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Behavior of coupled automata

Reuben Ganh Jessica VenableFEric J. Friedmarf,and A. S. Landsbefd
W. M. Keck Science Center, 925 N. Mills Avenue, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, USA
2School of Operations Research and Industrial Engineering, 206 Rhodes Hall, Cornell University, Ithaca, New York 14853, USA
(Received 29 April 2003; revised manuscript received 21 October 2003; published 29 April 2004

We study the nature of statistical correlations that develop between systems of interacting self-organized
critical automata(sandpiles Numerical and analytical findings are presented describing the emergence of
“synchronization” between sandpiles and the dependency of this synchronization on factors such as variations
in coupling strength, toppling rule probabilities, symmetric versus asymmetric coupling rules, and numbers of
sandpiles.

DOI: 10.1103/PhysRevE.69.046116 PACS nun)er05.65:+b, 45.70-n, 05.45-a

I. INTRODUCTION in sandpiles and random walks, and a calculation of the two-
point correlation functions for the system. These in turn pro-
Automata models displaying self-organized criticality vide the basis for the discussion and interpretation of our
(SOO have received enormous critical attention over the lashumerical findings in Sec. IV. Section V summarizes our key
15 years, and have been used as a paradigm for modelifgsults, and discusses certain unresolved issues and limita-
statistical behaviors of a vast assortment of physical systeni&#ns of the methodology we employed.
[1,2]. Given that physical systems are rarely found in com-
plete isolation(e.g., consider a network of weakly interacting Il. SURVEY OF NUMERICAL RESULTS
earthquake fauljsit is quite natural to ask how one system
(described by an SOC automaton modelght influence the
behavior of a second automaton if the two are allowed to Our study will focus on systems of coupled one-
interact with one another. Despite our considerable knowldimensional directed automai@andpiles with stochastic
edge to date about individuéisolated SOC automata, sys- toppling rules. The individual sandpiles are one-dimensional
tems of interacting SOC automata have been much less wdhttices (chaing of length M, where each lattice sitgi
studied, and comparatively little is known about the statisti-=1, ... M} contains some integral number of graims If
cal effects associated with interactions. Recently, it has beetfie number of grain; at any site exceeds a certain critical
demonstrated that if two two-dimensional “sandpile” au- capacityh. (we takeh.=4 for conveniencg then that site
tomata are weakly coupled to one another, then the sandpilgll topple, spilling one or more grains to its neighboring
will exhibit a remarkably high degree of synchronization in sites(either on its own chain or a neighboring cheatcord-
their avalanching behavidcf., in any given avalanche, the ing to some probabilistic rules.
root-mean-squar@ms) fractional deviation of the avalanche =~ We focus for the moment on the operation of a single
size between the two sandpiles approaches zero regardlessabfain in isolation(which is solvable[5]). In this case, the
the weakness of the coupling3]. This strong correlation specified toppling rule is as follows: An unstable lattice site
only manifests itself on large spatial scales, and has beef.e., with h;>4) will spill either one grain or two grains to
dubbed “large-scale synchrony.” The intention of this paperits neighbor on its immediate right with probabilitipg, p,,
is to examine the behavior of interacting automata more fullyrespectively(wherep,+p,=1). The original site will con-
and in a wider range of contexts than has been done previinue to shed grains through this toppling process until it
ously. Towards this end, we will examine statistical correla-eventually stabilizes H;=<4). If the neighboring site to
tions in systems consisting of 2—20 coupled one-dimensionakhich the grains have been transferred becomes unstable as a
sandpile automata, and study how the onset of strongesult of this process, it in turn begins to topple, and the
correlations/synchrony is affected by variations in coupling“avalanche” continues its rightwards march along the chain.
strength, dynamical toppling rules, number of automataThe avalanche will either terminate on its own naturally or
symmetric versus nonsymmetric coupling, and identicalneswiill stop when it reaches the right end of the chairhere it
versus nonidenticalness of the individual automata. is assumed that any grains spilled from the rightmost lattice
This paper is organized as follows. Section Il introducessite simply drop off the chainWe define the total “size'N
the coupled sandpile models, and presents a broad survey of an avalanche to be the total number of grains spilled as the
numerical results. Section Ill presents several basic analytresult of the addition of a single grain to the system.
cal calculations for a two-sandpile system: a description of To initially configure the sandpile, we start the lattice off
the underlying probabilities which define the structure of thein an arbitrary, quiescent statdy,&4 for all i). A single
SOC state, the relationship between the avalanching procegsain is then added to a randomly selected site and the re-
sulting avalanchéif any) is allowed to run its course. Once
the system returns to a quiescent state, another site is se-
*Corresponding author. lected at random for seeding. By repeatedly seeding the
Email address: landsberg@physics.claremont.edu sandpile in this manner, transient behaviors are eliminated

