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PHYSICAL REVIEW A, VOLUME 63, 035601
Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials

M. Crescimanno
Department of Physics and Astronomy, Youngstown State University, Youngstown, Ohio 44555-2001

A. S. Landsberg
W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711
(Received 3 March 2000; published 5 February 2001

Recently, Schmidt and SchnapRhysica A260, 479(1998], following earlier references, reiterate that the
specific heat oN noninteracting bosons in a one-dimensional harmonic well equals tidtohinteracting
fermions in the same potential. We show that this peculiar relationship between heat capacities results from a
more dramatic equivalence between Bose and Fermi systems. Namely, we prove that the excitations of such
Bose and Fermi systems aspectrally equivalentTwo complementary proofs of this equivalence are pro-
vided; one based on a combinatoric argument, the other from analysis of the underlying dynamical symmetry

group.
DOI: 10.1103/PhysRevA.63.035601 PACS nuntBer03.75.Fi, 05.30.Ch, 05.30.Fk, 05.30.Jp
[. INTRODUCTION on properties of the dynamical symmetry group of these sys-
tems.

With the advent of dilute atomic BE(Refs.[1-3]) and
degenerate dilute atomic Fermi g6, there is renewed Il. COMBINATORIC APPROACH
interest in understanding aspects of quantum many-body . ) ] )
theory in inhomogeneous(in particular, harmonically The spectral equivalence of one-dimensional, noninteract-

trapped systems. Since trapped, cooled atoms have propef?d harmonically-trapped bosonic and fermionic gases can be
ties that are, in principle, controllable to a degree unavailabl&nNderstood through a straightforward combinatoric analysis

in other systemse.g., clusters and nucleithey present new ©f €nergy-level multiplicities. _
opportunities to study quantum mechanics and many-body N @ System ofN noninteracting particlegbosons or fer-
theory. mlong in a harmpnlc well, Igt the energy Ievell\‘ of theh

Although the ultracold dilute atomic gas systems are larg@rticle be specified by the integey, with E=X e the
compared to the coherence lengths, they are not homogéQtal energy of the systeniNote: In writing the energg; as
neous, due to the fact they are generally trapped(imearly an integer, we are settinfgw=1, and for notational conve-
harmonic potential. In many of these systems the interpardience are ignoring the constant 1/2 associated with the
ticle forces are significant. In this Brief Report, however, weSingle-particle ground-state energflearly there are many
ignore the interactions between atoms, with the aim to bettedlifferent microconfigurations possessing the same total en-
understand the thermodynamic propertieNafappednon-  ergy E; we let Gy(E) denote the multiplicity of states with
interacting bosons and fermions. Recent wofK,8] de- fixed energyE. We will show that the multiplicity functions
scribes surprising relations between the equilibrium thermofor bosons and fermions are equivalent. More precisely, we
dynamics of these two systems. It was shown, for exampleshow that GR**°TE) =G™°TE+N(N—1)/2], indicating
that the heat capacitfas a function of temperaturef N that the multiplicities for the Bose and Fermi cases are iden-
noninteracting bosons in a one-dimensional harmonic poterfical provided each is measured relative to its respective
tial is the same as that & noninteracting fermions in an ground-state energji.e., 0 for bosons andN(N—1)/2 for
identical potential. Likewise, the respective energies and paifermions. This equivalencebetween multiplicity functions
tition functions for these systems are closely relatede is sufficient to show that the excitation spectra of the bosonic
Refs.[8] and[9]). and fermionic gases are, in fact, identical.

These “coincidences” provide hints that a deeper under- We begin with the Bose case. We imagine orderingNhe
lying connection exists between Bose and Fermi gases in particles from lowest energy to highest, (e,,...,ey). The
one-dimensional1D) harmonic well. In particular, the heat energy of the lowest-energy particle;§ can range from
capacity and partition functions, as functions of the inversezero up to a maximum value pE/N], where the bracke{s]
temperatures, can be thought of as an “imaginary time” denote the integer part of the expression enclogkdis
continuation of a Fourier transform of the spectrum. The facteadily seen that if the energy of thewestenergy particle
that the heat capacities are the same for all temperaturggere to exceed this maximum value, then the sum of the
suggests that there should be a state-for-state, level-for-levehergies of thé\ individual particles would exceed the total
correspondence between these noninteracting many-bodpecified energ¥ of the system).
bosonic and fermionic systems. We show that this is indeed For a fixede;, the remaining energ —e; must be di-
the case, and below describe two independent proofs of théded up amongN—1 particles. So the possible values of
spectral equivalence of excitations in these systems. The firsb, which represents the lowest energy among the remaining
is based on a combinatoric argument, while the second religd\N—1) particles, can range fromy, to [(E—e;)/(N—1)].
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(As before, it is clear that i€, went outside this range, then . DYNAMICAL SYMMETRY GROUP APPROACH
the sum of the energies of tie— 1 particles would exceed
the prescribed value—e;.)

