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Effect of disorder on synchronization in prototype two-dimensional Josephson arrays

A. S. Landsberg, Y. Braiman, and K. Wiesenfeld
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 7 July 1995)

We study the effects of quenched disorder on the dynamics of two-dimensional arrays of overdamped

Josephson junctions. Disorder in both the junction critical currents and resistances is considered. Analytical
results for small arrays are used to identify a physical mechanism which promotes frequency locking across
each row of the array, and to show that no such locking mechanism exists between rows. The intrarow locking
mechanism is surprisingly strong, so that a row can tolerate large amounts of disorder before frequency locking
is destroyed.

I. INTRODUCTION

Arrays of coupled Josephson junctions have garnered
considerable attention in recent years. Their appeal stems
both from their potential for device applications, ' and from
their theoretical interest as nonlinear, many-degree-of-
freedom systems which display some remarkable dynamical
features. To date, much emphasis has been placed on ar-

rays in which all the junctions are identical. This assumption
not only affords some degree of conceptual simplicity to the
problem, but is motivated by practical design considerations
as well: by combining a large number of identical junctions
in an array, collective oscillations of the system become pos-
sible, substantially boosting the total output power. This state
of perfectly coherent oscillations in a uniform array is known
as the "in-phase" state.

Of course, in actual arrays junction uniformity is good but
not perfect: present fabrication techniques allow variations in
the individual junction characteristics on the order of 1%.
While such small variations might seem unimportant, recent
discoveries have shown that the dynamical equations de-
scribing identical junction arrays are quite special: they pos-
sess certain highly degenerate structures ' which are not ex-
pected to persist once nonuniformities are introduced. For
instance, for the type of Josephson array of interest here, the
synchronized in-phase state has a high degree of neutral
stability. ' Neutral stability is so structurally delicate that,
on general theoretical grounds, one expects that any small
change could fundamentally alter the long-term dynamics.
Thus the presence of even small levels of disorder can have
important physical implications.

This paper is devoted to understanding the effects of dis-
order on the synchronization properties of dc-biased, two-
dimensional arrays of overdamped Josephson junctions. Al-
lowing variations in junction parameters is a severe
theoretical complication: as such, previous investigations of
disordered two-dimensional (2D) arrays have been largely
numerical. " ' Our approach is to analytically study very
small arrays, which nevertheless capture the important fea-
tures of a general WXM array. We confine our attention to
the case of zero magnetic field and no external load. We are
able to identify two fundamental physical mechanisms in-
duced by the disorder, and to calculate analytically their ef-

feet on the system dynamics. Some of our results can be
generalized to the full NXM case. By combining the ana-
lytic results for small arrays with numerical simulations of
larger arrays, we are able to construct a fair understanding of
the effects of disorder on these 2D arrays.

One of the questions we study concerns the relative dy-
namical importance of critical current disorder and shunt re-
sistance disorder. We find that the sheer magnitude of the
parameter variations does not determine their relative impor-
tance: even if the variations in the critical currents are sig-
nificantly larger than those in the resistances, both can have
equally significant dynamical consequences in certain pa-
rameter regimes.

This paper is organized as follows. In Sec. II we review
the basic behavior of the uniform array model, and describe
how disorder is introduced into the system. We find that the
dynamical effects of disorder divide naturally into two
classes: these are described and analyzed in Secs. III and IV,
respectively. Finally, in Sec. V we collect and discuss our
main conclusions and compare them with simulations of
larger 2D arrays.

II. MODEL EQUATIONS AND THE IN-PHASE STATE

A. The idealized case

We begin by considering a uniform, two-dimensional Jo-
sephson junction array, where each junction is described by
the resistively shunted junction (RSJ) model, with critical
current I, and resistance r. The governing equation for a
single junction is

where @ denotes the phase difference of the wave function
across the superconductor junction, I=1(t) is the total cur-
rent passing through the junction, and the overdot denotes
differentiation with respect to time. The two terms on the
left-hand side of (1) represent the regular and supercurrents
through the junction, respectively. For fixed dc current I, the
junction will overturn [i.e., the time average (p(t)) 4 0] pro-
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(Here, i runs from 1 to N 1—, and j from 1 to M —1.) For
boundary conditions we assume a constant current I is sup-
plied at each superconducting site along the top row of
the array, and removed at each site along the bottom row.
This is a common configuration in experiments. ' ' Since
the net current into a given superconducting site is
I, —I, , +I, —I, , , current conservations implies

)( )(
IH IH + Iv Iv

l J —1 iJ 1
—lg

i=N
otherwise.

(4)

FIG. 1. Josephson junction array. The horizontal junctions are
characterized by P,, which measures the phase difference across
the jth and (j+ 1)th superconducting lattice sites within row i, and
the vertical junctions by P;, , measuring the phase difference across
the ith and (i+1)th sites in column j. Bias current I is injected
uniformly along the top row and removed uniformly along the bot-
tom. I, and I,, represent the induced currents passing through the
horizontal and vertical junctions, respectively.

vided ~I~~I, . For the two-dimensional array consisting of
N&M superconducting lattice sites shown in Fig. 1, the
equations become

'H
@,,+I,sin( &P) = I,,

i=1, . . . ,N, j=1, . . . ,M —1, (2a)

@,,+ I,sin(@,,) = I,,2er

i=1, . . . ,N —1, j=1, . . . ,M. (2b)

(3)

Here, ij labels the superconducting lattice sites, and p, de-
notes the phase difference of the horizontal junction between
the jth and (j+ 1)th lattice sites in row i, and p, the phase
difference of the vertical junction between the ith and
(i+ 1)th sites within a given column j. The currents passing
through the horizontal and vertical junctions are I,, and I, ,

respectively. We have assumed that the array is lumped,
which is valid if the physical size of the array is much less
than the emission wavelength.