A. Introduction to basic model
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—_— H H ! !
I OO OO0 grain to each'lspy. (The parameterp Y are the analogous
quantities defined for when the toppling site is on chain)
\ The virtue of this formulation is that the parameters/
provide convenient measures of the coupling strength be-
Chain A’ Oo—CO—"—CO—"—0O—"—C0CO——0 tween the two sandpiles, sinceqf=9'=0 the sandpiles are

dynamically independent of one another, whileyify' =1,
then they are “fully coupled”(in that whenever any site
topples, it spills the same number of grains to each sanjipile.
By choosingy#y' we can explore the case of asymmetric

and the system enters the SOC state. In all discussions th&UP!ing as well. We mention that while the special case we
follow it should be assumed that this preliminary seeding®® considering here for the toppling rulbased on four
process has been carried out. If additional grains are noWldependent parameteysy,p’,y’) is more restrictive than
added to the sandpile, the frequency of avalanches as a fun@Ur original formulation\which employs six independent pa-
tion of their size exhibits the familiar power-law scaling be- rameters it is only nominally so, in that the overall meth-
havior of SOC[6], F(N)~1/N?. For the case of a single ©odology is easily generalizabléin fact, while most of our
isolated sandpile, the critical exponentds-4/3 (indepen- ~humerical simulations will employp,p’,,y" for conve-
dent of the spill probabilitiep, ,p,, providedp,#0,1). The  hience, all of our analytical calculations will use the more
behavior of this type of one-dimensional SOC sandpiledeneralp,z,p,z formulation)
model appears sufficiently generfd] to serve as a good We now turn to numerical observations about the statisti-
basis for a study of interacting SOC automata, as we nowal behavior of interacting automata.
describe.

Systems of interacting automata may be constructed by  B. Synchronization in a two-chain system with weak,
coupling together two or more of the basic one-dimensional symmetric coupling
sandpiles described above. Coupling is achieved by modify- As a prelude to other results which follow, we review the

ing the topplmg rules SO that a site on a given Saf?dp"e $asic synchronization behavior of two sandpiles which are
capable of spilling grains not only to a neighbor on its own eakly coupled to one another in a symmetric fashion
ﬁ

FIG. 1. Depiction of two interacting lattices. The arrows indi-
cate the possible spilling directions for an above-critical &iép-
resented by a filled circje

Sca'n’ bu{jalsfq tct) tr;1e|ghbor|n]9t3|te§ ?n ”et?fby Chg'nls a§_lyvek v=1v'<1) as studied for a deterministic model in RE3].
€ consider first iné case ot two Interacting sandplies. 1akegs 4ins are dropped one at a time onto randomly selected

two one-dimensional lattices, each of lendih and place sites on either sandpile, and the resulting avalanches are

them ,side b.y side, as, shown in Fig. (;:all t_hese chaing ._monitored. For each drop, we record the dizef the result-
andA’.) As in the previous case of a single isolated sandplleing avalanche(i.e., the total number of grains spilledas

assume all srges are stable_ provided they contain no MONGell as the individual contributions to this total coming from
thanh.=4 grains. The toppling rules are as follows: If a site

. . ) ? . g each of the two chain®,,Ns (Where No+Npy =N). A
i on chainA topples, it can spille grains to site+1 on A

X > ; - representative plot dfl5 vs N4 is shown in Fig. 2. The high
and B grains to sitei+1 on A’ with probability p,z. the b P A A g g

| i babilities f i e ad concentration of data points along thig andN,. axes for
analogous spill probabilities for a toppling site @1 are g, ayalanche sizes indicates that small avalanches on each

denoted as p,,. For simplicity we assume that ganqgnile are essentially uncorrelated with one another. For
P10:P20,P11:P22:P10:P20:P11:P22 ar€ the only nonzero spill |arger avalanches, the correlation in the avalanching between
probabilitieS, although this will not affect the generality of the two Sandp"es not 0n|y becomes Stronw one m|ght
our results. also naturally expegt but in fact becomes so strong that a
When p,z=p,, for all .8, the two sandpiles are gov- |arge event on one sandpile is almost always concomitant
erned by the same probabilistic rules and we will refer to thisyith an approximatelgqual sizeevent on the other sandpile,
as thesymmetriccase. Lastly, we will often work with a as evidenced by the pronounced tendency towards the diag-
special case of the above toppling rule, whereupon we introonal in the graph at large scales. The graph thus depicts the
duce four free parametegsy andp’,y’ [all of which lie in  emergence of the phenomenonlafge-scale synchronfor
the range(0,1)], and demand that our eight toppling prob- |arge avalanche§.e.,No~N,/). (We remark that this isot
abilities p,z,p,z are of the special formp,o=p(1—7v).p20  a saturation effect associated with finite lattice Size.
=(1-p)(1— ), pr1=pY,p20=(1—p)7y, and similarly for Note that reducing the strength of the couplitg be-
the primed variables. The parametgry and p’,y' lend tween the sandpiles does not destroy the large-scale syn-
themselves to a simple interpretationis the probability that  chrony, but merely delays its ons&s can be analytically
spilling grains from a toppling site on chafwill cross over  demonstrated through a dynamical renormalization analysis
and hit the other chaiA’ (hence 1-y is the probability that as described in Ref3]). What happens is that even though
the spill does not cross overp is a probability associated on a microscopic level the two chains are only weakly
with one-grain spills orA; 1—p is associated with two-grain coupled[4] via the local toppling ruleg0<y<1), a renor-
spills on A. The quantitiesp and y should be viewed as malization analysis shows that the effective coupling
independent. So, for example, the probability that when a&trength between the sandpiles increases as one views them
site onA topples it spills one grain to its own chain and noneon larger and larger spatial scales, thereby producing the ob-
to the other isp(1—17), while the probability that it spills one served synchrony.