Proceeding in this fashion, we see that

We next present an alternative description of this isomor-
phism between bosonic and fermionic systems based on the
dynamical symmetry group.

[E/N] [(E-e)/(N-1)]  [(E-e;—ep—-—ey_p)/2] Clqssical!y, a system lolf\I noniljter_aclting particles in a
Gboson gy = 3 s D 1 one-dimensional harmonic potential is identical to that of a
N e;=0 ey=e; eN_1=EN_2 ' single particle in aiN-dimensional isotropic harmonic poten-

tial. The system thus has an obvious spaDé&N) symmetry
A similar argument is used to construct the multiplicity We call “angular momentum.” However, it is apparent with
function for the fermionic case. The fundamental distinctionmore introspection that the system possesses a much larger
stems from the additional constraint that two fermions candynamical symmetry group. Orbits in tiNedimensional iso-
not occupy the same energy orbital, which in turn modifiestropic harmonic potential do not precess. In analogy with the
the lower and upper bounds in the above summations, as weepler problem, we say that there is a conserved Runge-
now describe. Consider first the lower bounds. From the extenz vectoriwhich may be thought of as the axis of the orbit

clusion principle, it immediately follows that the lowéer-  in configuration spage and we thus expect the symmetry
mionic) bounds must take the forg=e;_;+ 1. The upper group to be enlarged.
limits are found by noting that for a system Nffermions Since we will be interested in the quantization of the sys-

with total energ)E, the energy of the lowest-energy fermion tem, we describe this dynamical symmetry using operators of
cannot exceed(E—N(N—1)/2)/N], as a straightforward the associated quantum theory. To simplify notation, we take
calculation reveals. Consequently, we find hw=1 as before. Label the raising and lowering operators
for the bosonic theor)aiT, a;, respectively, with =1,...N.
The canonical commutation relatioff®r the bosonic case
are|[ a ,a}r]zéij . The many-body Hamiltonian operator of
this noninteracting system HinaiTapLe, wheree is an
overall constant that we suppress throughout.
1 We call the space of the eigenvalues of aiai the state
space. Equivalently, the state space is the integer lattice in
. . L. . .. the (+,--,+) quadrant ofN-dimensional Euclidean space.

Although neither the bosonic nor fermionic mth'p“C'ty State space is not the Fock space, but is a useful auxiliary
fU”Ct'?err‘mi'f easily evaluated, the gquwalence@_ﬁo TE)  space from which we will construct the Fock space. ¢,eie
andGR™TE+N(N—1)/2] is readily revealed via the fol-  orthonormal unit basis vectors in this Euclidean space asso-
lowing key coordinate transformation: In the fermionic sum- cjated with the eigenvalues tza‘iTai . We name several dis-
mations above, introduce new coordinaégs e, —i+1. We  inquished vectors in this space, namely, teeel vector k
claim that this will transform the fermionic sum into the =3.e and theroot vectorsl,=e,—e,, for i=1,..N—1.
corresponding Bose sum. _ _ We also define a spanning set wfeight vectorsr; via

To see that this transformation achieves the desired result, | y= 5  togeth ith €. K)=0
. . ; ri,lj)= 6 together with ¢; k) =0.
first observe that under this transformation, the lower bound
in the fermionic summationse(, ;=¢;+1) become &,
=@;), just as in the Bose case. Meanwhile, it is not difficult
to verify that the upper limits in the fermionic summations

[(E=N(N—=1)/2)/N] [(E-e;—(N=1)(N=2)/2)/(N—-1)]
Gfermion(E):
N elzzo e,=e;+1

[(E—ej—ep——en_2—(2)(1)/2)/2]

en-1=en-2t1

Note that the operators associated with namely,aiTai
—aiTHaHl, are independent, and commute with each other
(being all diagonal and with the Hamiltonian. The Hamil-
tonian corresponds to the level vector. Furthermore, to each
pair of particled #j, there is an associated(2usubalgebra
E_el_eZ_"'_ei_(N_i)(N_i_1)/2} generated bya'a,—a'a;,afa;+a/a i(a'aj—afa)}. The

