Haverford College

Haverford Scholarship

Faculty Publications Linguistics

2017

Computational Locality in Morphological Maps

Jane Chandlee
Haverford College, jchandlee@haverford.edu

Follow this and additional works at: https://scholarship.haverford.edu/linguistics_facpubs

Repository Citation
Chandlee, J. (2017) "Computational Locality in Morphological Maps." Morphology, 27:599-641.

This Journal Article is brought to you for free and open access by the Linguistics at Haverford Scholarship. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For
more information, please contact nmedeiro@haverford.edu.

https://scholarship.haverford.edu/
https://scholarship.haverford.edu/linguistics_facpubs
https://scholarship.haverford.edu/linguistics
https://scholarship.haverford.edu/linguistics_facpubs?utm_source=scholarship.haverford.edu%2Flinguistics_facpubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu

Morphology (2017) 27:599-641
DOI 10.1007/511525-017-9316-9 CrossMark

Computational locality in morphological maps

Jane Chandlee!

Received: 2 August 2016 / Accepted: 23 October 2017 / Published online: 7 November 2017
© Springer Science+Business Media B.V. 2017

Abstract This paper presents a computational investigation of a range of morpho-
logical operations. These operations are first represented as morphological maps, or
functions that take a stem as input and return an output with the operation applied
(e.g., the ing-suffixation map takes the input ‘dugk’ and returns ‘dugk+1y’). Given
such representations, each operation can be classified in terms of the computational
complexity needed to map a given input to its correct output. The set of operations
analyzed includes various types of affixation, reduplication, and non-concatenative
morphology. The results indicate that many of these operations require less than the
power of regular relations (i.e., they are subregular functions), the exception being to-
tal reduplication. A comparison of the maps that fall into different complexity classes
raises important questions for our overall understanding of the computational nature
of phonology, morphology, and the morpho-phonological interface.

Keywords Morphological maps - Computational locality - Subregularity -
Morpho-phonological interface

1 Introduction

Classifying natural language patterns in terms of their computational complexity—
defined in this paper as the amount of computational power needed to recognize
and/or generate the pattern—is one approach to understanding what kinds of pat-
terns can and cannot exist in natural language. In addition, computational analyses of
patterns in different linguistic domains offer one perspective on how these domains
fundamentally differ (e.g., Bromberger and Halle 1989). In particular, previous work

B J. Chandlee
jchandlee @haverford.edu

1 Haverford College, Tri-Co Department of Linguistics, 370 Lancaster Avenue, Haverford, PA

19041, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11525-017-9316-9&domain=pdf
http://orcid.org/0000-0001-9143-1305
mailto:jchandlee@haverford.edu

600 J. Chandlee

has shown that syntactic patterns exist which are context-free (Chomsky 1956) and
context-sensitive (Shieber 1985; Kobele 2006), while virtually all phonological pat-
terns are known to be regular relations (i.e., finite state) (Johnson 1972; Koskenniemi
1983; Kaplan and Kay 1994) with substantial evidence indicating that they are in
fact properly subregular (Heinz 2009, 2010; Heinz et al. 2011; Chandlee et al. 2012;
Gainor et al. 2012; Chandlee and Heinz 2012; Heinz and Lai 2013; Chandlee 2014;
Luo 2013; Payne 2017), meaning they can be represented with proper subclasses of
the regular relations. Collectively these findings suggest that syntax has the potential
to be more computationally complex than phonology.

Perhaps not surprisingly, morphology falls somewhere in between, with varying
claims that it is regular like phonology (Langendoen 1981) and context-free (Carden
1983) or even context-sensitive (Culy 1985) like syntax. Heinz and Idsardi (2013)
conjecture that patterns classified as morpho-phonological will have similar compu-
tational properties as phonological patterns (i.e., be regular or subregular), and like-
wise morpho-syntactic patterns will be more computationally complex (i.e., be non-
regular). The extent to which this hypothesis holds is unknown, and testing it fully is
a large undertaking. The primary goal of this paper is to establish what is currently
known about the computational nature of morphological operations and identify the
significant open questions.

The previous work on natural language complexity (reviewed in detail below) has
followed two approaches. One is to treat a pattern as a formal language, or a set of
strings that obey a particular restriction or constraint. For example, a phonotactic con-
straint like *NK (i.e., nasal-stop sequences must be homorganic) can be represented
as the set of strings that do not contain a violating NK sequence. The complexity of
different formal languages can be compared in terms of the needed computational
power of the grammar that generates them. A second approach is to analyze a pattern
as a map, or a relation/function from one set of strings to another. As with formal lan-
guages, maps can also be categorized in terms of the complexity of the computation
needed to correctly map an input string to its output string. The previous work on the
complexity of morphology followed the first approach and analyzed the set of strings
that the word formation component must be able to generate. This paper will take the
second approach and define morphological maps, with the goal of characterizing the
various kinds of operations that actually generate those strings.

As an example of what is meant by a morphological map, a suffixation map is
shown in (1). This map takes an input string and returns it with the string 1 appended
to the end.

9] fpmg (Spik) = Spik+1g

The goal is to identify the computational properties of such maps, properties that hold
regardless of the theoretical formalism used to describe the map. As will be reviewed
below, the same approach for studying phonological maps has led to significant re-
sults for the computational nature of the transformation from underlying to surface
forms. Following Tesar (2008, 2014) and Bakovi¢ (2013), the use of the term map
here reflects the fact that such investigations aim to reveal properties of the trans-
formation from underlying representation (UR) to surface representation (SR), prop-
erties that are independent of any particular grammatical formalism. In other words,

@ Springer

Computational locality in morphological maps 601

both rule-based formalisms like SPE (Chomsky and Halle 1968) and constraint-based
formalisms like Optimality Theory (Prince and Smolensky 2004), Harmonic Gram-
mar (Legendre et al. 1990), or Harmonic Serialism (McCarthy 2000; Pater 2012)
assume the existence of a map from a UR to an SR, though they of course differ
greatly in how that map is achieved.