Owing to our choice of the junction phase differences as
variables, the above equations are underdetermined. Addi-
tional constraints come from the requirement that the sum of
the phase differences around any closed path in the lattice
must vanish (we will consider only the case of zero magnetic
field), along with current conservation and boundary condi-
tions. For the array depicted in Fig. 1, this first constraint
takes the form

[This constraint relation must be interpreted appropriately at
the edges of the array: for i=1, i=N, j=1, or j=M, any
current in (4) with an index of zero should be neglected. ]
Together, the constraints (3) and (4) imply that of the
2NM N M—phas—e differences in (2a) and (2b) only
NM —1 are independent. This is as it should be, since alter-
natively we could follow the phases of the NM super-
conducting islands, which are independent up to an overall
(global) phase shift.

B. Neutral stability of the in-phase solution and disorder

The identical-element array admits an in-phase solution,
in which all vertical junctions oscillate coherently

[P; —= P'"(t)], while the horizontal junctions remain inactive

(P,,=0); see Fig. 2. This synchronized state is of particular
interest for design applications, and exists if the bias current
exceeds I, , so that the vertical junctions overturn. It has
been shown, however, that the in-phase state is neutrally
stable with respect to changes in the initial conditions: if the
system is perturbed from the in-phase solution, then all
variations within a given row damp out ( @,,—& 0,
&P;

—P, , ~0), but differences between rows do not

(lim, P,,—P, , 4 0) . These N 2nondecayin— g phase dif-
ferences correspond to neutrally stable directions in phase
space. This result follows directly from Floquet theory and
remains essentially unchanged even if a parasitic capacitance
and inductance is included with each junction. ' Note that
the horizontal and vertical junctions play fundamentally dis-
tinct roles, and that there is also a dynamical distinction be-
tween vertical junctions lying in different rows. This natural
division will be exploited later when disorder is introduced.

The emergence of neutral stability can also be understood
in a somewhat different manner. Suppose the system is ini-
tially in the in-phase state. Now imagine time-advancing all
vertical oscillators within a given row (n) by some amount,
while holding those in the other rows fixed, i e.,

(t) + @'"(t+6 r) for all j. Then this new state,

[P, = 0, P,~,= P'"(t), P,= P'"(t+ 6 t)], is itself a valid
solution to the dynamical equations (2a) and (2b), as a quick
inspection reveals. Hence, the in-phase state belongs to an
(N 1)-parameter fami—ly of phase-locked solutions, with
family members related by temporal phase shifts.

Neutral stability of the in-phase state is not simply a
mathematical curiosity; rather, it has important physical im-
plications: any modification to the idealized model system
(2a) and (2b) —even an arbitrarily small one —is poten-
tially capable of stabilizing or destabilizing a neutrally stable
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+ I, sin( P ) =I+ E,
281 2

(Sd)

where we have defined 6=—I& = —I2 and allowed the junc-
tions to be nonidentical. The remaining constraint relation
(3) becomes

(6)

FIG. 3. The plaquette. The phase differences across the vertical
and horizontal junctions are denoted by p, , pz and p, , pz, re-

spectively. Current I is imposed at the top and removed at the
bottom; 6 is the induced current shunted across the horizontal
junctions.

significantly larger than those in the resistances, both can
have equally important dynamical consequences.

Our analysis will be divided into two parts: we first con-
sider the effects of disorder on synchronization within a
given row of the system, and then examine synchronization
effects between rows. This natural division is motivated by
our previous observation that the vertical junctions in differ-
ent rows play fundamentally distinct roles in the coherent
oscillations of the ideal, identical-junction array (2a) and
(2b). We proceed by studying analytically the smallest 2D
arrays which capture the principle mechanisms at work in the

(i) intrarow dynamics and then (ii) interrow dynamics. We
find that some of our results readily generalize to arbitrary
NXM arrays.

III. DYNAMICS WITHIN A ROW

Recall that in the ideal (identical-junction) array, pertur-
bations of the in-phase state within each row are exponen-
tially damped, leading to uniform in-phase oscillations
across each row. Although the perfect in-phase solution no
longer exists once disorder is introduced, we expect that
some type of in-row locking mechanism may persist. With
this in mind, we consider the simplest array capable of de-
scribing dynamical coupling between oscillators within a
given row. This 2X2 array (the so-called plaquette) is de-
picted in Fig. 3. From (2a) and (2b) together with constraint
(4), the dynamical equations for the plaquette take the form

and can be used to eliminate one of the four phase variables
in Eqs. (Sa)—(Sd), and permits 6 to be reexpressed in terms
of the remaining three phases.