046116-2



BEHAVIOR OF COUPLED AUTOMATA PHYSICAL REVIEW EG69, 046116 (2004

10 1 = : T
7 09 'Y=001 |
o' ---- y=0.03
7 08 I
] e\ e v=0.05
07} Vi H
SR U - =0.07
3 06l Y g
] = 0.5 ‘\ \\
Vi
04l W
03| N
N
\.
0.2 )
(K13
" " s
10° 10° 10' 10° 10° 10* 10° 10° 107
N

FIG. 2. Large-scale synchrony. Plot illustrates dependence of. FIG. 4.'The_e1:fect_of,foupllng strength qn“s’ in the symmet_—
- . . . ric case withy=+v', p=p'=0.5. As the coupling between sandpiles
avalanche composition on size in a two-chain model for

. . . is reduced, the onset of large-scale synchrony between sandpiles is
v=19'=0.05, p=p'=0.5. Note in particular the strong correlations 9 Y y P

(i.e., No=N,/) for large avalanches despite the weak coupling; thelOUShe‘j back to progressively larger length scales.

much more frequent smaller avalanches are relatively uncorrelated.

Typical lattice sizes used in the simulations ranged from 50 000 t&ally synchronous behaviof (,~0) at large spatial scales.

200 000. (We point out that since the generation of reliable statistical
data for very large avalanche sizes is a numerically taxing

Numerically, one can examine the root-mean-square fragProcess, it proved useful to employ a binning procedure of

tional deviation betweeiN, andN,. as a function of total the data when generatirigys plots like the one shown. In the

avalanche sizé&\, figure, avalanches between simeand 2n were binned to-
gether Note that the rms fractional deviation is chosen for

(Na—Np/)? simplicity; other more sophisticated measures of correlation
fims= | oy could also serve this purpose, and might be interesting to
(Na+Nar) study.

We now turn to our main focus, an examination of how
where the bracketg-) indicate an average over all ava- such statistical correlations between automata are affected by
lanches of a given total si8]. Figure 3 clearly depicts how various systematic changes, e.g., modifications to toppling
uncorrelated small avalanche (s~ 1) give way to statisti- rules, system parameters, boundary conditions, number of

automata, etc.

1

09

08

071

031

021

01

C. Coupling strength effects in a symmetric two-chain system

If the coupling strength in a symmetric two-chain system
(above is varied, the onset of large-scale statistical syn-
chrony will be affected. Figure 4 illustrates this relationship
in terms of the associatefl,,s plots; a delay in onset of
synchrony as the coupling is reduced is clearly seen. To
quantitatively study this dependency we choose some thresh-
old f e, @nd define the onset of large-scale synchrony to be
when thef s curve drops below this cutoff. In the discussion
which follows we usef .= 0.5 unless otherwise indicated.

A plot of avalanche size at onsidt,se:as @ function coupling
strengthy is shown in Fig. a). As noted, decreasing the
coupling strength pushes back the onset of synchronization
to progressively larger length scales. The asymptotic shape
of this curve in the weak-coupling regime is shown in Fig.

FIG. 3. The root-mean-square fractional deviation betwign ~ 9(b). The curve(at least superficiallyappears to be fit rela-
and N, vs the total avalanche sizeNENA+N,), for  tively well by a power law:Ngns 7y 9, where g=1.4
y=v'=0.05, p=p’=0.5. Note that the fractional deviation ap- *=0.1. This point proves to be somewhat subtle and we will
proaches zero at large avalanche size, corresponding to the devéeturn to this issue in more detail in the analytical discussion
opment of the strong correlations seen in Fig. 2. of Sec. IV. We mention here that exploring this weak-
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FIG. 5. (a) Onset of synchronization as a function of coupling
strength for the symmetric two-chain case witkp’=0.5, (b)
Blow-up of graph in weak-coupling regimen a log-log scale A
numerical power-law fit is shown.

FIG. 6. (a) Plateauing rms curves for systems wijtkp’' =0.5
for the asymmetric case/#y'). Note that the plateauinfy,,s value
increases agy—v/| increases(b) Same as ina), but for different
choices of coupling parameteys: y', p=p’=0.5. In addition to the
asymptotic plateauing behavior already noted, local minidips)