The concept of a map like in (1) may be more consistent with some morpho-
logical theories than others. In particular (in the terms of Hockett 1954), the con-
cept of a morphological map may be more in line with Item-and-Process or Word
and Paradigm theories (Anderson 1992; Aronoff 1994; Stump 2001) than with Item-
and-Arrangement theories (Halle and Marantz 1993). The objective here is not to
provide evidence in favor of one theory over the other—indeed, Roark and Sproat
(2007, Chap. 3) argue that computationally-speaking there is no difference between
these approaches. Rather, the goal is to identify the computational properties of mor-
phological operations under the assumption that they can be represented as maps.
A comparable computational investigation under different assumptions may require
a different methodology than the one employed here.

The key result of the analyses to follow is that morphological maps predominantly
belong to well-defined and restricted subregular classes of functions. The operations
to be analyzed include the following:

— (non-reduplicative) affixation
partial reduplication

total reduplication

— featural affixation

truncation

A few comments about compounding and templatic morphology will also be offered,
with more thorough analyses being left for future work.

It has already been established (see e.g., Roark and Sproat 2007; Beesley and Kart-
tunen 2003; Hulden 2009a,b) that these operations are regular relations—meaning
they can be modeled with finite state transducers, a formalism that will be introduced
in Sect. 2—with the exception of total reduplication.! But it will be shown that—
again with the exception of total reduplication—all of these operations can in fact
be modeled with properly subregular classes of transducers. Thus morphology may
in fact be less complex than has been previously assumed. The subregular nature of
morphology is also significant from the perspective of learning, since—unlike the
regular relations—the subregular functions used in the analyses to follow are prov-
ably and efficiently learnable from positive data (Oncina et al. 1993; Chandlee et al.
2014, 2015; Jardine et al. 2014).

Another note on how the results that will be presented in this paper compare to
the previous work on computational complexity and natural language. The majority
of that work (which will be reviewed in Sect. 3 below) applied the following type of
argument: language domain X does not belong to complexity class Y because there
exists at least one example of a X pattern that cannot be classified in Y. For exam-
ple, syntax is not context-free because serial verb case-marking in Swiss German is

1Though finite-state approximations of total reduplication have been proposed and implemented by several
of these authors.

@ Springer

602 J. Chandlee

Fig. 1 Finite state acceptor
for L

context-sensitive (Shieber 1985).? In contrast, the primary objective of the current pa-
per is not to propose a new upper bound on the complexity of morphology as a whole.
Rather, a catalog of various morphological operations will be analyzed individually,
as a means of getting a more nuanced view of the nature of the computations involved
in word formation.

The paper is structured as follows. Section 2 presents the requisite background for
understanding the computational results presented in the paper (i.e., what it means
for a pattern to be regular, subregular, etc.). Section 3 surveys the key previous re-
sults on the computational complexity of syntactic, morphological, and phonological
patterns. Section 4 presents the computational analyses of a set of morphological
operations, including (non-reduplicative) affixation (Sect. 4.1), partial and total redu-
plication (Sects. 4.2-4.4), featural affixation (Sect. 4.5), and truncation (Sect. 4.6).
Section 5 discusses the significance of these results and addresses important remain-
ing questions. Section 6 concludes.

2 Computational background

The complexity classes used to classify language patterns in the previous and current
work come from theoretical computer science, in particular from formal language
theory. A formal language begins with a finite set of symbols called an alphabet;
this set is typically designated with X. A string or word is formed by concatenat-
ing symbols from X together, and X* designates the infinite set of all such strings.
A language is then a subset of X*. For example, if X is the set {a, b}, then X* is the
infinite set of strings of a’s and b’s of any length, and we can define a language | in
which all words have at least one ‘a’: L = {a, aa, ba, ab, ..., bbbbbbbbba, ...}.

The types of symbols included in X' depends on the type of language pattern be-
ing analyzed. X' may include words or syntactic categories for an analysis of syntax,
morphemes for morphology, or phonemes and allophones for phonology. The strings
of the formal language in these cases would be permissible sentences, words, or un-
derlying/surface forms, respectively.

A formal language is classified as regular if it can be represented with a finite state
acceptor (FSA).? For example, the FSA in Fig. 1 is a representation of the language
1L defined above.

A FSA is a set of states (in Fig. 1 the states are labeled 0 and 1) and a set of
labeled transitions between states. Starting in a designated start state (marked with an

2These terms will be explained in the sections to follow.

3There are other definitions of regular languages based in other formalisms (e.g., regular expressions,
monadic second order logic, etc.), but this paper will use only automata-theoretic characterizations
throughout.

@ Springer

Computational locality in morphological maps 603

Fig. 2 FSA that recognizes the string ‘aaabbb’

unlabeled incoming arrow, as in state 0 in Fig. 1), a given string is read one symbol at
a time and transitions are followed according to the current symbol being read. If at
the end of the string the FSA is in an accepting state (marked with an outgoing arrow
with no destination state, as in state 1), then the string is in the language that the FSA
represents. If the FSA ends in a non-accepting state, the string is not in the language.
It is easy to see in the figure that as soon as an ‘a’ is read, the FSA proceeds to the
accepting state 1, where it remains until the end of the string is reached. If no ‘a’ is
ever read (i.e., the string contains only b’s), then the FSA never leaves state 0. Since
0 is not an accepting state, the string will be rejected. Thus the FSA will correctly
accept all and only those strings with at least one ‘a’.