(Iv )2 (Iv )2

4I (7)

A. Locking in the plaquette: Physical argument

We now construct a simple physical argument for how
disorder affects the dynamics of the plaquette; a more rigor-
ous derivation is presented in the next section. Consider first
the case of identical junctions. In the ideal in-phase state
(with I)I,), the vertical junctions are overturning and phase
locked ( p, =

@&), the horizontal junctions are inactive

(P& = @z =0), and the transverse shunt current 4 is zero. If
weak disorder is now introduced, we expect that the vertical
junctions will no longer be phase locked, but may remain
frequency locked if just the right amount of supercurrent is
spontaneously induced to compensate for the disorder. This
could be accomplished by means of nonzero shunt currents
passing across the horizontal junctions, which are now active
due to the disorder but do not overturn (i.e., @ 40 but

(@, ) = 0). We can estimate the amount of shunt current re-

quired for locking as follows. For simplicity, assume that all
junctions have the same resistance r, so that the disorder in
the system is due solely to variations in the critical currents.
The shunt current 6 will oscillate about some mean (6). As
a first approximation we neglect these oscillations and re-
place 6 in (5a)—(5d) by its time average. The system
may now be integrated directly, and from (5c) and (Sd)
we find that the vertical junctions p, and pz overturn

with an average frequency of g(I —(E)) —(I, ), and

g(I+(6)) —(I, ), respectively. Equating these two fre-

quencies and solving for (6,) yields

H @@+I,sin(Pz)= —4,
2

fL

P, +I, sin(@, ) =I—E,
281 1

(5a)

(5b)

(Sc)

This simple picture also allows us to estimate the maxi-
mum amount of disorder the system can tolerate before fre-
quency locking breaks down. As the deviation in the critical
currents is increased, the system will remain locked provided
there is sufficient supercurrent to be shunted across the hori-
zontal junctions. At a certain point, the required shunt current
(7) will exceed the maximum supercurrent which can be
passed by the horizontal junctions, (I, ,I, ). These junctions

will thus begin to overturn, regular current will flow, and the
locking between the vertical junctions will be destroyed.
This transition between the locked and unlocked states oc-
curs when min(I, ,I, )=~(E)~. From (7), we therefore expect

locking to be possible provided
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effectively linear, and the frequency of oscillation for the

junctions @1 and pz is proportional to riI and r2I, respec-
tively. Thus, in order for the frequencies to be locked, we
expect that the deviation ~r, —rz

~

must be relatively small,
i.e., O(lil). We again see that variations in the horizontal
junctions are less important than those of the vertical junc-
tions. This property can be extended to the full (NXM)
array by an argument similar to that given above.

B. Mathematical analysis of the plaquette

In this section we pursue more rigorously the preceding
physical arguments with a more quantitative analysis. In par-
ticular, we demonstrate that frequency locking in the
plaquette not only is possible, but that the system is dynami-
cally driven to the frequency-locked state. That is, the
frequency-locked state is an attractor when the disorder is
not too large. We also determine precisely how "large" this
disorder can be before locking is lost, leading to a refinement
of the transition formulas (8) and (9) and a unified descrip-
tion which simultaneously incorporates the effects of varia-
tions in both the critical currents and resistances. The analy-
sis is based on a multiple time scale expansion, ensuring that
the resulting dynamical description has a well-defined as-
ymptotic limit.

We begin by putting the governing equations (Sa)—(Sd)
into a more useful form. First, the system is nondimension-
alized by rescaling time and defining dimensionless quanti-
ties as follows:

a = —[(p&
—p2)+ Li pi sin(yi )+ L2pzsin(@A' —

@D)

L 1 p, sin( p„+ @D)
—

L2 p2 S1n( gP,
—2 @D)) . (13)

Note that in going from (Sa)—(Sd) to (12a)—(12c) and (13),
we have used the constraint (6) to eliminate @z as a dynami-
cal variable, and to rewrite the cross current in terms of the
remaining variables.

Our formal calculation will concentrate on the high bias
current regime (I&)I,), where the vertical junctions are over-
turning at high frequency. (In fact, our numerical simulations
show that the resulting formula for the transition between
locked and unlocked dynamics remains accurate well outside
the high bias current limit. ) Hence the quantities L, and L2

appearing in (12a)—(12c) and (13) are small, and we there-
fore rewrite these explicitly as i& e~&, ~z e~z, where e
represents a small parameter. Similarly, the quantities ~, and

will also be small, and we rescale them as follows:
~ E' t i l 2 ~ E' L2 . This difference in scaling between the

horizontal and vertical junctions is motivated by the transi-
tion criterion (8), as can be seen by rewriting (8) in terms of
the dimensionless currents defined in (10). It also is useful to
reexpress the vertical resistances as p, ~ p&

' + e p, ',
V VO 2 V2

P2 P2 +6 P2
For a multiple time scale analysis, ' we let To ——T denote

the fast time scale in the problem, and introduce a slow time
scale T&=—eT and a superslow scale T2—= e T. Thus,

t 2erl~1
7=l

V
I

Pl =
JV

t

l

T T() Tl T2 (14)

where r denotes the average value of the (four) junction
resistances. Note that by definition p, + p2 + p, + p2 = 4.
Next we introduce new phase variables yV yV, O~ @V I+ 2yV2+ (15a)