. . . . . . . inthef,,scurves are clearly visible in the intermediate rang&lof
coupling regime is a numerically intensive process, since

synchronization only sets in at very large avalanche size, anghg avalanche size, they no longer asymptotically approach
large avalanches occur only infrequently. Yet good statisticakzero at large spatial scales. Rather, they each eventually pla-
data for the large avalanches is precisely what is required faeau at some value between 0 and 1, indicating that during
a reliable determination off,s and Nonser. Additionally, as  large avalanches more grains are spilled from one chain than
one decreases the coupling strength, the lattice sizes usedtine other. Qualitatively this is as expected, since the unequal
the simulationgto accommodate the increasingly large ava-coupling strengths imply that one chain is more “generous”
lanche$ must also be increased to ensure that boundary efwith its spilled grains than the other. FiguréBdepicts the
fects do not distort the resulf3]. fims curves for a different set of coupling-strength values.
Here, we again see the eventual plateauing behavior at large
D. Synchrony in an asymmetrically coupled two-chain system  Scales, but now a pronounced dip with subsequent rebound is

We next consider the system’s behavior when the Couglearly_ visible t_)efore th_e plateau _is reach(ael.s_imple ex:

. o L planation for this numerical result is described in Sec. IY B.
pling between the two sandpiles is not symmetyig,y’. For
convenience we still assume=p’ (this proves to be a rather
mild restriction, and in the analysis of Sec. Ill we take up the
general case wheye#p'). Our numerical findings for asym- We consider again the case of a symmetrically coupled
metric coupling are illustrated in Fig. 6. Figuréabshows two-chain system, and examine the distribution of sandgrains

the f,s curves for one set of coupling-strength values. Ob-in the SOC state. Letting; denote the fraction of sites con-
serve that while thé, s curves tend to decrease with increas-tainingi grains (=1, . . . ,4), Bble | below illustrates some

E. Sandgrain distribution

046116-4
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TABLE I. Depicts the fraction of lattice sites containing 4, 3, 2, and 1 grain, respectively. Note the good
agreement between the theoretically computed values and the simulation results across a broad range of
coupling-strength values.

R numeric theory numeric theory numeric theory numeric theory
Chain parameters  F} Fa F3 F3 F> F; F1 Fi

v=0.0 0.669 0.667 0.332 0.333 0 0 0 0
v=0.04 0.641 0.641 0.333 0.333 0.0125 0.0128 0.0136  0.0128
vy=0.07 0.622 0.623 0.334 0.333 0.0233  0.0218  0.0212 0.0218
v=0.7 0.396 0.392 0.329 0.333 0.137 0.137 0.138 0.137

sample numerical results for several different values of the Ill. ANALYTICAL CALCULATIONS AND RELATED
coupling-strength parameter (at fixed p=0.5). Numerical RESULTS

values given are reproducible to an accuracy~af 0.004.
(The theoretical predicted values appearing in the table wilgi
be discussed in Sec. Il B.

We next present several analytical results along with plau-
bility arguments that will prove useful for understanding
the behavior of a system of two interacting sandpiles. We
note that the formal calculations all readily generalize to
F. Multichain systems, site restrictions, and related higher-dimensional systems of interacting sandpitésimi-

observations lar type, in support of our earlier contention that the one-
flimensional automata that we study here are sufficient to
pture many of the important features of higher-
imensional interacting automata. These results will then be
sed in Sec. IV to interpret many of our earlier numerical
indings.

We have also studied several other generalizations whic
we briefly describe here. More details on these special cas
can be obtained directly from the authors; all can be ana-
lyzed using the same general framework developed in thi
paper.

We first mention"site-restricted: automata, which are
identical to those studied here except that now only some
fractionr <1 of the lattice sites are capable of spilling grains  In this section we calculate spill probabilities associated
to the other chain; the remainder can only spill to neighborwith the critical sites ;=4) of the two-sandpile model of
ing sites on their own chain. The sites capable of cross spillSec. Il A. This in turn will provide us with a description of
can be periodically or randomly located along each chainthe underlying structure of the SOC state of the interacting
The motivation for studying site restrictions comes fromautomata. 3 . _
considering spatially distributed SOC systems which happen Let W, be the probability that if we drof grains onto a
to only be linked at a few select sites, as might naturally peeritical site on chairA |t_W|II spill out exactly_l_<_gra|ns, while _
expected to occur in real physical systems. Numerical obse®k: Yk, andz, are defined as the probabilities that the site
vations show that strong correlations between site-restricte$ill SPill exactly k+1, k+2, or k+3 grains, respectively.
automata develop at large scales even for the case of sevéfeduivalently,wy is the probability that a critical site will
site restriction (<1), a result which might be anticipated in éturn to criticality following the addition ok grains;x is
light of the analysis to be presented in Secs. Ill and IV. Forthe probability that it will end up one grain below criticality
such systems, the effective coupling strength between th&thi=3), yi that it ends at two below criticality, anj at
automata is determined by the quantity. three below criticality} This accounting |s.suff|C|er.1t, since,

We also considered the statistical correlations betweefP’ the models we are considering, a site thakigrains
three interacting sandpiléaon-site-restrictedwhere the top ~ above criticality will always spill at leask, and at mosk
and bottom chains can spill grains directly to the centert3, grains. We define spill probabilitiesy ,xy ,y ,z; for
chain, though not to each other. The center chain can spill téritical sites on chairA’ analogously. Our goal is to calcu-
either the top or bottom chain. In this case numerical simulate these spill probabilities in terms of the underlying top-
lations show that the chains synchronize, with the middlepling rule probabilitiespig,p20,011,P22.P10:P50:P11+P22-
chain having twice the number of events as either the top or We start with the observation that addikggrains to a
bottom chain, due to the effect of the middle chain havingcritical site is equivalent to first adding—1 grains to the
twice the linkages of the tofor bottom chain. site and then adding one additional grain. Thus, for example,