A language that is non-regular cannot be represented with a FSA, because what-
ever information is needed to distinguish strings that are and are not in the language
requires an infinite number of states. As an example, consider again ¥ = {a, b} and
the language L, that includes strings of the form a”"b", where n is any integer (i.e.,
strings starting with any number n of a’s followed by the same number of b’s, so ‘ab’,
‘aabb’, ‘aaabbb’, ‘aaaabbbb’, etc.). What would a FSA that recognizes this language
look like? It would have to first identify how many a’s the string begins with and then
verify that an identical number of b’s follows. So if n = 3, the FSA in Fig. 2 would
recognize that ‘aaabbb’ is in the language.

The problem is that since n can be any of the infinite set of integers, the complete
FSA would need an infinite number of branches like Fig. 2, one for each possible
integer. By definition a FSA can only have a finite number of states; therefore this
language cannot be represented with a FSA and is therefore not a regular language.*
In this way the finite state formalism serves as a classification tool. The statements
‘language X is regular’ and ‘language X can be described/represented/modeled with
a FSA’ are equivalent. Likewise, the statements ‘language X is not regular’ and ‘lan-
guage X cannot be described/represented/modeled with any FSA’ are also equivalent.

The finite state formalism can also be used to analyze string-to-string maps. Just as
a FSA can represent a formal language, a finite state transducer (FST) can represent
a function/relation/map. The difference between FSAs and FSTs is that the transition
labels of FSTs include both an input symbol and an output string. As an input string
is read by a FST, it produces an output string by concatenating the output strings of
all the transitions it follows through the states. An example FST is shown in Fig. 3.
Like the FSA in Fig. 1, the FST reads strings of a’s and b’s. The first time it reads
an ‘a’, it outputs a ‘b’. All other a’s are outputted as a’s and all b’s are outputted as
b’s. This FST represents an infinite map that includes string pairs like (‘aaa’, ‘baa’),
(‘bba’, ‘bbb’), (‘aba’, ‘bba’), etc.

4This is not a proof that the language is non-regular, just an intuitive explanation. To see how an actual
proof can be constructed, readers are referred to Hopcroft et al. (2000).

@ Springer

604 J. Chandlee

Fig. 3 FST that maps strings b:b a:a, b:b

from {a, b}* to {a, b}* ‘ .

This paper will make extensive use of the FST formalism as a means of classifying
various types of morphological maps in terms of their computational complexity.’ It
is important to note, however, that this is certainly not the first or only application
of finite state representations of morphology. The primary application thus far has
been morphological analysis, in which a FST representation of a language’s morpho-
phonological system is constructed to be used for both generation and recognition
(Beesley and Karttunen 2003; Hulden 2009a,b).

As an example, we can build such a system by starting with a set of lexical items
augmented with tags for part of speech, tense, number, person, etc. For English this
includes items like run+V+3P+Sg, run+N+Pl, etc. These tagged lexical items are
used as input to a FST that replaces each tag with its corresponding affix (or deletes
the tag if no affix is used to express it):

2) a. r1un+V+43P+Sg > runs
b. run+N+Pl — runs
c. stretch4+V43P+Sg — stretchs

Additional FSTs take care of any phonological processes that are triggered by the
affixation. For example, in English e-insertion is triggered when /s/ is appended to a
sibilant-final word:

3) stretchs > stretches

The affixation map and the e-insertion map have a string in common: the output of
the first is the input to the second. This allows the two maps to be combined by
composition, a means of cutting out the intermediate step and representing the entire
map with a single FST:

@ a. Before composition: stretch+V+3P+Sg > stretchs, stretchs > stretches
b. After composition: stretch4-V+3P+Sg > stretches

By extension, any series of ordered FSTs can be composed into a single FST that
maps tagged lexical items to their surface pronounced forms. This is possible because
the regular relations have the property of being closed under composition.”

In addition, the inverse of this same FST (i.e., the FST in which the input and
output of each transition is flipped) can be used to decompose a surface form into its
component morphemes/tags:

SFor a more comprehensive introduction to the finite state formalism and its application to phonology and
morphology, readers are directed to Beesley and Karttunen (2003) and Roark and Sproat (2007).

Note that the strings in this example are orthographic instead of phonemic, which is the norm for a system
designed to analyze text.

7Formally, this means that if R and R, are regular relations and (x, y) € Ry and (y, z) € Ry, then there
exists another regular relation R3 such that (x, z) € R3.

@ Springer

Computational locality in morphological maps 605

5 stretches +— stretch+V+3P+Sg, stretch+N+Pl

Such systems have wide application in various areas of natural language process-
ing. The fact that they can be implemented with FSTs is due to the theoretical foun-
dations of the results presented in this paper. First, as will be explained in more detail
in Sect. 3.3 below, phonological rules can be modeled with regular relations. Second,
regular relations are closed under composition, meaning the composition operation
that combines the component FSTs is guaranteed to produce a well-defined and cor-
rect FST for the complete map. Thus the classification of phonological processes and
morphological operations like affixation as regular has the practical advantage that
morpho-phonological systems can be efficiently implemented as finite state.

