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Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials

M. Crescimanno
Department of Physics and Astronomy, Youngstown State University, Youngstown, Ohio 44555-2001

A. S. Landsberg
W. M. Keck Science Center, The Claremont Colleges, Claremont, California 91711

~Received 3 March 2000; published 5 February 2001!

Recently, Schmidt and Schnack@Physica A260, 479 ~1998!#, following earlier references, reiterate that the
specific heat ofN noninteracting bosons in a one-dimensional harmonic well equals that ofN noninteracting
fermions in the same potential. We show that this peculiar relationship between heat capacities results from a
more dramatic equivalence between Bose and Fermi systems. Namely, we prove that the excitations of such
Bose and Fermi systems arespectrally equivalent. Two complementary proofs of this equivalence are pro-
vided; one based on a combinatoric argument, the other from analysis of the underlying dynamical symmetry
group.

DOI: 10.1103/PhysRevA.63.035601 PACS number~s!: 03.75.Fi, 05.30.Ch, 05.30.Fk, 05.30.Jp

I. INTRODUCTION

With the advent of dilute atomic BEC~Refs. @1–3#! and
degenerate dilute atomic Fermi gas@4–6#, there is renewed
interest in understanding aspects of quantum many-body
theory in inhomogeneous~in particular, harmonically
trapped! systems. Since trapped, cooled atoms have proper-
ties that are, in principle, controllable to a degree unavailable
in other systems~e.g., clusters and nuclei!, they present new
opportunities to study quantum mechanics and many-body
theory.

Although the ultracold dilute atomic gas systems are large
compared to the coherence lengths, they are not homoge-
neous, due to the fact they are generally trapped in a~nearly!
harmonic potential. In many of these systems the interpar-
ticle forces are significant. In this Brief Report, however, we
ignore the interactions between atoms, with the aim to better
understand the thermodynamic properties ofN trappednon-
interacting bosons and fermions. Recent work@7,8# de-
scribes surprising relations between the equilibrium thermo-
dynamics of these two systems. It was shown, for example,
that the heat capacity~as a function of temperature! of N
noninteracting bosons in a one-dimensional harmonic poten-
tial is the same as that ofN noninteracting fermions in an
identical potential. Likewise, the respective energies and par-
tition functions for these systems are closely related~see
Refs.@8# and @9#!.

These ‘‘coincidences’’ provide hints that a deeper under-
lying connection exists between Bose and Fermi gases in a
one-dimensional~1D! harmonic well. In particular, the heat
capacity and partition functions, as functions of the inverse
temperatureb, can be thought of as an ‘‘imaginary time’’
continuation of a Fourier transform of the spectrum. The fact
that the heat capacities are the same for all temperatures
suggests that there should be a state-for-state, level-for-level
correspondence between these noninteracting many-body
bosonic and fermionic systems. We show that this is indeed
the case, and below describe two independent proofs of the
spectral equivalence of excitations in these systems. The first
is based on a combinatoric argument, while the second relies

on properties of the dynamical symmetry group of these sys-
tems.

II. COMBINATORIC APPROACH

The spectral equivalence of one-dimensional, noninteract-
ing harmonically-trapped bosonic and fermionic gases can be
understood through a straightforward combinatoric analysis
of energy-level multiplicities.

In a system ofN noninteracting particles~bosons or fer-
mions! in a harmonic well, let the energy level of thei th
particle be specified by the integerei , with E5S i 51

N ei the
total energy of the system.~Note: In writing the energyei as
an integer, we are setting\v51, and for notational conve-
nience are ignoring the constant 1/2 associated with the
single-particle ground-state energy.! Clearly there are many
different microconfigurations possessing the same total en-
ergy E; we let GN(E) denote the multiplicity of states with
fixed energyE. We will show that the multiplicity functions
for bosons and fermions are equivalent. More precisely, we
show that GN

boson(E)5GN
fermion@E1N(N21)/2#, indicating

that the multiplicities for the Bose and Fermi cases are iden-
tical provided each is measured relative to its respective
ground-state energy@i.e., 0 for bosons andN(N21)/2 for
fermions#. This equivalence~between multiplicity functions!
is sufficient to show that the excitation spectra of the bosonic
and fermionic gases are, in fact, identical.

We begin with the Bose case. We imagine ordering theN
particles from lowest energy to highest (e1 ,e2 ,...,eN). The
energy of the lowest-energy particle (e1) can range from
zero up to a maximum value of@E/N#, where the brackets@ #
denote the integer part of the expression enclosed.~It is
readily seen that if the energy of thelowest-energy particle
were to exceed this maximum value, then the sum of the
energies of theN individual particles would exceed the total
specified energyE of the system.!