Lastly, we simulated models with 10 and 20 chains withthe probability that the addition df grains to a critical site
symmetric, nearest-neighbor coupling between chains foresults in exactlyk grains spilled out iswg=wy_1p1g
both periodic and nonperiodic boundary conditions. As ex-+Xx_;. Continuing this procedure yieldst,=w_1(p2o
pected from general considerations to be described later p11) +Yk—1, Yk=2Zk—1, Zx=Wk-1p22. (The corresponding
large-scale synchrony was observed in all these systemeegcursion relations for critical states on ch#ih are gener-
with the synchrony between any two chains setting in atted analogouslyNote thatw, + x,+y,+z,=1 for all k and
progressively larger avalanche sizes the farther the twdhat the “initial conditions” for these relations arev;
chains were from each other. =p10,X1=pP2ot p11,Y1=021=p,,. Since these recursion

A. Spill probability calculation

046116-5
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relations are linear, they are readily solvable and thus exadhe individual sites. Note however that this does not prove
expressions forwy,Xy,Yk,z¢) in terms of the initial condi- that successive avalanches are uncorrelated, something
tions can be found. However, we are primarily interested invhich is generally not true for deterministic SOC systems,
the largek limit (corresponding to the SOC regime in which although it might appear plausible for this specific case.
large avalanches ex)stFor our purposes then, it suffices to
note that if the recursion relations are reexpressed in matrix
notation, then the associated recursion matrix has one eigen- o S
value equal to unity; its three other eigenvalues all have We next indicate how avalanching in single one-
modulus less than unity, and hence are unimportant in thdimensional directed sandpile can readily be interpreted as a
asymptotic regimek—o. Consequently, the solutions Stochastic process. Given a drgpf a single grain onto
(Wi, Xk, Yk,Z) become independent &ffor largek. We find ~ some site leX;=0 be the random variable representing the
number of grains spilled by the sitesteps away from the
drop site. Note that the infinite sequenceX
=(X1,X,,X3, ...) can beviewed as a random walk with O

as its absorbing state, since X{=0 thenX;=0 for all s
(This approximate equality becomes exact in the limit>t. By the analysis in Sec. Ill AX;—X;.1|<3, and, be-
k—oo; we denote the limiting values a®., ,X..,Yx,Z».) cause of grain conservation, the expected number of spills at
These are the spill probabilities for the critical sites of thea site conditional on the number of spills at the previous site
automata upon the addition &fgrains. As described next, is given by,E[ X, 1|X;]=X; (whereE[ -|-] denotes the con-
this result will prove useful for understanding the structure ofditional expectatiopy so the sequence corresponds to a fair

C. Connection to random walks

(Wie, Xi, Y1 Zi) =~ (1,1-p10,p22:p20) (2

2—piot2p2

the SOC state. random walk [Note that one can show this directly by com-
bining the analysis in Sec. lll A with that in the preceding
B. Grain distribution in the SOC state section, by explicily computing E[X;|X;=]]

_ 4 _ —K) =+ (—3w.
We show here how resulR) above can be used to extract =21 E[X 1] X0 her s =KIPr(hey =k) =+ (= 3w g
—2Xj_3— 1y} 3= 0z _3) Z.+ (=2w;_,— 1X;_,—0y; »

information about the underlying structure of the SOC state
of the system. Recall first that the spill probabilities ¥ 12-2) Yot (= 1Wj_1+0Xj_ 1+ 1y; 1+27) 1) X+ (OW;
(Wi, %, ,Yi,2,) were originally defined solely in terms of +1X+2yj+3z)w...] Hence, for large values oX; (as
how acritical site (at h,=4) would respond to the addition &rise in large avalanchethis sequence can be approximated
of k grains:w, was the probability that it would return to by @ Brownian motior{15].

criticality, x, that it would end up one below criticalitat We would like later to exploit this direct association be-
h;=3), etc. However, since these probabilities are indepentween avalanching behavior in a single sandpile and Brown-
dent ofk for largek, these results also hold fany site (h; ian motion. Unfortunately, for theoupledsandpile case this

=1, 2, 3, or 4—not just for critical sites. To see this, con- connection to Brownian motion breaks down. However, as
sider a site that is initiallym grains below criticality, ah; ~ we will see later, ideas from renormalization theory allow us