The interests of the current paper lie more in pushing the boundaries of these
influential previous findings. Many unattested and implausible maps are also regular
(and therefore can also be implemented as finite state). The theoretical question of
interest is then how far ‘below’ regular can we go while still accommodating the
range of attested maps. The results presented below indicate that both phonological
and morphological maps belong to subregular classes of functions, which not only
provide a better fit to the observed typology but also (as mentioned above) enable
efficient learning results.

Before turning to the analyses, however, the next section will briefly review the
previous theoretical results on the computational nature of syntactic (Sect. 3.1), mor-
phological (Sect. 3.2), and phonological (Sect. 3.3) patterns.

3 Computational analyses of natural language patterns
3.1 Syntax

The distinction between regular and non-regular was first applied to natural language
patterns by Chomsky (1956), who situated several English syntactic patterns on the
hierarchy of complexity classes shown in (6).

(6) Chomsky Hierarchy
finite C regular C context-free C context-sensitive C recursively enumerable

In particular, Chomsky identified English syntactic patterns with the same type of
dependency needed to recognize the non-regular a”b” language mentioned above. As
an example, consider the sentence frame ‘If Sy, then S,’°, where S| and S, are sen-
tences of English. A dependency exists between ‘if” and ‘then’ in that a sentence that
begins with ‘if” must at some point also contain a ‘then’. If Sy is itself a sentence of
the form ‘If S3, then S4” (i.e., ‘If [If S3, then S4], then S,’), we have two ‘if’s’ that
must be followed at some point by two ‘then’s’. And so on, such that to determine
whether the sentence is well-formed requires keeping track of the same kind of in-
formation needed to determine whether ‘aaabbb’ is in the language L,,. And for the
same reasons, the ‘if... then’ structure describes a non-regular language. This was
taken as evidence that English itself is a non-regular language.

This argument was later recognized as fallacious, since a regular language can
contain a context-free language as a subset (see Daly 1974; Mohri and Sproat 2006).

@ Springer

606 J. Chandlee

But additional evidence that syntax is non-regular came from Shieber (1985) and
Kobele (2006). Shieber’s argument comes from case-marking dependencies in Swiss
German’s cross-serial construction:

@) Swiss German (Shieber 1985)
Jan siit das mer em Hans es huus hilfed aastriiche
Jan says that we ~ Hans-DAT the house-AcCc helped paint
‘Jan says that we helped Hans paint the house.’

In (7), two verbs and their respective objects appear in the order ‘object; object, verb
verb;’. The semantic dependencies are encoded syntactically with case-marking, as
verb; (hdlfed) marks object; (Hans) with dative case and verb, (aastriiche) marks
objecty (huus) with accusative case. More abstractly, this means that a dative-marked
NP (let’s call it @) must precede an accusative-marked NP (let’s call it b), which in turn
must precede a dative-marking verb (c), which in turn must precede an accusative-
marking verb (d). More generally, these precedence relations still hold if the sentence
contains additional NPs and verbs of these categories, such that the sentences of the
language can be represented as a”b"c"d", where m and n are integers. Crucially,
the number of a’s must match the number of ¢’s and likewise the number of b’s
must match the number of d’s. Such a language is known to be non-context-free (i.e.,
cannot be generated by a context-free grammar) (Hopcroft et al. 2000).

Likewise, Kobele (2006) discusses serial verb constructions in Yoruba relativized
predicates:

(8) Yoruba (Kobele 2006)
a. Rira ti Jimoo ra adie
buying TI Jimo HTS buy chicken
‘the fact/way that Jimo bought a chicken’
b. Rira adie se ti Jimoo ra adie se
buying chicken cook TI Jimo HTS buy chicken cook
‘the fact/way that Jimo bought the chicken to cook’

These constructions are analyzed as involving copying, and Kobele (2006) argues
that the fact that relative predicates can themselves contain relative predicates means
the copying is iterative (i.e., copying of copies can occur). Furthermore, there is no
principled upper bound on the number of relative clause embeddings, and therefore
by extension on the amount of material copied. The exact same mechanism Kobele
(2006) proposes to account for this could generate the context-sensitive language
ww” (i.e., all strings are anagrams).

Thus there is evidence that—at least when it comes to syntax—natural language
patterns are not only non-regular, but can be as complex as context-sensitive. But
what about non-syntactic patterns? Analyzing patterns computationally in different
domains is one avenue to understanding more about how these domains differ. The
next subsection reviews the results when similar analyses were applied to morpho-
logical patterns.

@ Springer

Computational locality in morphological maps 607

3.2 Morphology

Focusing on well-formed words instead of sentences, Langendoen (1981) hypothe-
sized that no language’s word formation component requires more power than regu-
lar. But Culy (1985) provided evidence from two constructions in Bambara to suggest
otherwise: the Noun o Noun construction (shown in (9)), which is only acceptable
with two identical nouns, and an agentive construction (Noun-+Verb+/a, as in (10a))
that can be used recursively (as in (10b)).

©)] Bambara (Culy 1985)

a. wulu ‘dog’
b. wuluo wulu ‘whichever dog’

(10) a. wulu+nyini+la ‘dog searcher’
b. wulunyinila4-nyini+la ‘one who searches for dog searchers’

In addition, nouns derived via the agentive construction can themselves be used in
the Noun o Noun construction:

an wulunyinila o wulunyinila ~ ‘whichever dog searcher’

Culy shows that the potential for recursion in the agentive construction and the re-
quirement that the nouns be identical in the Noun o Noun construction make the
pattern equivalent to @ b"a™b", which is more powerful than context-free (and by
extension more powerful than regular).?

