparison of numerical and theoretical results for HMNs with

r¼ 100, k̂ ¼ 3. (a) Log-log plots of the cumulative tails versus (fractional)

component size. The upper set of lines are for d̂ k ¼ 2, with the solid line from

numerical simulations and the dashed line representing the theoretical

(renormalization-based) prediction. The lower set of lines are for d̂ k ¼ 1:38.
Both sets display good agreement between the theory and simulations. Note

that d̂ k ¼ 2 shows the expected step behavior, while d̂k ¼ 1:38 does not, as

discussed in the text. (b) Same as in (a), except with the numerical data aver-

aged over 100 randomly generated HMNs; the error bars show a single stand-

ard deviation. (Note that extremely small error bars are not shown.) Note that

although the d̂ k ¼ 1:38 data are smoothed by random fluctuations and do not

exhibit the step behavior, nonetheless one can see strong linearity in the main

region (before the edge effects take over), clearly exhibiting power-law behav-

ior. (c) Average path lengths and average eccentricities for d̂ k ¼ 2.
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We also mention that our analytical identification of a

hierarchical mechanism responsible for generating/enhanc-

ing power laws provides some intuitive foundations for the

numerical and analytical findings of Ref. 30. (In that numeri-

cal work, an analogous but different hierarchical model is

used, which has the advantage of producing cleaner numeri-

cal results.)

Note that the above computation is valid at discrete val-

ues of x (x ¼ sk for 0 � k � k̂); however, it is easy to see

that the distribution consists of discrete steps. Nonetheless, it

can be viewed as a (continuous) power law as it is both upper

and lower bounded by a polynomial with exponent �s, for-

mally FðxÞ ¼ Hðx�sÞ in Bachmann–Landau notation.

HM networks can also display a second key attribute of

neuronal avalanches at a critical point noted by Friedman

et al.,14 namely, the existence of sub- and super-critical phases

arising from varied parameters. Observe that the requirement

that d̂k is independent of k implies that q ¼ b�2r�2 in the def-

inition pk ¼ aqk�1. Now, if q > b�2r�2, then the network

will be supercritical and there will be a true giant (containing

a non-vanishing fraction of the nodes) component in the limit

k ! 1, while if q < b�2r�2 then the system will be subcriti-

cal and all components will remain small in that same limit.

We note, however, that for a HMN this transition can be either

relatively sharp (akin to a critical point) or more broadened

(where the power-law-like behavior persists, akin to SOC sys-

tems) depending on the details of the limiting process r ! 1
and k̂ ! 1.

In addition to the size distribution of avalanches, one

can also study their temporal distribution. Let t be the total

number of (fast) time steps in an avalanche and G(t) its

cumulative distribution function. For our simple dynamic

process, the duration of an avalanche starting out from a spe-

cific node is equivalent to the eccentricity of that node in its

connected component. In the following, we compute this ec-

centricity assuming that hðd̂kÞ ¼ b for all k, although the

more general case is still tractable.

Recall that the eccentricity of a node is the longest

(shortest path) distance from that node to another one in its

connected component. The diameter of such a component is

the largest eccentricity. Thus, for a specific component, the

average path length (APL) is smaller than the average eccen-

tricity which is smaller than the diameter. Note that for an

Erdos-Renyi random graph with rb nodes and average

degree d̂ , asymptotically the diameter, average path length,

and eccentricity, denoted here ‘diam; ‘apl; ‘ecc, are all of the

form

‘� ¼ c� logðrbÞ=logðd̂Þ; (8)

where capl < cecc < cdiam.

We first compute the APL using our renormalization-

inspired approach, similar in spirit to that in Refs. 1 and 31

and paralleling that above. Specifically, we estimate the av-

erage path length kk in our HMN between two connected

nodes v; v0 with Kðv; v0Þ ¼ k. To begin, observe that the APL

between two nodes in the (giant component) of the same M1,

considering only level-1 edges, is k1 ¼ ‘apl. Next, we

renormalize this level, combining all the nodes in each giant

component of M1 into a single meta-node and then repeat the

analysis for level 2 by only considering level-2 edges. This

yields k2 ¼ ‘apl þ ð‘apl þ 1Þk1. In general, we get the recur-

sive formula

kk ¼ ‘apl þ ð‘apl þ 1Þkk�1 (9)

(see Figure 3(c)).

To compute the average eccentricity wk of a node in a

level-k component, we consider the level-k reduced (i.e.,

renormalized) network and the specific path that gives the

eccentricity in this reduced network. On average, to get from

the initial node to the farthest node, one must (i) make ‘ecc
hops between different Mk�1 modules, (ii) take kk�1 steps

within each level-(k� 1) module, and (iii) traverse wk�1

edges in the last module. This leads to the following recur-

sive formula for the average eccentricity

wk ¼ ‘ecc þ ‘ecckk�1 þ wk�1 (10)

(see Figure 3(c)).