For a fixede1 , the remaining energyE2e1 must be di-
vided up amongN21 particles. So the possible values of
e2 , which represents the lowest energy among the remaining
(N21) particles, can range frome1 to @(E2e1)/(N21)#.
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~As before, it is clear that ife2 went outside this range, then
the sum of the energies of theN21 particles would exceed
the prescribed valueE2e1 .)

Proceeding in this fashion, we see that

GN
boson~E!5 (

e150

@E/N#

(
e25e1

@~E2e1!/~N21!#

¯ (
eN215eN22

@~E2e12e22¯2eN22!/2#

1.

A similar argument is used to construct the multiplicity
function for the fermionic case. The fundamental distinction
stems from the additional constraint that two fermions can-
not occupy the same energy orbital, which in turn modifies
the lower and upper bounds in the above summations, as we
now describe. Consider first the lower bounds. From the ex-
clusion principle, it immediately follows that the lower~fer-
mionic! bounds must take the formei5ei 2111. The upper
limits are found by noting that for a system ofN fermions
with total energyE, the energy of the lowest-energy fermion
cannot exceed@(E2N(N21)/2)/N#, as a straightforward
calculation reveals. Consequently, we find

GN
fermion~E!5 (

e150

@~E2N~N21!/2!/N#

(
e25e111

@~E2e12~N21!~N22!/2!/~N21!#

¯ (
eN215eN2211

@~E2e12e22¯2eN222~2!~1!/2!/2#

1.

Although neither the bosonic nor fermionic multiplicity
function is easily evaluated, the equivalence ofGN

boson(E)
andGN

fermion@E1N(N21)/2# is readily revealed via the fol-
lowing key coordinate transformation: In the fermionic sum-
mations above, introduce new coordinatesêi5ei2 i 11. We
claim that this will transform the fermionic sum into the
corresponding Bose sum.

To see that this transformation achieves the desired result,
first observe that under this transformation, the lower bounds
in the fermionic summations (ei 115ei11) become (êi 11
5êi), just as in the Bose case. Meanwhile, it is not difficult
to verify that the upper limits in the fermionic summations

ei 115FE2e12e22¯2ei2~N2 i !~N2 i 21!/2

N2 i G
now take the form

êi 115FE2N~N21!/22ê12ê22¯2êi

N2 i G ,
which, again is the same as for the bosonic case~once we
shift by the fermionic ground-state energyE→E1N(N
21)/2.

This equivalence between the bosonic and fermionic mul-
tiplicity functions proves that the excitation spectrum of one-
dimensional harmonically trappedN noninteracting bosons is
identical to that ofN noninteracting trapped fermions.

III. DYNAMICAL SYMMETRY GROUP APPROACH

We next present an alternative description of this isomor-
phism between bosonic and fermionic systems based on the
dynamical symmetry group.

Classically, a system ofN noninteracting particles in a
one-dimensional harmonic potential is identical to that of a
single particle in anN-dimensional isotropic harmonic poten-
tial. The system thus has an obvious spatialO(N) symmetry
we call ‘‘angular momentum.’’ However, it is apparent with
more introspection that the system possesses a much larger
dynamical symmetry group. Orbits in theN-dimensional iso-
tropic harmonic potential do not precess. In analogy with the
Kepler problem, we say that there is a conserved Runge-
Lenz vector~which may be thought of as the axis of the orbit
in configuration space!, and we thus expect the symmetry
group to be enlarged.

Since we will be interested in the quantization of the sys-
tem, we describe this dynamical symmetry using operators of
the associated quantum theory. To simplify notation, we take
\v51 as before. Label the raising and lowering operators
for the bosonic theoryai

† , ai , respectively, withi 51,...,N.
The canonical commutation relations~for the bosonic case!
are @ai ,aj

†#5d i j . The many-body Hamiltonian operator of
this noninteracting system isH5S iai

†ai1e, wheree is an
overall constant that we suppress throughout.

We call the space of the eigenvalues of theai
†ai the state

space. Equivalently, the state space is the integer lattice in
the (1,¯ ,1) quadrant ofN-dimensional Euclidean space.
State space is not the Fock space, but is a useful auxiliary
space from which we will construct the Fock space. Letei be
orthonormal unit basis vectors in this Euclidean space asso-
ciated with the eigenvalues ofai

†ai . We name several dis-
tinguished vectors in this space, namely, thelevel vector k
5S iei and theroot vectors l i5ei2ei 11 for i 51,...,N21.
We also define a spanning set ofweight vectors r i via
(r i ,l j )5d i , j together with (r i ,k)50.

