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Completing the Li�enard-Wiechert potentials: The origin of the delta
function fields for a charged particle in hyperbolic motion

Daniel J. Crossa)

Physics Department, Haverford College, Haverford, Pennsylvania 19014

(Received 5 September 2014; accepted 5 December 2014)

Calculating the electromagnetic fields of a uniformly accelerated charged particle is a surprisingly

subtle problem that has been long discussed in the literature. In particular, the fields calculated

from the Li�enard-Wiechert potentials fail to satisfy Maxwell’s equations. While the correct fields

have been obtained many times and through various means, it has remained unclear why the

standard approach fails. We identify and amend the faulty step in the Li�enard-Wiechert

construction and provide a new direct calculation of the fields and potentials for a charge in

hyperbolic motion. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4904762]

I. INTRODUCTION

The Li�enard-Wiechert (LW) construction yields an
explicit expression for the electromagnetic fields of a
charged particle in arbitrary motion.1,2 However, it has been
pointed out3,4 that in at least one instance—a particle under-
going relativistic hyperbolic motion (constant proper accel-
eration)—this “standard formula” fails: the resulting fields
do not satisfy the Maxwell equations on all of spacetime as
they lack certain delta function terms. While the missing
terms have been reconstructed in several different ways,3,4

these approaches involve amending or supplementing the
hyperbolic motion in some way, and they do not explain
why hyperbolic motion causes the standard construction to
fail. We address this question here and find that physically
the problem arises because the particle’s speed approaches c
in the infinite past, while mathematically the problem results
from handling the delta function that defines the retarded
time in that limit. We begin in Sec. II with a review of the
LW construction of the electromagnetic potentials. In Sec.
III, we directly produce the missing electromagnetic field
terms through a slight alteration of the standard construction.
Finally, in Sec. IV, we explain the fault in the LW construc-
tion, amend it, and produce the missing potential terms.

II. REVIEW OF THE ELECTROMAGNETIC

POTENTIALS

The electromagnetic potentials may be expressed as inte-
grals of the charge density q and current J over all space and
time2

V x; tð Þ ¼
c

4p�0

ð
Gq x0; t0ð Þ dx0 dt0; (1)

A x; tð Þ ¼
1

4p�0c

ð
GJ x0; t0ð Þ dx0 dt0; (2)

where G is the (retarded) Green’s function, given by5

G ¼ d ct� ct0 � Rð Þ
R

H t� t0ð Þ; (3)

and where R ¼ x� x0 is the relative position vector, and
R ¼ jRj is its length. The Green’s function propagates the
effects of a point source at ðx0; t0Þ to all points ðx; tÞ along the

forward light-cone cðt� t0Þ ¼ R ¼ jx� x0j, as enforced by
the delta function. A useful equivalent representation of G
is6

G ¼ 2dðs2ÞHðt� t0Þ; (4)

with s2 ¼ c2ðt� t0Þ2 � R2.
For a point charge q following the path nðtÞ, the charge

density is qðx0; t0Þ ¼ qd½x0 � nðt0Þ� and the current density is
J ¼ q _n ¼ qv. With these expressions, the potentials become

V ¼ qc

4p�0

ð
Gd x0 � n t0ð Þ
� �

dx0 dt0; (5)

A ¼ q

4p�0c

ð
Gvd x0 � n t0ð Þ

� �
dx0 dt0: (6)

Carrying out the spatial integral using the delta function
localizes the Green’s function to the particle’s worldline, and
the potentials simplify to

V ¼ qc

4p�0

ð
G dt0; A ¼ q

4p�0c

ð
Gv dt0; (7)

where now R ¼ x� nðt0Þ in G. Performing the remaining in-
tegral (see Sec. IV) over t0 yields the Li�enard-Wiechert
potentials

V ¼ qc

4p�0

1

cR� R � v

����
tr

; A ¼ v

c2
V

����
tr

; (8)

where the notation indicates that all quantities are to be eval-
uated at retarded time tr, which is the (unique) solution to
t� tr � RðtrÞ=c ¼ 0 with tr < t, and represents when the
past lightcone of ðx; tÞ intersected the charge’s worldline.
For a charge in hyperbolic motion along the z-axis, the elec-
tromagnetic fields E ¼ �rV � @A=@t and B ¼ r� A cal-
culated from these potentials will fail to satisfy the Maxwell
equations on the ctþ z ¼ 0 plane,3 missing a term propor-
tional to dðctþ zÞ.