Gazdar and Pullum (1985) point out that all known cases of non-regular word
formation (like Culy’s Bambara example) involve reduplication. Though the presence
of reduplication in a language means the entire word formation component is non-
context-free (as shown by Culy 1985), they note that recognizing whether the first
part of the string is equal to the second can be achieved with the same kind of parsing
algorithms that are used for context-free languages (e.g., CKY). This suggests that
the right characterization of word formation is ‘regular with reduplication’, though
this class lacks a formal characterization.

Carden (1983) argues against the focus on weak generative capacity, as the
output of the word formation component must include the relevant structure (i.e.,
trees/bracketings) to be of use to the phonological and semantic components. When
instead focusing on this strong generative capacity (complexity of the structures as-
signed to strings), he argues morphology is indeed more powerful than regular. He
points to Bar-Hillel and Shamir (1960)’s examples of the recursive nature of English
shown below:

(12) missile
anti-missile missile
anti-anti-missile missile missile

etc.

/oo

8 A reasonable follow-up question would be whether these patterns are in fact syntactic, where we expect
to find non-regular phenomena. Culy gives evidence based on the tone pattern of these nouns that suggests
it is in fact a morphological phenomenon.

@ Springer

608 J. Chandlee

Based on the weak generative capacity of this construction—the non-regular set of
strings {(anti)"missile (missile)”, n > 1}—Bar-Hillel and Shamir (1960) argue that
English morphology is not limited to regular.” Carden (1983) concurs with this con-
clusion, but for a different reason, arguing that assigning the correct structure to these
forms requires center-embedding. Center-embedding in turn requires both left- and
right-branching structures, whereas regular grammars can do either left- or right-
branching, but not both.

This distinction between weak and strong generative capacity has a significant im-
pact on our understanding of the computational nature of syntactic and morphological
patterns. The research in computational phonology reviewed in the next section intro-
duced another important distinction: classifying sets of strings versus the maps (i.e.,
relations or functions) that actually generated those strings.

3.3 Phonology

The foundational results of Johnson (1972), Koskenniemi (1983), and Kaplan and
Kay (1994) showed that phonological rules of the form A—B / C _ D are regular
relations, provided they do not re-apply to the locus of the structural change. The
regular relations parallel the regular languages: while a regular language is a set of
strings, a regular relation is a set of string pairs (i.e., {(w1, w2), (w3, w4),...}). The
first member of the string pair is related to the second member in some well-defined
way. For example, the string pair (abcd, ad) is a member of the relation in which
the first string is mapped to a string that contains only its first and last characters.
When it comes to a phonological regular relation, the string pair is often an under-
lying representation and the surface representation it is mapped to by a particular
generalization/process/rule (e.g., (UR, SR)). In automata-theoretic terms, the regu-
lar relations are those relations describable with FSTs. As noted above, because the
regular relations are closed under composition, a single relation can in fact describe
the direct UR-SR map of an entire set of ordered rewrite rules (see Kaplan and Kay
1994).

The result that phonological rules are regular relations was significant for at least
two reasons. One, it indicated that phonology is less computationally complex than
syntax (see Bromberger and Halle 1989; Heinz and Idsardi 2011, 2013). Two, it re-
vealed that the context-sensitive Sound Pattern of English (SPE)-style (Chomsky and
Halle 1968) rewrite rules being used at the time to describe phonological grammars
were more computationally expressive than necessary. To the extent that a theory of
phonology should predict the set of patterns that are actually possible, the computa-
tional analysis of phonological rules revealed that a significant property of phonology
was being missed.

This result for phonological rules might lead one to assume that phonotactic pat-
terns are also regular, given that the language that results from a regular relation (in
this case the language of surface forms) is itself regular. However, there is strong evi-
dence that in fact phonotactic patterns are best characterized as subregular languages

9See Langendoen (1981) for an argument against their conclusion.

@ Springer

Computational locality in morphological maps 609

Fig. 4 Subregular hierarchy of Regular

formal languages (Rogers and
Pullum 2011) \

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Finite

(Heinz 2007, 2009, 2010; Heinz et al. 2011). In other words, if regular was the up-
per bound on the computational complexity of phonotactics, then a greater variety of
patterns should be attested cross-linguistically.

To pursue the hypothesis that phonotactics are actually subregular required a more
articulated hierarchy than the one in (6), one with options between Regular and Fi-
nite.' The subregular hierarchy of languages, shown in Fig. 4 (McNaughton and Pa-
pert 1971; Rogers and Pullum 201 1; Rogers et al. 2013), provided exactly that. Unlike
(6), Fig. 4 includes several regions between Regular and Finite. Both the horizontal
and vertical orientations of these regions are meaningful. Vertical lines connecting
regions indicate that one region properly includes the other (e.g., all Locally Testable
languages are also Locally Threshold Testable, etc.). The two branches originating
at Regular are distinguished by the interpretation of the constraints that define the
language (i.e., immediate successor versus general precedence).

A comparison between the Strictly Local (hereafter SL) and Strictly Piecewise
(SP) languages will clarify this distinction between successor and precedence. Con-
sider a language with the alphabet ¥ = {T, D, V, N} that prohibits the segment D
from being the last segment of a string. This infinite language can be represented with
a finite grammar, Ggr, that lists the forbidden substrings. In this example, Gg; =
{Di} (following Rogers and Pullum (2011), let x and x represent the start and end
of word boundaries, respectively). The language is the set of strings that do not con-
tain any of the substrings in Ggz. Languages that can be defined in this way (i.e.,
with a grammar of contiguous substrings of bounded length) belong to the SL region.
A given SL language is actually k-SL, where k is the length of the longest substring
in the grammar. This example is then 2-SL.