=4—m. If k grains are added to it, the first grains will ~ to apply these ideas to understand multichain systems.
simply bring the site up to criticality. So when the remaining
k—m grains are added, the probability that the now critical D. Two-point correlation functions

site will return to criticality when it sheds the excess is In this section we derive our final analvtical result. the
Wy _n. However, sincew,_,,~w, for large k, wy in fact ! lon w ve our i i U,

describes the probability that an arbitrary ditetially at or two-pqint correlation funqions for our system of interacting
below criticality) will end up being critical after a large num- sandpiles. These correlation functions describe the expected

ber of grains are added to it, as claimed. In turn, it follows"umber of times a given site will topple as a result of adding
that if the automata is in the SOC state, we can interpret thé Single grain to some other specified site of the system.
asymptotic Sp||| probab"'twvx in result (2) to be the prob_ More pI’ECIse|y, suppose we dI’Op a S|ng|e grain onto a site on
ability that a randomly selected site on chainwill be criti- ~ chainA. ThenP(i,A) is defined to be the expected number
cal, whilex..,y..,z. give the probabilities that a site on the of times that the lattice site oilocated exactly units to the
chain contains 3, 2, or 1 grains, respectively. Thus the underight of the initial drop site will toppleP(i,A") is defined as
lying distribution of states of the automata is fully revealed.the expected number of times that the corresponding site on
A comparison between the predicted fraction of critical sitesA’ locatedi units from the initial drop site will topple.
and numerical simulations is given in Table (Note that Analogously, if instead a single grain is added to a site on
minor discrepancies between theory and numerics are exhain A’, then the correlation functiorP’(i,A’) [resp.
pected owing to finite lattice size and finite sample gize. P'(i,A)] denotes the expected number of topplings induced

In addition, we note that due to the directed nature of theat a sitei units away on chai®\’ (resp.A). [Note: by defi-
system the grain distribution is independent between sitesiition, the correlation functions describe the expected num-
This can be shown formally by constructing the Markov ber of times a site topples, not the total number of grains
chain representing the grain size distribution at all sites andpilled from the site. Recall that a site can spill between one
showing that the invariant distribution for the entire systemand four grains each time it topples, as described in Sec.
can be written as a product of the invariant distributions ofll A. ]
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The correlation functions may be derived from the general TABLE II. Depicts asymptotic value of the rms fractional de-
observationas described by Dhaf 3]) that, for automata in Vviation for different realizations of the asymmetric intersandpile
the SOC state, the average rate at which grains enter ardpupling. Note the good agreement between the numerically com-
given site must equal the average rate at which they leav@uted and predicted values.

(see alsd14]). A straightforward calculatioffas in Ref.[3])

yields Values ofy fASYMPIOeThaory Simulation Result
P(LA)=Ci+ A, P(,A")=Cy—Co\l) 3 r-09v-01 0.67797 0.67770
y=0.9,9'=0.5 0.17391 0.17363
where ¢;,C,,c3,A are constants which are readily deter- ¥=0-2: 7::0'7 0.10526 0.10517
mined. (For symmetric sandpiles;;,c,,c; are all equa). ¥=0.0.7 ,:0'07 1.00000 0.999 95
Since|\|<1 (except for trivial cases the limiting behavior ~ ¥=0.04,%'=0.7 0.82914 0.82874
of the correlation functions far from the drop sitex(1) is
transparent P'(i,A"),P’(i,A) are found similarly (as is easily checkedthe average flux of grains emerging
from the distant site is n, . Likewise, the average flux out
IV. DISCUSSION OF NUMERICAL FINDINGS of a distant site on chaiA’ is c3n,: . (As an aside, we note

that the average rate at which particles are transferred from a
We now use the analytical results of Sec. Il to interpretgiven distant site o\ to A’ is equal to the average transfer
many of the original numerical findings of Sec. Il. For ex- rate at distant sites from’ to A, a finding consistent with
ample, we will be able to explain the plateaus and dips seethe existence of large-scale synchrony between the sand-
in the f, s curves for nonsymmetric sandpiles, and the ob-piles) Continuing, the key observation is that the ratio of the
served dependence of the onset of synchronization on integverage flux out of a distant site @ato the flux out of a
sandpile coupling strength. distant site omM’, namelyc,na/c3nas , is equal to the ratio
of the total number of grains spilled by sites énto the
number spilled by sites oA’ during a given avalanche,
namelyN, /N4. . Using this fact along with the readily com-
First we note that one might anticipate the emergence oputed values o€, ,c5 in Eq. (3), the rms fractional deviation
large-scale synchrony between coupled sandpiles as illugs;,s given by Eqg.(1) may be reexpressed as
trated in Figs. 2 and 3 of Sec. IIB from the two-point
correlation functiongas in Ref.[3]). Observe that for>1 fasymptote_ NarANA=Naa NAY
and symmetric coupling, P(i,A)~P(i,A")=P’'(i,A) rms
~P’(i,A"). This implies that dropping a grain at some site
affects distance sites on either chain equally strorigly ~ This result gives the expected plateau levels seeff.jg
averagg i.e., as the avalanche propagates down a chairplots[e.g., Figs. 6a) and @b)].
memory of whether the initial drop was onto chafnor Table 1l compares the theoretical predicted and observed
chainA’ is lost. This is constant wittand suggestive dthe ~ values of the plateaus fgr=p'=0.5. (The observed values
observation of large-scale symony between sandpiles are numenpally repro_dumbl_e to abqutO.QOO 02) The
wherein the rms-fractional deviation drops towards zerc?dreement is strongMinor discrepancies will result from