III. THE ORIGIN OF DELTA FUNCTION FIELDS

Instead of taking derivatives of the completed potentials
to obtain the fields, let us instead, following Barut,7 compute
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the derivatives before performing the time integrals in Eq.
(7), e.g.

rV ¼ qc

4p�0

ð
rG dt0: (9)

According to Eq. (4), away from the charge itself
(R 6¼ 0; t 6¼ t0), G is a function only of s2, so that repeated
use the chain rule gives

rG ¼ dG

ds2
rs2 ¼ dG

dt0
dt0

ds2
rs2: (10)

It is straightforward to show that

rs2 ¼ �2R and
dt0

ds2
¼ � 1

2

1

c2 t� t0ð Þ � v � R
: (11)

Using these expressions the integral in Eq. (9) becomes

ð
rG dt0 ¼

ð
R

c2 t� t0ð Þ � v � R

� �
dG

dt0
dt0

� �
; (12)

which can be integrated by parts to give

ð
rG dt0 ¼ GR

c2 t� t0ð Þ � v � R

����
1

�1

�
ð

G
d

dt0
R

c2 t� t0ð Þ � v � R

� �
dt0: (13)

Thus, there are two distinct contributions to rV. The inte-
gral on the right-hand side of Eq. (13) can be evaluated
directly,7 yielding an expression identical to that obtained by
taking the gradient of the LW scalar potential in Eq. (8). Let
us therefore label this contribution as rVLW. The other con-
tribution is the boundary term in Eq. (13). Since the bound-
ary is at infinity, let us label this contribution to the gradient
as rV1. We are accustomed to having boundary terms at in-
finity vanish, so we may be tempted to dismiss this term
without a thought, but let us not be so hasty here and actually
evaluate it. Going back to Eq. (3), the step function is G is
zero unless t > t0, so the upper limit t0 ! þ1 gives zero,
and we can set H¼ 1 for evaluating the lower limit
t0 ! �1. Using the delta function, we can replace cðt� tÞ0
with R in the denominator, leaving for the boundary term
(putting in the zero value of the upper limit explicitly)

rV1 ¼ 0� lim
t0!�1

R d ct� ct0 � Rð Þ
cR2 � v � RR

: (14)

For hyperbolic motion R!1 as t0 ! �1, so the argu-
ment of the delta function has the indeterminate form1�1.

For hyperbolic motion along the z-axis, z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðct0Þ2

q
,

and using polar coordinates ðs; h; zÞ as in Ref. 3, we have

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðz� z0Þ2

q
; (15)

which asymptotically becomes8

R! �ct0 � z� s2 þ b2

2ct0
þ O 1=t0


 �2
: (16)

The argument of the delta function is then

ct� ct0 � R! ctþ zþ s2 þ b2

2ct0
! ctþ z; (17)

so that the delta function is supported on the ctþ z ¼ 0
plane, precisely where the missing field term is supposed to
be.

Curiously, had the asymptotic speed been less than c, this
delta function would be off at infinity (not along ctþ z ¼ 0),
and this boundary term would contribute nothing to the field.

That is, for z0 ¼ ðv1=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðct0Þ2

q
, with v1 < c, then

R! �z� v1t0 and

ct� ct0 � R! ctþ zþ ðv1 � cÞt0 ! 1; (18)

as v1 � c < 0. We may conclude that physically the trouble
with the fields for hyperbolic motion is caused by the particle
speed asymptotically approaching c.9

The denominator of Eq. (14) is also indeterminate as
t0 ! �1. Asymptotically, the first term is

cR2 ! cðct0 þ zÞ2 þ cðs2 þ b2Þ þ Oð1=t0Þ: (19)

To evaluate the second term, v � RR, first note that
v � R ¼ ðz� z0Þðdz0=dt0Þ, and that we can write
dz0=dt0 ¼ ct0=z0. Then

v � RR! cðct0 þ zÞ2 þ ðc=2Þðs2 þ b2Þ þ Oð1=t0Þ: (20)

When taking the difference between Eqs. (19) and (20) the
leading terms cancel and ðc=2Þðs2 þ b2Þ survives in the limit.
At this point Eq. (14) reads

rV1 ¼ � q

2p�0

d ctþ zð Þ
s2 þ b2

lim
t0!�1

R: (21)

For motion along the z-axis s0 ¼ 0, so Rs¼ s and the s-com-
ponent of the electric field is (the vector potential component
As¼ 0 for motion along the z-axis)

E1s ¼ �rsV
1 ¼ q

2p�0

s

s2 þ b2
d ctþ zð Þ; (22)

which is precisely the delta function field of Ref. 3 [last term
of their Eq. (C1); see also Eq. (III.11) of Ref. 4].