104 finite language is simply a finite set of strings. The grammar for such a language would not have an
infinite generative capacity. For this reason finite formal languages (and by extension finite relations) have
little to no theoretical interest for natural languages, under the assumption that there is no upper bound on
the length of words in a human language (i.e., human languages are infinite).

@ Springer

610 J. Chandlee

The difference between SL and SP is that in the latter the grammar includes sub-
sequences instead of substrings. A subsequence of a string can be non-contiguous;
for example, T...V is a subsequence of the string DTDVD. Subsequences track the
precedence relations of the symbols in a string. As an example, consider a language
for which X' = {s, V, [}, such that the symbol ‘s’ can never precede the symbol ‘[’ in
a string. In other words, the valid strings of this language are those that do not contain
the subsequence s...[. Such a language is 2-SP, since the forbidden subsequence is
of length 2.

These examples of SL and SP languages correspond intuitively to local and long-
distance phonotactic constraints, respectively (Heinz 2010). The SL example is a
language that enforces final devoicing (when we interpret the alphabet as D = voiced
obstruent, T = voiceless obstruent, V = vowel and N = nasal). And the SP example
is of course a language that enforces sibilant harmony, such as Navajo:!!

(13) Navajo (Sapir and Hoijer 1967; Hansson 2001; Heinz 2010)
a. si-ti ‘heislying’
b. [i-yif ‘itis bent, curved’
c. *si-yif

Thus when it comes to phonotactics there is evidence that the observed patterns are
not only subregular, but fall into the most restrictive regions of the hierarchy in Fig. 4:
Local phonotactics are SL and long-distance phonotactics are SP. However, long-
distance patterns with blocking are exceptions to this generalization (Heinz 2010).
Such patterns still do not require the full power of the Regular class, provided they
can be defined over a fier (i.e., a subset of X' that includes only those segments
participating in the phonotactic constraint). In that case the blocking pattern can be
described as a Tier-based Strictly Local (TSL) language (Heinz et al. 2011; McMullin
2016). As the name implies, a TSL language is defined with SL-type constraints over
only those segments on the tier (i.e., all other segments are ignored). The TSL region
is not represented in Fig. 4, but it is properly contained by Regular (Heinz et al. 2011).

Investigations of the computational nature of phonology have also examined
phonological UR-SR maps to determine the extent to which they too are subregu-
lar. Since the subregular hierarchy in Fig. 4 is a hierarchy of formal languages, it
cannot be used directly to study maps, which again are not sets of strings, but sets
of string pairs. For example, the final devoicing case above was described as the set
of strings without voiced obstruents in word-final position. The corresponding map
would be one that, given a string that does contain a voiced obstruent in word-final
position, maps that string to one with the respective voiceless obstruent in word-final
position. So the final devoicing map is D = {(TV, TV), (DV, DV), (DVN, DVN),
(DVD, DVT), ...}.!? The subregular hierarchy of maps, shown in Fig. 5 (Mohri
1997; Chandlee 2014; Chandlee et al. 2015), is not as fully developed as the one for
languages, but it has lead to several key results for phonology.

This is a simplification of the Navajo facts. More generally, [+anterior] sibilants cannot precede
[—anterior] sibilants, and vice versa.

1ZNote that strings that do not contain a voiced obstruent in word-final position are simply mapped to
themselves. In other words, D is a fotal function defined for all strings from X*, not just those that satisfy
the structural description for final devoicing.

@ Springer

Computational locality in morphological maps 611

Regular Relations

/

Left Subsequential Right Subsequential
Left Output SL Right Output SL
\Inp | S/

Finite

Fig. 5 Subregular hierarchy of maps

Comparing Figs. 4 and 5, we see both align with Regular at the top and Finite at
the bottom. Note that the SL languages have three counterparts in the maps hierarchy:
left Output Strictly Local (LOSL), right Output Strictly Local (ROSL), and Input
Strictly Local (ISL). These will be discussed in more detail below. The left and right
subsequential functions are not known to correspond to any region of the hierarchy of
languages. The map counterparts to the other regions of the language hierarchy (i.e.,
Non-counting, Locally Threshold Testable, Locally Testable, Piecewise Testable, and
Strictly Piecewise) remain to be discovered.

Chandlee (2014), Chandlee et al. (2015), and Chandlee and Heinz (2018) show
that phonological maps that correspond to local processes (i.e., processes for which
the target and triggering context form a contiguous substring of bounded length) can
all be classified in one of the SL regions of the maps hierarchy. In the finite state
formalism, this means these types of phonological generalizations can be described
with FSTs that have the characteristic properties of the LOSL, ROSL, and/or ISL
classes. We will continue with final devoicing as an example to demonstrate what
this means.

Final devoicing is a straightforward case of a ‘local’ process, in that the trigger of
the process (word-final boundary) and the target (voiced obstruent) form a contigu-
ous substring of bounded length (i.e., 2). In other words, whether or not the process
applies can be determined solely by examining whether an input string contains the
substring Dix. This ‘bounded’ nature of the map, plus the fact that the needed infor-
mation is present in the input, means we can model it as a 2-ISL function. Again, this
in turn means it can be represented with a 2-ISL FST, which is shown in Fig. 6.