; ; ; finite lattice size and sampling effedts.
(Fig. 3), though it does not prove itA stronger argument - :
would utilize a dynamical renormalization group analysis, as Lastly, recall[Fig. &b)] that, for certain ranges of param-

in Ref. [3].) eter values, there appear prqnounced c_lips infthe plots .
TR before the asymptotic plateauing behavior emerges. At first
o i . glance this might seem surprising, but the origin of these
B. Plateauing in asymmetric sandpiles dips is readily explained. For illustration, consider two asym-
The key numerical finding of Sec. Il D is that if two sand- metrically coupled sandpiles, where sandpheis very
piles are asymmetrically coupled, then the system only parweakly coupled t&\” (i.e., 0<y<1), and sandpilé\" is even
tially synchronizes, as evidenced by the plateaus observed Bjore weakly coupled té (i.e., take the extreme case where
large length scales in the associateg plots [Fig. 6@]. ¥ =0). Thus, when a site o topples, it has a very low

This behavior can be well explained using the two-point corProbability of spilling grains toA’ (during any single
relation functions, as we now describe. topple, and when a site oA’ topples, it never spills grains

For simplicity we work with the auxiliary parameters ONtOA- NOw suppose we drop grains onto sandgilenly.
sy (see Sec. Il A and definensa=(2—p)y, N Any small avalanches that result will almost always be en-
v . AA'— » HATA

i N _ _ p tirely confined taA, in which casd ,s[Eq. (1)] will approxi-
:(2,_p )y’ Ma=(2=p)(11y), and na=(2-p")(1 mately equal unity. On the other hand, for very large ava-
). . . o lanches, most of the toppling sites will be Ah, notA (since

To begin, suppose a single grain is initially dropped onto+ 1aceives from. but never spills back #). f,,,. will again
some site on chaii. (We will assume that for these sand- an5r0ach unity for this case as well. Novvr,m?here must be
piles p10=p10,P20= P20, P117 P11.P227 P22-) The expected  some intermediate size avalanches for which the number of
number of topplings this initial drop will induce at some toppling sites on each sandpile is approximately equal; for
distant site on chair is, according to Eq(3), ~c;. Since  this intermediate casd,,s will be approximately zero.
each time a site oA topples it spills an average ofy grains  Hence, the overall shape of tHg, plot as a function of

A. Basic synchronization

4

nA!AnA+ nAA/I’lA/
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avalanche size will drop to zero somewhere in the middlenow in a position to understand these numerical findings
All of this presumes that the initial grains were dropped ontomore fully.

sandpileA exclusively. Had the initial drops been onto sand- We begin by noting that one approach to this problem
pile A" instead, then no dips would have been seen, sinc&ould be to attempt to directly express the fractional devia-
f.ms Would have been pinned at unity for all avalanche sizedion fmsas a function of coupling strength. This proves to be
(sincey’=0). In our actual simulations, the initial drop site difficult for the following reason. From the definition of the
was chosen randomly from among both sandpiles. Hence wi0-point correlation functions(i,A),P(i,A),P"(i,A),
would expect to see a partial dipot all the way to zerpin P’(i,A) of Sec. lll D, it follows that the expected number of

the f.... curve, as was indeed the cdsdg. 6(b)]. grainslemerging from a s_it_e on.sandpﬂeiue to the a_xddjtion
ms dssg. 6b)] of a single grain to a sité units to the left onA is just

P(i,A)n,, while the expected number of grains emerging
from the corresponding site oA’ is P(i,A’)n,, . (Analo-

In Sec. Il C we described results from numerical simula-gous quantities can be defined if the initial grain is instead
tions illustrating how variations in coupling strength affect dropped onto sandpila’.) By summing up the grain contri-
the onset of synchronization for symmetrically coupled sandbutions from all affected sites, it might thus appear that the
piles (Fig. 5). Using the analytical results of Sec. Ill, we are rms fractional deviation could be expressed as

C. Onset of synchronization vs coupling strength

1[=,P(i,A)ny—3P(i,A")ny
fims= o ) )
2\ 3iP(i,A)ny+ 2 P(i,A")Nnp

2

2 1(ziP'(i,A)nA—EiP'(i,A')nA, 2
+ , ©)

2P (i, A)np+ZP'(i,A")nas

where the summation overruns up to some appropriately coupled sandpiles, |@y) scales likey; hence it follows that
chosen cutoff valudi.e., since the sum should be over af- in the limit of weak couplingj gnser~ 1/7.