The dynamical variables, which are now assumed to depend
on these three time scales, are expanded as follows:

0'+ 4''
D 2 ' 2A

4A -(~OT0+ ~2T2)+ 4A + eWA + e @A +V,O V, 1 2 V,2

@D measures the difference between the two vertical junc-
tion variables, and @A their average. This is useful since any
solution QD(T) which remains bounded in time corresponds
to a frequency locked state of th-e plaquette. The governing
equations are

~T4D 2((pl P2) (Pl P2) + Ll Pl s ( 4A 4D)

L2 P2 sin(4A 4 D)],

TPA 2 t-(Pl P2) (Pl P2) 1P1 (~A @D)

yH @H,0+ @H,l + 2pH2+,
Note that in the expansion (15b) we have included a linear
growth term ~o To+ co2T2. This term, which is perhaps more
transparent when rewritten as (co0+e cu2)T0, simply re-
flects the fact that @„,which measures the average phase of
the vertical junctions, will overturn. The absence of a term
E'Mi T& in the expansion is merely a matter of convenience-
if included at the outset, it turns out to vanish at a later stage.

The basic procedure is as follows. The expansions (14)
and (15a)—(15c) are substituted into the dynamical equations
(12a)—(12c), and a hierarchy of equations is constructed
based on powers of e. At each order in the expansion, we
obtain equations of the general form

—L2pz»n(&A —&D) j (12b)

where the dimensionless cross current is given by

(12c)
where @=(QD,Q„,Q& ). The vector field appearing on the
right-hand side of (16) will not depend on @ (to that order),
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and can be naturally decomposed into two terms: a piece
which oscillates on the fast time scale Tp with zero mean,
and a mean value piece which is constant on the fast time
scale. In order for the asymptotic expansion (12a)—(12c) to
remain valid over long time scales, each term in the expan-
sion must remain bounded; otherwise its growth would de-
stroy the assumed ordering in powers of e. This requires that
the mean value term on the right-hand side of (16) vanish.
This requirement constitutes an additional constraint, known
as a "solvability" or "nonresonance" condition. By requir-
ing that it be satisfied the domain of validity of the asymp-
totic analysis is effectively extended. %e now carry out this
procedure.

At leading order in the expansion, we have

V VO

+ @V,p+ )V,p) (21a)

VO V VO
~T 4A ~T 4A 2 1'2P2 '»n(010 0+ 4A 4D

V VO——~;pvlosin(~0T, + yAv0+ @Dvo), (21b)

VO V VO
~T O'D ~T 4D +

8 ~2P2 (4 Pl P2 ) (~OTO

1 1
yV, O

(
V,p V,p)+ (

V,p+ V,p)( V,p V,p)
Tp 0 2 Pl P2 g P 1 P2 Pl P2

(17a)

HO V VO H

1
l'1Pl pi sin(COO p+ 4A + PD )'V V,O H V,O V,O (21c)

(17b)

The nonresonance conditions for these equations are very
simple:

1
)H,p H, O( V,p V,O)

Tp 1 4P1 P P2 (17c)

The solvability condition for (17a) is that the right-hand side
of this equation vanishes, so

BT, PD =0 aT yAV0=0,
1

@H,O 0 (22)

respectively. In view of (20) these imply QD' = @D' (T2),
QAvp= $„0(T2), and p, ' = p, ' (T2), revealing that these
phase variables evolve only on the superslow time scale
T2. Equations (21a)—(21c) may now be integrated. We find

V,O V,O 0 (18)

This condition has a simple physical interpretation: if the
difference in the resistances of the two vertical junctions is
too large, so that (18) is not satisfied, then the phase differ-
ence between the junctions will grow without bound [Eq.
(17a)], and frequency locking will not be possible. This is
consistent with our previous transition criterion (9). Next, the
solvability condition associated with (17b) can be satisfied

by choosing additionally

g COO

1
V V,O( 4 + V,p+ V,O)

g~ 1P1 P1 P2
COO

X cos(~OTO+ @Av 0+ yDv 0),

1
@V,l V V,p

( T + @V,O yV, O)
2 cop

(23a)

1
+ 1, 1 pl

' cos(cdpT0+ @A' + QD' ), (23b)
2 cop

The remaining solvability condition for (17c) is satisfied al-

ready by virtue of (18). Equations (17a)—(17c) may now be
integrated, with the result

H1 V Vp H1
41 ~2P2 Pl s(~OTO+ 4A 4D )

Vp VO

4 cop

1
1 1 pl Pl cos(QJOT0+ pA QD ). (23c)

4 Lop

@H,p yH'0( T T ) (20)

where the notation (T, , T2) simply means that these quanti-
ties can evolve only on the slow time scales T1 and T2,
being constant on the fast time scale Tp.

At next order in the expansion, the equations are

Finally, the equations at 0( e ) are constructed. We do not
write these out explicitly, but instead focus on the resulting
solvability conditions which describe the evolution of the
three phases QD', @„', and @, ' on the superslow time
scale. Only the first and third of these are relevant for our
purposes, and after some algebra we find
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(24a)

~z' 4'i ' = —Pi (Pi' —P2' )+ Pi (8 —Pi P' 2—' )[(t2P2' ) —(tiPi' ) ]+ 4 tiPi(Pi —4)sin(4, ' )
64coo

H H HH H H ~ (@H02,yV, O) (24b)

Recall that the vertical junctions will be phase locked pro-
vided that Po' remains bounded. Hence, the transition be-
tween locked and unlocked behavior in the plaquette [cf. (8)
and (9)] is directly linked with the disappearance of stable,
bounded solutions of (24a), (24b).