A few notes on the FSTs that will be presented in the remainder of the paper. The
start state is always A, which represents the ‘empty string’ of zero symbols. Starting
in this state means no symbols have been read. All input strings are assumed to be
augmented with x and x, which are not included in X'. Thus an input string w € X*
is treated as xwx by the FST. The start state always has a single outgoing transition

@ Springer

612 J. Chandlee

Fig. 6 2-ISL FST for final

devoicing
Input: X d a t a d X
States: A - x = d = a = t = a —= d -
Output: A A da t a A t

Fig. 7 Path through FST in Fig. 6 for input datad

on the input symbol x—in most cases the output of this transition is A, though we
will see cases in the survey of morphological maps in which it plays a more important
role.!® In addition, each state (except for 1) has an extra transition with x as the input
symbol. These final output transitions are only taken when the end of the input string
is reached; their output is then appended to the end of the output string.

For simplicity, the FST in Fig. 6 assumes the following segment inventory: X~ =
{d, t, a}.'"* For the input string datad, this FST follows the path shown in Fig. 7. As
mentioned above, the fact that final devoicing can be modeled with any FST is suffi-
cient to classify it as a regular relation. Its further classification as ISL (and therefore
subregular) depends on a few special properties of the FST in Fig. 6. First, it is deter-
ministic, which means each state has at most one outgoing transition for each possible
input symbol. FSTs in general can be non-deterministic, meaning a state could have
multiple transitions for a given alphabet symbol. Some regular relations can only be
modeled with non-deterministic FSTs, but all ISL functions can be modeled deter-
ministically. Second, the ISL FST includes states for each possible input sequence of
length k — 1 (in this example again k = 2, so there are states for each sequence of
length 1). FSTs in general can have states that represent other types of information,

3Note that since x is not part of X' and is therefore guaranteed to only appear once at the start of the
string, the A state and the x state could also be collapsed with the X transition being a self-loop. Keeping
the two states distinct is motivated by greater transparency in how they represent the pattern in question.
See also Chandlee et al. (2015) for reasons why, at least in OSL FSTs, a distinct x state is necessary.

14The fact that the map is ISL does not depend on this reduced alphabet. It would still be ISL, for the same
value of k, if the alphabet included the complete segment inventory for a particular language. The FST in
that case would just have more states and therefore be less readable.

@ Springer

Computational locality in morphological maps 613

Fig. 8 2-LOSL FST for progressive nasal spreading

but ISL FSTs can only keep track of the most recently read k — 1 symbols. No other
information can be used to determine what to output at any given time. This is the
essentially ‘local’ nature of an ISL map.

The Output SL maps are very similar to the ISL ones, except that the FST tracks
the recent output instead of the input. This is needed to model processes in which the
trigger is present in the output and not the input. An example is nasal spreading, like
in Johore Malay (Onn 1980).

(14) Johore Malay
f(pogawasan) = pagawasan ‘supervision’

Under the assumption that the nasalization proceeds iteratively, such that the first a is
nasalized because of the preceding nasal, and then it in turn nasalizes the following
glide, etc., the triggers for the nasalization of the glide and the second a are only
present in the output, not the input. Therefore an ISL FST can’t model this process,
since, again, it can only pay attention to the recent input. An OSL FST can, however,
model this process. Since the process is progressive (i.e., proceeds left-to-right), it is
modeled with a left OSL FST, which reads the input from the left to the right. This
FST is shown in Fig. 8. Regressive iterative processes are likewise classified as right
OSL; a right OSL FST reads the input string from the right to the left.!>

Again for readability, the FST in Fig. 8 is defined for the reduced alphabet of {n,
d, V}, where V is any [+vocalic] segment. Note that once in state n, if a V is read
the output is nasalized V, and that transition crucially leads to a state V. Were this an
ISL FST, that transition would go to state V. In that case, nasalizing any additional

I5ISL FSTs are not designated as left or right because when paying attention to the input the same map
will result regardless of whether the string is read from the left or the right. For more on this distinction,
see Kaplan and Kay (1994), Hulden (2009a), Heinz and Lai (2013).

@ Springer

614 J. Chandlee

V’s would require first seeing another n. But since the OSL FST follows the output,
additional V’s can be nasalized directly from state V.

Maps in which an unbounded number of segments intervenes between the target
and trigger are neither ISL nor OSL. An example of unbounded consonant agreement
in Kikongo is shown in (15).

(15) Kikongo (Meinhof 1932; Odden 1994; Rose and Walker 2004)
a. f(tunikidi) = tunikini ‘we ground’
b. f(kudumukisila) = kudumukisina ‘to cause to jump for’

While unbounded maps like long-distance consonant agreement, long-distance
consonant dissimilation, and vowel harmony are not ISL/OSL, they are subsequen-
tial and therefore still subregular (Payne 2017; Gainor et al. 2012; Heinz and Lai
2013).

In sum, previous investigations into the computational nature of phonological
maps have provided a set of categories for classifying patterns as well as substan-
tial evidence that phonological maps are subregular. The next section applies these
same categories toward a comparable investigation of morphological maps.

4 Computational analyses of morphological patterns

This section extends the computational analyses of phonological maps presented
above to morphological maps, which are functions that take an input string and pro-
duce an output string by applying some type of morphological operation. First vari-
ous types of concatenative morphology are discussed, including (non-reduplicative)
affixation, partial reduplication (both ‘local’ and ‘non-local’ varieties), and total redu-
plication. Then a couple of types of non-concatenative morphology are discussed,
including featural affixation, in which no segments are added to the word but rather
a floating feature is expressed on the existing segments of the word, and truncation.
Templatic morphology and compounding are not given a full analysis here, but some
comments will be offered in Sect. 5 on how these operations differ from those pre-
sented in this section.

4.1 Affixation

We begin with the straightforward case of English 1j-suffixation, by which the string
1) is attached to the end of a verb to encode the present progressive tense. An example
of this map is shown in (16) (repeated from (1)).