fected sites only However, while the above expression does Next, we must relate the characteristic lengjfyeto the
indeed qualitatively reproduce thé,, curves seen in characteristic sizl,,s;0f an avalanche at onset of synchro-
simulations—including the plateauing behavior and the dipgization Nonsei"€presents the total number of grains spilled
found for asymmetric-coupling case—it nonetheless fails tol0 do so, we recall our earlier findin@ec. 111 © which
provide a quantitatively accurate description. The underlyinglemonstrated that the avalanching process for a single sand-
reason is that the quantitie®(i,A),P(i,A’),P’(i,A’), Pile could be viewed as a fair random walk; however, by
P’(i,A), representing the expected number of topplings at Lenormalizing across the two sandpiles, the large-scale joint

particular site if a single grain is added elsewhere, do nopehavior is expected to be that of a fair random walk. Refor-

take into account the correlations which exist between topfmlatmg the problem as a fair random walk, we ask the

pling sites during a given avalanch@Ve mention that the following: if a random \(valkt_ar takes a to_t"?" Obnset steps
. . . before returningfor the first timg to the origin, what is the
existence of such correlations between the number of grains

spilled by different sites during a given avalanche is not al otal integrated areaN) of the walker's position vs time
) A . . o lot? This is readily estimatedrom well known properties
odds with our earlier finding that the invariant distribution y d brop

. -~ of Brownian motion as follows: giveni s Steps in total,
distributi ¢ the individual sitesH | Mhe walker's typical distance from the origin will scale like
istributions of the individual sitesHence an alternate ap- Viomset SO the integrated area will scale B§neri2 ..

proach is reqqired. , . Combining this with the preceding result, we therefore pre-
Towards this end, we first observe that the two-point cor-i.t that

relation functionsP(i,A),P(i,A"),P'(i,A"),P'(i,A) all de-

cay as\', according to Eq(3). We thus make the plausible

(though formally unprovenassumption that synchronization 1

between the sandpiles will set in as the quantitpecomes Nonset™ 37 (6)
sufficiently small. [Note: an explicit expression fok in Y

terms of the underlying toppling probabilities is readily ob-
tained by following the steps leading to E&). For the case
of symmetrically coupled sandpildgp=p’,y=7'), this ex-
pression simplifies nicely to.=(1—7)/(1+17).] Setting \'

=€ (wheree<1 represents a small, but nonzero, parameter
and solving fori, we see that~ — 1/log(\). Henceforth we
refer to thisi value asi s Since it should be regarded as
the characteristic lengtfi.e., number of sitgsat which the In the present work we have provided a numerical survey
two sandpiles first synchronize. For weakly, symmetricallyof observations about the behavior of systems of interacting

This result agrees reasonably well with the numerical scaling
exponent found in Sec. Il Gsee in particular Fig.(®) [17]].

V. CONCLUSION
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SOC automata, and have shown how many of the essential Lastly, our analysis leading to the scaling relati@n re-
features of the emergent statistical synchrony between adied on two-point correlation functions and a random walk
tomata can be understood using a variety of analytical toolsanalysis, and provided a simple and intuitive heuristic for
We conclude this report by pointing out several featureginderstanding the system’s behavior. As suggested by an
which our analysis has not adequately addressed, along wigonymous referee, our independence result of Sec. IlI B
several interesting questions which remain, as of yet, unarfdemonstrating that the invariant distribution for the system
swered. could be written as a product of invariant distributions for
First, it has previously been demonstratede Ref[3]) the |nd|V|QUaI siteptogether with t_he Abe_llan nature of our

that self-organized criticality is not in fact an essential fea-N0d€l might be used as a starting point for a potentially

ture of the automata models for the emergence of Iarge-sca[@orfa d|rect(and perhaps more ngoro).;slenvaﬂon c.’f the
synchrony. Indeed, the introduction of dissipation into theseScallng relation, as follows: Drop a grain on san_dp!\l@nd .
automata models destroys the SOC but not the Iarge—scafIOW the avalanche to complete on that sandplle, lgnoring
synchrony; determining the necessary and sufficient criteri or the moment any spills onto the other sandpile. Then re-

for the appearance of large-scale synchrony in automata rg—;at this procedure on sandpAé for each of the grains that

. , : . o
mains an open question. Second, although one can use ren d spilled f_romAtoA : Contmue th's process until it Stops.
hen one might apply a central limit theorem to compute the

malization arguments heuristically for certain portions of our i . i . .
analysis, we do not know of a satisfactory renormalizationasyrm)m.tIC splll_p_r Obab'“t'.es.' However, the analygns of this
process is nontrivial, as this is a stochastic branching process

procedure for the probabilistic sandpiles studied here. In parp X : .
ticular, certain parts of the techniques used in RESSL8— wherein the number of random variables in the sum could

20] are not especially well suited to these models and woulcfjepe”d on the realizations of those variables. In addition, as

need to be significantly modified. Third, our measures Opoted in Sec. Il B, it is not c;lear that there are no temporal
' correlations among sequential avalanches, which would also

synchrony between sandpiles have relied primarily on indi- d lati th d iables in th
cators such as two-point correlation functions and mean sc pauce correfations among the random variabies in the sum.
hus one would need a generalization of the central limit

lars such as the rms fractional deviation. A deeper under- ; oo . .
standing of the nature of synchronization involving higher-theorem for the an_aly5|s_, which is p_ossnble but nontrl\_/lgl.
order correlations among sites, such as multipoint correlatio@‘on?theless’ we th!n.k this approqch is extremely promising
functions or conditional expectations, would seem to be par- espite these nontrivial complications.

ticularly valuable. In addition, it would be interesting to
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