For the z-component of the field we need to evaluate
Rz ¼ z� z0, which is problematic because z0 ! 1 as
t0 ! �1. However, the vector potential Az also contributes
to Ez. Let us evaluate @Az=@t following the same procedure
as rV. First we need

@G

@t
¼ dG

dt0
dt0

ds2

@s2

@t
¼ � dG

dt0
c2 t� t0ð Þ

c2 t� t0ð Þ � v � R
: (23)

Integrating by parts gives two contributions: the standard
@ALW=@t and the boundary term

@A1z
@t
¼ 1

4p�0c2

�Gc2 t� t0ð Þv
c2 t� t0ð Þ � v � R

����
�1

¼ � q

2p�0

d ctþ zð Þ
s2 þ b2

lim
t0!�1

c t� t0ð Þ; (24)
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which also blows up as t0 ! �1. The complete z-compo-
nent of the electric field arising from these boundary terms is
then

E1z ¼�rzV
1�@A1z

@t

¼ qd ctþzð Þ
2p�0 s2þb2ð Þ lim

t0!�1
z�z0ð Þþc t� t0ð Þ

� �
¼0: (25)

The limit gives zero because zþ ct ¼ 0 on account of the
delta function while �z0 � ct0 ! 0 as t0 ! �1 for hyper-
bolic motion. Finally, there is also a delta function term B1h
missing from the magnetic field [not considered in Ref. 3,
but see Eq. (III.11) of Ref. 4], which can be obtained as
ðr � A1Þh ¼ �@A1z =@s following an analogous procedure.
We find

B1h ¼ �
q

2p�0c

s

s2 þ b2
d ctþ zð Þ ¼ �E1s =c; (26)

in agreement with Ref. 4.
Boulware4 found these missing terms by boosting a

static Coulomb field and taking the limit as the boost
speed approached c, identifying the delta function field as
“the original Lorentz transformed Coulomb field of the
charge ‘before’ it began its acceleration.” The present
analysis is congruent with Boulware’s assessment as the
delta terms were obtained from a boundary contribution
at infinity. We have the rather astounding result that a
source infinitely remote in space and time produces non-
negligible electromagnetic fields if it is moving at the
speed of light (more precisely, if is located at past null in-
finity10). This gives some insight into the failure of the
usual procedure: because the source is at infinity, it lies
beyond the reach of the usual expression for the LW
potentials.

IV. COMPLETING THE LI�ENARD-WIECHERT

CONSTRUCTION

We have successfully derived the missing delta fields,
but the procedure we employed raises a rather vexing
question: why does simply reversing the order of differen-
tiation and integration make a difference in the value of
the field? To answer this question, consider the nature of
the extra terms: they are due to a source at infinity.
Recall from Eq. (17) that as t0 ! �1 (and R!1), the
delta function in G becomes dðct� ct0 � RÞ ! dðctþ zÞ,
supported on the ctþ z ¼ 0 plane rather than out at infin-
ity. The behavior of the source at infinity is therefore
non-trivial, and care must be taken when evaluating the
t0 ! �1 limit.

Before we evaluate the limit, let us first reveal
where the standard construction goes awry. All the steps
in Sec. I are fine up to and including Eq. (7), which is the
integral

ð
G dt0 ¼

ð
d ct� ct0 � Rð Þ

R
dt0: (27)

The next step is to integrate out the delta function, defin-
ing the retarded time in the process. But this is not a
straightforward procedure as the delta function is a non-
linear function of t0, so the following identity11 is invoked

d f t0ð Þ
� �

¼ d t0 � t0ð Þ
j _f t0ð Þj

; (28)

where t0 is the (assumed unique) root of the nonlinear func-
tion f, and the derivative _f ¼ df=dt0 in the denominator must
not vanish at t0. In the present context f ðt0Þ ¼ ct� ct0 � R
and t0 ¼ tr is the retarded time. Use of this identify trans-
forms the integral to

ð
d ct� ct0 � Rð Þ

R
dt0 ¼

ð
d t0 � trð Þ
Rjcþ _Rjtr

dt0; (29)

so that now the delta function can be integrated out in the
usual way. This transforms t0 ! tr , and the usual LW poten-
tials, Eq. (8), result.