Thus, for r � 1, the duration of the avalanche corre-

sponding to a component at level k is of order ‘kapl. Recall that
such a component has approximately ðrbÞk nodes and arises

with probability bkð1� bÞ. Thus, we see that GðtÞ 	 t�a, a

power law distribution with exponent a ¼ logðbÞ=logð‘aplÞ,
yet another standard signature of critical dynamics originating

here not from underlying critical processes but rather from the

underlying HM structure.

A third distribution which is often studied in critical sys-

tems is hSiðtÞ, which is the expected size of the avalanche

given its duration. In the limit of large r, this expectation

converges to ðrbÞk for durations of order ‘kapl, thus

hSiðtÞ 	 ðrbÞlogðtÞ=logð‘aplÞ ¼ t1=r; (11)

where

1=r ¼ logðrbÞ=logð‘aplÞ; (12)

another power law (see Ref. 14 for comparison).

As discussed in Refs. 14 and 27, general scaling theory

predicts the identity

a=s ¼ 1=r: (13)

Observe that our exponent computations above satisfy pre-

cisely this result in the large r limit. (For comparison with

Ref. 14 and related papers, note that we consider here cumu-

lative distribution functions rather than the probability distri-

bution functions which add 1 to the exponents.) However,

whereas recent experimental results on universal scaling

exponents and functions in neuronal avalanches on cortical

slices have been cited as evidence of critical dynamics, in

light of our new findings one must also consider the potential

influence of an underlying HM network structure (particu-

larly as one goes from small experimental samples to larger

brain networks).

An additional prediction of critical theory considers the

scaling of the function S(q, t) which is the average number of

013135-5 E. J. Friedman and A. S. Landsberg Chaos 23, 013135 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

165.82.208.176 On: Wed, 04 Mar 2015 00:29:05



nodes “firing” at time q for an avalanche with duration t. The

prediction is that

Sðq; tÞ 	 t1=rHðq=tÞ (14)

for some universal function Hð
Þ. Figure 4 shows the simulation

estimate of Hð
Þ for two different values of t that differ by

approximately a factor of 30, t 	 1000, and t 	 30 000. The

two estimates for Hð
Þ are reasonably similar considering the

scales involved; we would expect increasingly better agreement

for larger values of k̂ based on the recursive structure of the

HMNs. Thus, non-critical dynamical processes on HMNs

appear to exhibit universal functions like those that arise for

critical dynamical processes,14,27 but probably require

extremely large systems for convergence. Unfortunately, due to

the discreteness of the component sizes, it is computationally

prohibitive to analyze a wider variety of avalanche sizes with-

out increasing both r and k̂ which require extremely large net-

work simulations to analyze.

IV. DISCUSSION

In summary, we see that simple non-critical nodal dy-

namics in networks with a hierarchical modular structure can

display many of the hallmarks of critical dynamics. An im-

mediate implication of this finding is that hierarchical struc-

ture cannot always be treated as merely a passive player in

the generation of critical dynamics in a network, but rather

requires a careful analysis. This is particularly relevant for

current experimental studies of neuronal avalanching in

brain networks, where it is quite possible that both hierarchi-

cal structure and intrinsic critical dynamics are at play and

that the two effects are mutually reinforcing, thereby magni-

fying the “criticality” of the observed behavior, a result

consistent with the recent numerical experiments and analy-

sis.26,30 Our analysis, thus, provides direct theoretical insight

and underpinnings into those numerical findings by identify-

ing the simple mechanism at work in HM networks that

contribute to their observed critical behavior (see Ref. 30

for a related analysis which utilizes a somewhat different

approach). However, rather than solely serving to enhance

any intrinsic critical dynamics that a network may have, a

second possibility, fully consistent with our findings, is that

hierarchical structure in neuronal networks might itself be

responsible for generating critical behaviors even in the

absence of intrinsic critical dynamics. Indeed, there are

ongoing discussions in neuroscience about seemingly con-

tradictory experimental observations regarding the exis-

tence of critical behaviors like SOC in neuronal networks.

For example, the work of Dehghani et al.11 suggests that

there is no power-law scaling of neuronal firings (at the

neuronal level), whereas others such as Petermann et al.24

do find evidence of power laws at the level of the local-field

potentials (LFPs). Our work suggests that findings about

the presence or absence of critical behavior may depend on

the spatial scale within the hierarchical structure that is

being considered.

Finally, we remark that while our emphasis has been

on understanding the influence of hierarchical modular

structure on the dynamics of brain networks, HM architec-

ture is also found in a great variety of engineered and natu-

rally occurring networks (e.g., social networks, computer

chips, genetics, the structure of large corporations, etc.).

Thus, our finding of a structural mechanism capable of

inducing power-law-like behavior should be broadly appli-

cable to a host of other systems with a HM structure.
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