Equations (24a) and (24b) are readily analyzed. Note that

they are of the form

Pt, ' =a, +b, sin(qP, ' )+c,sin(P, ' —2P~' ), (25a)

P, ' =a2+b2sin(P, ' )+c2sin(P, ' —2@o' ), (25b)

where a~, b, and c are constants. Generically, this system
has either zero or four fixed points: a sink, a source, and two

0. 8

0. 6

0. 4

0
1.5 2. 5 3.5 4. 5

FIG. 6. Transition boundary between frequency-locked and unlocked states. The quantity T denotes the left-hand side of the transition
formula (27). The dashed horizontal line at T= 1.0 defines the theoretical threshold; the solid curve is the result of numerical simulations, and
was constructed as follows. For a given value of T and bias current I (and I, , r, held fixed at 1.0), the critical currents I, , I, , and

I, were randomly chosen in the interval (0.01,1.0), and the resistances r2, r, , and r2 randomly chosen between (0.9,1.0). A statistical

sampling (based on 100 realizations of the disorder at each T,I) shows that below (above) the numerically determined curve, most states
(~95%) are synchronized (unsynchronized). Within the transition regime around the curve (as defined by the error bars), states of both types
were found. The inset shows the fraction of states which are synchronized (f,r„,„) as a function of T based on the sampling data at
I= 1.5; note the sharp transition to a desynchronized state near the predicted threshold. The theoretical prediction (27) remains surprisinglu asking y
good even for low bias currents I, and gains in accuracy as the bias current is increased, as expected.
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saddles. The sink corresponds to a stable, frequency-locked
state. As the system parameters are varied, these four fixed
points will simultaneously disappear in a double saddle-node
bifurcation. This bifurcation thus defines the boundary be-
tween locked and unlocked behavior, and occurs at

a/b2 —a2b]
max

b]c2 b2c]
aic2 —a2c]
bic2 b2C)

(26)

[The four fixed points exist when the left-hand side of (26) is
less than unity. ] Using (24a), (24b), and (10), the locking
criterion (26) may be reexpressed in terms of the original
system parameters as

)„v rv)

(r, +r, ) I",

where, as before, I, ;„=min(I, , I, ).

„H+„H
1 2

r, +r2+ri +r2 )

(27)

C. Discussion

The generalized transition formula (27) is the main result
of this section. It quantifies the maximum amount of disorder
which can be tolerated before frequency locking is lost.
When the resistances of the junctions are all identical but the
critical currents vary, it reduces to

cal behavior of the system, and that this can be true even if
the deviation in the resistances is small compared to that of
the critical currents L.astly, we note from (27) that in the
absence of variations in the vertical junctions, variations in
the horizontal junction characteristics do not directly effect
the synchronization properties of the system and it always
remains locked. However, when variations in the vertical
junctions are also present, the variations in the horizontal
junctions will effect the synchronization. In Fig. 6 we map
out the boundary between the locked and unlocked regions,
and compare the analytic prediction with numerical simula-
tions of the disordered plaquette. The agreement is quite
good.

The multiple time scale anaylsis not only allows us to
refine and generalize the transition criteria (8) and (9), but
lets us construct a general understanding of the effects of
disorder. In particular, imagine starting with identical junc-
tions and then slowly introduce disorder. For identical junc-
tions, there exists a stable fixed point at the origin in the
reduced system (24a) and (24b), which corresponds to the
in-phase state. As disorder is added, this fixed point shifts
slightly: physically, this corresponds to a small phase shift
developing between the two vertical junctions. (This phase
shift is not truly constant in time owing to small oscillatory
terms of order e in the expansion. ) The vertical junctions are
therefore frequency locked, and also approximately phase
locked, and the horizontal junctions are weakly activated. As
the disorder is increased, the fixed point migrates further
from the origin until finally, for sufficiently large disorder, it
disappears in a saddle-node bifurcation and frequency lock-
ing is lost. It is simple to show that at the bifurcation point
[see (26), (25a), and (25b)]

3 (I ) —(I, )

16 (28) sin( gPi' ) = ~ 1 or sin(Pi ' —2 @o' ) = ~ 1. (29)

which differs from our earlier approximation (8) only by a
constant factor. Similarly, when the resistances vary but the
critical currents are identical, we recover the previous result

(9) (for I&)I,). We can now ascertain the relative importance
of these two types of disorder. In particular, note that the
transition criterion (27) is formally valid in the high bias
current regime I&~I, . In this regime, the plaquette is much
more sensitive to the size of the deviations in the resistances
of the (vertical) junctions than to deviations in the critical
currents. Synchronization will only be possible if the devia-
tion in resistances is sufficiently small, i.e.,
~r, —

rz~ —O(I, II) In this case, the .critical currents of the
junctions play only a minor role. If, however, the deviation in
the resistances is reduced further [to O(I,II )], and the
critical currents of the horizontal junctions are small

[O(I, /I)], then the variations in both the resistances and
critical currents will contribute significantly.