The trouble is that for hyperbolic motion this procedure
is ill-defined in the t0 ! �1 limit. Because the particle
asymptotically approaches z0 ¼ �ct0, for every point on
the ctþ z ¼ 0 plane the retarded time is the infinite past
tr ¼ �1. In this limit, the denominator in Eq. (29) is ill-
behaved as R!1 while cþ _R ! 0. Again, this would
not have happened had the speed been less than c in the
infinite past, as there would have been no solution for the
retarded time, and the integrand in Eq. (29) would just go
to zero. The mathematical fault in the standard LW con-
struction is therefore the use of this identity, which fails
when the particle’s speed approaches c in the infinite
past.

Let us amend the standard construction by integrating
over the delta function directly (near t0 ! �1), without
appealing to Eq. (28). Using the asymptotic forms of R
and of the delta function argument, the integral can be
written as

ð
�1

d ct� ct0 � Rð Þ
R

dt0 !
ð
�1

d aþ b=t0ð Þ
�ct0

dt0; (30)

where we have defined a ¼ ctþ z and b ¼ ðs2 þ b2Þ=2c
(which are independent of t0) for brevity. By changing varia-
bles to u ¼ �b=t0 (so that u! 0þ as t0 ! �1) the delta
function can be directly integrated to give

ð
0þ

d a� uð Þ
cu

du ¼ lim
a!0þ

1

ca
; (31)

which is singular for a ¼ ctþ z ¼ 0. We anticipate that this
expression is proportional to a delta function in a. The coeffi-
cient of this delta function is the value of its integral over all
a, which we now compute. Going back to Eq. (31) and inte-
grating over a first we find

ð
0þ

du

ð
d a� uð Þ

cu
da ¼

ð
0þ

du

cu
¼ � 1

c
lim

u!0þ
lnu; (32)

so that upon transforming back from u to t0 we obtain (leav-
ing off 1/c for now)
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� lim
u!0þ

lnu ¼ � lim
t0!�1

ln
s2 þ b2

�2ct0

¼ � lim
t0!�1

ln
s2 þ b2ð Þ=b2

�2ct0=b2

¼ �ln
s2 þ b2

b2
þ lim

t0!�1
ln
�2ct0

b2
: (33)

In the second line factors of b2 were inserted to set the scale
of the logarithms in the third line. Putting in the pre-factors
we obtain for the asymptotic scalar potential

V1 ¼ q d ctþ zð Þ
4p�0

�ln
s2 þ b2

b2
þ lim

t0!�1
ln
�2ct0

b2

� �
: (34)

Except for the logarithmically diverging term this agrees
with the scalar potential postulated in Ref. 3 [their Eq. (37)].
The asymptotic vector potential A1z can be handled in
exactly the same way. With vz ¼ dz0=dt0 ! �c we find

A1z ¼ �
q d ctþ zð Þ

4p�0

ð
�1

G dt0 ¼ �V1

c
:

Again, the finite term in the vector potential matches that
postulated in Ref. 3. There are still the divergent terms,
but they are inconsequential as they can be removed by a
gauge transformation (V1 ! V1 � @K=@t and A1z ! A1z
þ @K=@z) with the gauge factor

K ¼ qH ctþ zð Þ
4p�0c

ln
�2ct0

b2
(35)

applied prior to completing the limit.
In summary, proper evaluation of the delta function in the

LW integral produces two terms in the potentials:

V ¼ VLW þ V1;
A ¼ ALW þ A1;

(36)

the standard LW term for normal particle motions with finite
retarded times, and the boundary term for asymptotic light-
like particle motion with an infinite past retarded time.

While hyperbolic motion is quite simple, the asymptotic
approach to light speed in the infinite past has surprising
physical implications. We have found that a charge moving
at light speed, though infinitely remote in space and time,
produces an electromagnetic field. The failure of the stand-
ard LW construction to account for this source lies in the
standard manipulation of the delta function, a procedure
which is ill-defined in the required limit. Boulware4 was

apparently aware of this, noting only in passing that the
missing delta fields “can be calculated directly from the re-
tarded field of the uniformly accelerated charge…if the field
is carefully treated as a distribution,” though he presented no
such calculation.
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