€1 N—i application of the sejcond or third operators in the above

su2) subalgebra “shift” the first operator’s eigenvalue by a

now take the form combination of root vectors. Finally, note that the matrix of
inner productsl;; = (I;,1;) of the root vectors is exactly the

cartan matrix of su{l). Thus, we have identified the dynami-

&, = E-N(N—-1)72 C17 &7 76 , cal symmetry group of this system generated by (thace-
N-—i free part of the products ofaiTaj to be sulN). (See Ref.
[10].)
which, again is the same as for the bosonic dasee we We now construct the Fock space for both fermions and
shift by the fermionic ground-state enerdy— E+N(N bosons from the state space by realizing the respective anti-
=1)/2. symmetrizations and symmetrizations of the multiparticle

This equivalence between the bosonic and fermionic mulfock states as linear combinations of states in the state space
tiplicity functions proves that the excitation spectrum of one-that lie on the same Weyl group orbit. We make this corre-
dimensional harmonically trappétinoninteracting bosons is spondence precise with the following observations. Each
identical to that ofN noninteracting trapped fermions. state in the state space can be thought of as a particular
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product of single-particle states, its coordinafé® compo- The vectorp=3 3 ,-oa (half the sum of positive roots
nents of thel; are integers are simply the harmonic- translates the vacuum of the bosonic Fock space to that of
oscillator level of each particle. Constructing the multipar-the fermionic Fock space at each level. Note also that
ticle state associated with that product of single-particlehus orthogonal to the level vectkrit can be combined with
states consists of combining all the states from singlethe level vector to constitute a one-to-one map between the
particle label permutations. The permutation groBp is  spectrum of theN boson and\ fermion systems. Note that
generated by primitive transposition$...,n;,n;,,,...)  translation by the vectdr=(0,1,2,..N—1) is precisely that
—(...,n;11,n;,...). Each of these primitive transpositions map, and that'=p+[(N—1)/2]k. In particular, the coordi-
acts as a Weyl reflectiofacting on all the roofsabout the nate chang@ =e;—i+1 used in the combinatoric proof can
hyperplane perpendicular to the rdet now be understood as translation Byt is the only lattice
Thus, the Weyl groupyV of the symmetry algebra sM{ vector that translates the lattice points of the Weyl chambers
is exactly the group of permutations of the single-particle(including those in the bounding hyperplahexactly onto
states that make up the many-body state. Each element of thiee interior of the Weyl chambers. Finally note thhthas
Weyl group preserves the levkl We specify a many-body level (I',k) =N(N—1)/2, which is precisely the ground-state
state through an assignment of a highest weight vacémrd  energy shift between the bosonic and fermionic system.
level s (a natural numberfor whichr +sk/N is a vector in  Hence, we have confirmed our main finding that the entire
the (+,---,+) quadraniboundaries includedExplicitly, in spectrum of these bosonic and fermionic systems are isomor-
terms of the vectors in the state space, the bosonic manyhic for anyN up to an overall energy shift.
body Fock space has the badig>°"

,S

IV. REMARKS AND CONCLUSION

phoson_—_ 2t (r-r> Although we have shown that the excitation spectra of
' JNI v [N one-dimensional Fermi and Bose systems are identical; we
. . note that these systems are not related by an obvious super-
whereas the basis of the fermionic many-body Fock space '§ymmetry. There may, however, exist a connection to the
S fermionic representation of affine lie algebra characters as
_k+g.r>, described in Refs[11-13. We also note that the recent
N work of Schmidt and Schnadk,8] indicates that the specific
S _ ) heats of Bose and Fermi systems in higher-spatial dimen-
where the sgnf) is 1 if o is an even permutation andl if  sjons (specifically, odd dimensionsmight also be equiva-
itis an odd permutation. Note that according to this definiqent, just as for the one-dimensional case considered here.
tion, only r vectors from the interior of the Weyl chamber gimijjar connections between bosonic and fermionic systems
are associated with a fermionic many-body state. in two dimensions(or highe) have also been explored by
Succinctly stated, the multiparticle permutation symmetry| ge [14] and Pathrig15]. However we do expect that the

of quantum mechanics maps the single-particle states of staipectral equivalence found here in the one-dimensional case
space into the highest weight space of the symmetry algebigj|| not persist in higher dimensions.

su(N). For bosons, the map covers the entire Weyl chamber
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