This distinction, however, between the effects of varia-
tions in the resistances and critical currents in different re-
gimes is somewhat artificial, in part because the transition
criterion (27) remains quite accurate well outside the high
bias current limit, and in part because the two types of dis-
order are dynamically linked and cannot be fully separated,
as is clear from (27). The essential point is that both types of
disorder can potentially be important in terms of the dynami

Note that gP,
' —2po' is by definition (6) and (11) just the

phase difference across the second horizontal junction of the
system, P2' . Hence we see that frequency locking is lost
when the supercurrent shunted by either horizontal junction
reaches its maximum possible value. This statement is only
approximate owing to small oscillatory correction terms in
the asymptotic expansion, but is consistent with, and in fact
justifies, the physical argument of Sec. III A.

IV. DYNAMICS BETWEEN ROWS

Recall that for ideal NXM arrays there exists a neutral
stability between rows for the in-phase state: the junctions
are phase locked within each row, but merely frequency
locked from one row to the next. It is not clear a priori what
the effects of disorder might be, and a number of possibilities
exist. For instance, the disorder might have little qualitative
effect so that different rows remain frequency locked but not
phase locked; or disorder might induce phase locking be-
tween rows; or disorder might destroy frequency locking
altogether.

In this section we show that disorder typically destroys
frequency locking between the rows. We note that disorder
has precisely this effect on one-dimensional arrays: e.g. , for
the case of two junctions (Fig. 7) the governing equations are
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yH + IH ~

( @PI)
1

(31a)

+I, sin(P )=6
er2

(31b)

H HyH+ IH ~

( yH)
28r3

(31c)

FIG. 7. A linear array consisting of two vertical junctions p,
and P~.

'V V ~ V
v 0»+I, sin(P») =I

28'r11 c11 (31d)

fL

@,+I, si (nP, )=I,
28r1 C) (30a)

v P&&+ I, sin(P, z) =I+6, ,
28r12 12

(31e)

Pz+I, sin(Pz) =I,
28r2 Cg (30b)

'V V ~ V

2~l 21
v @z,+I, si n(@z t)=I 6t ——kz,Cp)

(31f)

so that if the junction parameters are not identical the two
junctions clearly oscillate with different frequencies. Unfor-
tunately, this simple argument cannot be applied more gen-
erally because the junctions in (30a) and (30b) are funda-
mentally uncoupled, unlike what occurs in general 20
arrays. We therefore consider disorder in the simplest 2D
array which allows for dynamical coupling between junc-
tions in different rows.

v P~~+ I, sin( P~~) = I+ 6, + Az,
2er22

along with constraint relations

6,+ 62+ L3=0,

(31g)

(32a)

A. The double plaquette

The "double plaquette" is depicted in Fig. 8. From (2a),
(3), and (4), the governing equations may be written as yH+ @v yH yv 0

(32b)

(32c)

)(c)i

2

3

)(6»

)(o»

Here, L1, E2, and L3 denote the total current across the
three horizontal junctions, respectively, and we have allowed
the junction critical currents and resistances to vary.

As before, we can analyze the effects of disorder in Eqs.
(3la) —(31g) and (32a)—(32c) using a multiple time scale
method. Before doing so, however, it is instructive to con-
sider a special realization of disorder where we can instantly
deduce its effect. Suppose that all vertical junctions lying in
the same row are identical (I, =I. . .r, =r, ), bu"t that

ij ij' J IJ

they differ from one row to the next. Then, as is readily
verified by inspection, Eqs. (31a)—(31g) and (32a)—(32c) ad-
mit a solution in which all horizontal junctions are inactive
and where all vertical junctions lying in a given row oscillate
exactly in phase at some frequency, but where this oscillation
frequency is different for the two rows. Thus, disorder of this
special type destroys frequency locking between rows. (Re-
markably, though, it preserves the neutral stability. ) A similar
result holds for N)(M arrays with this type of disorder.

FIG. 8. The double plaquette. The vertical junctions in the first
row are denoted by P» and P,z, and those in the second by Pz,
and P~z. The horizontal junctions are P, , Pz, and Ps .

Az, and 63 represent the induced currents shunted across the hori-
zontal junctions.

B. Multiscale analysis

We now demonstrate the absence of frequency locking in
the double plaquette for general disorder using a multiple
scale expansion. In order to simplify the algebra we only
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consider variations in the critical currents. The governing
equations (31a)—(31g) and (32a)—(32c) can be put in a more
useful form by defining

1
D2= —El —62 —

2 I, sin(@„2+@D2)

V 4 11 412 V @21 422 V ~11 412
V V V V V+ V

4D1 2 ~ D2 2 ' Al
+

2 I, sin(QA2 —@D2), (35b)

and

&21
V+ V

A2 2 (33) @„,=I —I—, sin(@„,+ QD, ) ——I, sin(@„,—QD, ),
(35c)