Note that the operators associated withl i , namely,ai
†ai

2ai 11
† ai 11 , are independent, and commute with each other

~being all diagonal! and with the Hamiltonian. The Hamil-
tonian corresponds to the level vector. Furthermore, to each
pair of particleslÞ j , there is an associated su~2! subalgebra
generated by$al

†al2aj
†aj ,al

†aj1aj
†al ,i (al

†aj2aj
†al)%. The

application of the second or third operators in the above
su~2! subalgebra ‘‘shift’’ the first operator’s eigenvalue by a
combination of root vectors. Finally, note that the matrix of
inner productsMi j 5( l i ,l j ) of the root vectors is exactly the
cartan matrix of su(N). Thus, we have identified the dynami-
cal symmetry group of this system generated by the~trace-
free part of the! products ofai

†aj to be su(N). ~See Ref.
@10#.!

We now construct the Fock space for both fermions and
bosons from the state space by realizing the respective anti-
symmetrizations and symmetrizations of the multiparticle
Fock states as linear combinations of states in the state space
that lie on the same Weyl group orbit. We make this corre-
spondence precise with the following observations. Each
state in the state space can be thought of as a particular
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product of single-particle states, its coordinates~the compo-
nents of the l i are integers! are simply the harmonic-
oscillator level of each particle. Constructing the multipar-
ticle state associated with that product of single-particle
states consists of combining all the states from single-
particle label permutations. The permutation groupSN is
generated by primitive transpositions(...,ni ,ni 11 ,...)
→(...,ni 11 ,ni ,...). Each of these primitive transpositions
acts as a Weyl reflection~acting on all the roots! about the
hyperplane perpendicular to the rootl i .

Thus, the Weyl group,W of the symmetry algebra su(N)
is exactly the group of permutations of the single-particle
states that make up the many-body state. Each element of the
Weyl group preserves the levelk. We specify a many-body
state through an assignment of a highest weight vectorr and
level s ~a natural number! for which r 1sk/N is a vector in
the (1,¯ ,1) quadrant~boundaries included!. Explicitly, in
terms of the vectors in the state space, the bosonic many-
body Fock space has the basisC r ,s

boson

C r ,s
boson5

1

AN!
(

sPW
U s

N
k1s•r L

whereas the basis of the fermionic many-body Fock space is

C r ,s
fermion5

1

AN!
(

sPW
~21!sgn~s!U s

N
k1s•r L ,

where the sgn(s) is 1 if s is an even permutation and21 if
it is an odd permutation. Note that according to this defini-
tion, only r vectors from the interior of the Weyl chamber
are associated with a fermionic many-body state.

Succinctly stated, the multiparticle permutation symmetry
of quantum mechanics maps the single-particle states of state
space into the highest weight space of the symmetry algebra
su(N). For bosons, the map covers the entire Weyl chamber
~including the lattice points in the bounding hyperplanes! at
each level. For fermions, the map covers only the interior
lattice points of the Weyl chamber. Additionally, due to the
constraint thatr 1sk/N is in the (1,¯ ,1) quadrant, at
each level there are of course only a finite number of highest
weight candidates.

The vectorr5 1
2 Sa.0a ~half the sum of positive roots!

translates the vacuum of the bosonic Fock space to that of
the fermionic Fock space at each level. Note also thatr is
thus orthogonal to the level vectork. It can be combined with
the level vector to constitute a one-to-one map between the
spectrum of theN boson andN fermion systems. Note that
translation by the vectorG5(0,1,2,...,N21) is precisely that
map, and thatG5r1@(N21)/2#k. In particular, the coordi-
nate changeêi5ei2 i 11 used in the combinatoric proof can
now be understood as translation byG. It is the only lattice
vector that translates the lattice points of the Weyl chambers
~including those in the bounding hyperplanes! exactly onto
the interior of the Weyl chambers. Finally note thatG has
level (G,k)5N(N21)/2, which is precisely the ground-state
energy shift between the bosonic and fermionic system.
Hence, we have confirmed our main finding that the entire
spectrum of these bosonic and fermionic systems are isomor-
phic for anyN up to an overall energy shift.

IV. REMARKS AND CONCLUSION

Although we have shown that the excitation spectra of
one-dimensional Fermi and Bose systems are identical; we
note that these systems are not related by an obvious super-
symmetry. There may, however, exist a connection to the
fermionic representation of affine lie algebra characters as
described in Refs.@11–13#. We also note that the recent
work of Schmidt and Schnack@7,8# indicates that the specific
heats of Bose and Fermi systems in higher-spatial dimen-
sions ~specifically, odd dimensions! might also be equiva-
lent, just as for the one-dimensional case considered here.
Similar connections between bosonic and fermionic systems
in two dimensions~or higher! have also been explored by
Lee @14# and Pathria@15#. However we do expect that the
spectral equivalence found here in the one-dimensional case
will not persist in higher dimensions.
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