@"= 0"+ 0"+ 0' (34)

where @D, and QD2 measure the phase difference between
the two vertical-junction variables in the top row and bottom
row, respectively; @A, and @A2 measure the average phasesV V

for each row. Note that the two rows will be frequency
locked if P„,—$„2 remains bounded. For convenience we
set fi/2er= l. In these new variables, the system becomes

p„2= I I, —sin( @„2+@D2)
—

—,
' I, sin( p„2—QD2),

(35d)

0"+2@D2+44g 1'
I, sin—

CI
r3

„.'e"+2&.', -2O.', ~

—I, sin
2 3 r

pD, = —8, , ——I, sin(@„,+ @D,)

+ I sin( QA1 QD1), 35a
where

„.'0 —4&D2 —2@D1'—I, sin
3 I 3

(35e)

6, = —
15 I, sin(@„,+p, )+ 15 I, sin(p„, —

QD1)
—

15 I, sin($„2+@D2)+ 15 I, sin(@„2—
@D2)

l5 c 3 ) 15 3
(36a)

62=+
5

I, sin(p„, +QD1) ——I, sin(p„, —@Dl)——I, sin(@„2 @D2)+ —I, sin(@„2—
@D2)

1 r P +2(bD2+4@Dll 2 I P +2$D2 —2@D1I 1 P —4$D2 —2$D,
+ —I, sin ——I, sin

5 1 i 3 r 5 2 ( 3 r 5 3

Introducing e as a small parameter, we scale the critical
currents I, ,I, —+eI, , eI, , corresponding to the high bias

lj l lj l

current regime. Setting 8,= BT + eBT + BT, the phases are

then expanded as follows:

4A2 (~20TO+ ~22 2)+ O'A2+ +O'A2+ ~ 9 A2 ~

V VO V1 2 V2

yH yH'0+ E@H,l+ ~@H,2

(37d)

(37e)

@V @VO+ yV1+ 2@V2

4 D2 AD2 ~4 D2 ~ O'D2 ~

V VO V1 2 V2

~A1 (~1,0 0 ~1,2T2) 4A1 + ~4A I ~A1 ~

V V,O V, I 2 V,2

(37a)

(37b)

(37c)

Substitution of these expansions leads to a hierarchy of
equations. To lowest order we conclude that the phases

pD;, QDz, QA1, @„2,and @ ' depend solely on the slow

time scales T1 and T2, and that the average rate of overturn-

ing for the vertical oscillators in each of the two rows
is simply co10= co20= I. At O(e), we find solvability
conditions
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v,o
~T, 4'g 't =—4 ( yH+ 2 yv, o+ 4 yv, o'l

I, sin
3

~ 0'"+ 2 4o'2 24—D'i'I

Finally, at O(e ), we obtain solvability conditions for
p„', (T2), and p„z(T2). It is most instructive to rewrite
these in terms of the difference between these two phases:

v,o

( yH 4 yV, O 2 yV, O)

+ I,sin, (38a)15

( yH+ 2 yV, O+ 4 yV, O)

I, sin
3

1 1
~T2(4'Pt O'A2 ) —(&22 &1 2) + (IC ) + (I~ )

-(I' )'-(I' )'

( yH+2yv, O 2yVO)
—I sjn

3 )

( @H 4 yV, O 2 yV, O)

+ I sj
15

/ yH+ 2 yV, O+ 4 yV, O)

BT@ = —I, sin
3

H+ 2 Pv, o 2 Pv, O~

—I, sin
2

/ yH 4@V,O 2yV, O)
—I, sin

(38b)

(38c)

(39)

We know from (38a)—(38c) that P~', and PD'z approach the
origin on a "fast" time scale T, (i.e., fast compared to T2),
so we may replace these quantities by zero in Eq. (39). Since
we require bounded solutions to (39), it follows that there
will exist a frequency mismatch between the top and bottom
rows of the double plaquette [see (37c) and (37d)], i.e.,

11 v
&12 &22=

6() (I,' )'+ (I,' )' —(I,' )' —(I,' )

along with the trivial conditions BT P„', = 0 and
1

Br p„2 =0. A key observation is that the origin of system
1

(38a)—(38c) is an attractor for all values of the critical cur-
rents, as a simple linear stability calculation shows.

(40)

Hence we conclude that disorder destroys the frequency
locking between rows, as claimed.

1.8

1.4

0. 6

FIG. 9. I-V characteristic of an
NX M, identical-junction array in
the in-phase state. The time-
averaged voltage of the individual

junctions ((P, )) is shown. In this
state all vertical junctions p,, dis-

play the same I-V behavior; the
horizontal junctions gP;. are inac-
tive. For different initial condi-
tions (leading to states related to,
but distinct from, the in-phase
state), the same I Vbehavior re--
sults.

1.3 1.5 1.7 1.9
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2. 08

2. 04

1.96

1.92

1.88 &

3.3

3.2

2. 05 2. 15 2. 2

FIG. 10. I-V curve for the
plaquette for large disorder. The
time-averaged voltage across each
junction (@; ' ) is shown. (a)
For critical currents I, = 1.0,

1

I, =0.5, I, =0.3, I, =0.07, and

all resistances equal to unity. (b)
For resistances r, =1.0, rz =0.6,
r, =0.9, rz =0.8, and all critical
currents equal to unity. Note the
transition from synchronized to
desynchronized behavior in each
case; the observed transition val-

ues of the bias currents agree with
the theoretical predictions [using
(27)] to better than 5% and 2%,
respectively.

3.1

2. 9
4. 2 4. 3

V. DISCUSSION AND NUMERICAL SIMULATIONS

In this section we summarize our main results and present
numerical simulations of various prototype 20 arrays. Figure
9 depicts the theoretical I-V curve for the in-phase state of an
ideal NXM array with identical elements, showing the be-
havior of the junctions: all vertical junctions oscillate (i.e.,

overturn) at the same rate and in phase; the horizontal junc-
tions remain inactive. Since this state is only neutrally stable,
for different initial conditions the system will instead evolve
to a state in which all vertical junctions within a given row
oscillate in phase, but with overall phase shifts from one row
to the next (the horizontal junctions remain inactive). In ei-
ther case, the I-V characteristics for these states are the same,
since the vertical junctions always oscillate with the same

frequency (i.e., voltage). Nevertheless, because phase shifts
can exist between different rows, there is a natural di-

chotomy between the behavior seen across a given row of the
array and that found moving downwards from one row to the
next. The neutral stability is associated with this downward
direction.

This picture changes with the introduction of disorder,
though a dichotomy between intrarow and inter-row behav-
iors persists. Our analytic results for the plaquette show that
low or moderate levels of disorder destroy the in-phase, in-
trarow behavior, but nonetheless preserve (I:I) frequency
locking between the vertical junctions within a row. The
physical mechanism responsible for this frequency locking is
the induced supercurrents shunted by the horizontal junc-
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)( o.s )(0.6

0.07

I I

2. 2

FIG. 11. (a) A row of junc-
tions. The critical current of each
junction is indicated (high disor-

der). (b) The corresponding I V-
curves, showing a transition to a
desynchronized state. The junc-
tion resistances are all equal to
unity. After the transition, two of
the vertical junctions continue to
be frequency locked in this ex-
ample. Note that for lower levels
of disorder no fork in the I-V
curve would exist.

1.9 '

0.9

0. 8

0. 7

0. 6

FIG. 12. I-V curves for the

double plaquette with weak disor-

der (I, = 1.00, I, = 0.99,

I, =0.98, I, =0.97, I, =0.99,

I, =0.97, I, =0.98). The verti-

cal junctions in the same row are

frequency locked, but the charac-
teristic frequency of each row is
different.

0. 5

1.2 1.3
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tions, which compensate for the inhomogeneities associated
with the disorder. For high levels of disorder, this mechanism
will fail when the required supercurrent exceeds the maxi-
mum allowable supercurrent which can be shunted by the
horizontal junctions: frequency locking is lost when regular
shunt currents begin to Aow. This behavior is depicted in the

FIG. 13. (a) A6X2 array. The critical current of each junction is
indicated (moderate disorder). (b) I Vcurves, demonstra-ting that

the vertical junctions in the six rows have different oscillation fre-
quencies (two of these frequencies are close in value and difficult to
distinguish in the plot). Within each row, the vertical junctions are

frequency locked. Intra-row locking would be destroyed at higher
levels of disorder (not shown).

I Vc-haracteristics of the plaquette (Fig. 10). The separation
of the I V-curves of the different vertical (or horizontal)
junctions indicates that the transition from a frequency-
locked to an unlocked state has occurred. We emphasize that
this transition sets in only at high levels of disorder [as de-
fined by transition criterion (27)]; at lower levels of disorder
there is no transition, and the I-V characteristics closely re-
semble that of the idealized identical junction case (Fig. 9).
We note also that the transition point is somewhat more sen-
sitive to variations in the resistances than to variations in the
critical currents, at least in the case of high bias current. If
instead of an isolated plaquette we consider a series of
plaquettes laid down horizontally alongside one another
(forming a 2 XN array), then the intrarow frequency-locking
mechanism identified in the single plaquette will continue to
operate, promoting frequency locking of vertical junctions
across the entire row (Fig. 11). As before, this is accom-
plished by means of induced supercurrents being shunted
across the horizontal junctions, and a transition occurs at
sufficiently high levels of disorder.

The primary effect of disorder on inter-row behavior is
revealed by the (3 X2) double plaquette described in Sec.
IV. We showed that arbitrarily smaO amounts of disorder
destroy the frequency locking between rows. A typical I-V
plot for the double plaquette is shown in Fig. 12 for weak
disorder. Observe that the vertical junctions in different rows
are no longer frequency locked despite the very low level of
disorder. The junctions within the same row continue to be
locked via the mechanism described above (unless the disor-
der is so high that this intrarow locking itself breaks down).
Our numerical simulations verify that these behaviors persist
if additional plaquettes are laid down vertically beneath the
double plaquette, forming an NX2 array (Fig. 13).

In summary, based on these numerical simulations of
larger arrays, we conclude that our theoretical analysis of
two prototype systems —the plaquette and double plaquette—captures the two principal physical mechanisms at work in
large disordered arrays of resistively shunted Josephson
junctions, and provides us with (at least a partial) under-
standing of the dynamical behavior of these systems. In par-
ticular, the vertical junctions within each row maintain 1:1
frequency locking provided the disorder is not too large, but
the different rows operate at different frequencies for arbi-
trarily small disorder.
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