(16) Sprog(spik) = spik-+1y)

Before proceeding to the classification of this map, two important assumptions of
these analyses are stated. First, the output of the map encodes the morpheme bound-
aries (here with the symbol ‘+’), under the assumption that such information cru-
cially defines the context for at least some phonological maps. Second, the maps are
considered to be fotal functions, meaning they treat all input strings the same, regard-
less of whether the string corresponds to an actual input of an actual speaker. In other

@ Springer

Computational locality in morphological maps 615

Fig. 9 1-ISL FST for English
m-suffixation

Fig. 10 1-ISL FST for English
Izi-prefixation

words, out of the possible inputs W = {1an, dugk, kofi, aaaa}, only the first two are
‘valid’ inputs to 1g-suffixation in the sense that they are strings of English phonemes
that correspond to verbs. However, the suffixation map does not make this distinction
and will apply equally to all four strings: fyyy(W) = {1an+1y, dugk+1, kofi+iy,
aaaa+1g}. This allows us to analyze the computational properties of the map itself
independently of how it is actually used within the larger system. To put it a differ-
ent way: the analysis of computational complexity is focused on the morphological
operation itself (i.e., appending a string), not the determination of whether the input
actually corresponds to a verb of English.

The map exemplified in (16) is ISL for k = 1, and its FST is shown in Fig. 9.
Following Beesley and Karttunen (2003), the ‘?° transition encompasses all seg-
ments not represented on other transitions (in this case that is all segments in X).
The ?7:? self-loop on state x then effectively outputs the entire input string un-
changed, up until it reads the end of word marker x, at which point the suffix is
appended.

Prefixation is also 1-ISL. Consider the example of the English prefix re-, which
again attaches to verbs:

(17) a. fr(id) = 1i+1d
b. fre(wat]) = ii+watf

A 1-ISL FST for this function is shown in Fig. 10. The prefixation takes place on the
output side of the X transition, after which all additional input is outputted unchanged
by a ?:? transition.

Summarizing these two examples, we see that both suffixation and prefixation are
1-ISL maps: the former is achieved via the final output function (i.e., the transition
on X) and the latter is achieved with the first transition on . If we combine these
two options in a single FST, we can model circumfixation. An example comes from
Chickasaw (Fromkin et al. 2014), in which negation is achieved by prefixing ik- and
suffixing -o:

(18) Chickasaw

a. fneg(chokma) = ik+chokm+o (He is good. — He isn’t good.)
b. fueg(lakna) = ik+lakn+o (It is yellow. — It isn’t yellow.)

@ Springer

616 J. Chandlee

Fig. 11 1-ISL FST for 2:?
Chickasaw circumfixation

Fig. 12 2-ISL FST for
Chickasaw circumfixation and
vowel deletion

Putting aside for a moment the deletion that resolves vowel hiatus (i.e., ao — 0), this
circumfixation map can be modeled with the 1-ISL FST in Fig. 11. Comparing this
FST with those in Figs. 9 and 10, we see that for circumfixation the transitions on
both x and x contribute non-empty strings to the output.

Again, as the current goal is to classify various categories of morphological maps
in terms of their computational properties, this example suffices to demonstrate that
circumfixation in isolation of the phonology is 1-ISL. But to cover the Chickasaw
data in full, we now briefly demonstrate how the classification is affected by the
vowel deletion triggered by the circumfixation. As discussed in the previous section,
deletion maps with local triggers (such as deletion to resolve vowel hiatus, as in the
case at hand), are ISL maps. Thus here we have a dataset that reflects two ISL maps,
one for the circumfixation and one for the vowel deletion. Though all of our examples
of ISL maps so far have dealt with a single process or operation, in fact a single ISL
map can describe multiple processes/operations. The ISL FST in Fig. 12, for example,
models both circumfixation and vowel deletion. Notice that the k-value has increased
to 2.

The FST in Fig. 12 achieves the prefixation of ik- in the same way as in Fig. 11.
After that, it moves to the appropriate state depending on the first segment of the
word: state V if that segment is a vowel and state ? otherwise. The output for the
V transition is A, indicating that the vowel is deleted under the assumption that the
suffix -o will be appended. If that is not the case, meaning another non-vowel symbol
follows the vowel, then the vowel is ‘returned’ on the subsequent ? transition to state
? (along with ? itself). The FST proceeds in this way based on all additional V and
? segments, until it does reach the end, at which point the suffix is appended via the
X transition just as before. A example path for input lakna is given in Fig. 13. Thus

@ Springer

Computational locality in morphological maps 617

Input: X 1 a k n a X
States: A = Xx = ? = VvV =5 ?7 = 7?7 =5 VvV =
Output: ik+ 1 A ak n A +0

Fig. 13 Path through FST in Fig. 12 for input lakna

Fig. 14 Fragment of ISL FST
for German circumfixation

in this case the interaction of circumfixation and vowel deletion does not change the
computational classification (i.e., it is still an ISL map).

Another example of circumfixation that also involves some allomorphy is the Ger-
man past participle, shown in (19). This map prefixes ge- and suffixes -¢, unless the
stem ends in (1) an alveolar stop or (2) a nasal that is preceded by a non-liquid conso-
nant, in which case the suffix is -et. For readability, the portions of the FST responsi-
ble for these two generalizations will be shown separately (the complete FST for the
entire map, for which k = 3, is included in an Appendix).

(19) German
a. fpas(mach) = ge+mach-+t (‘make’ — ‘made’)
b. fpasr(koch) = ge+koch+t (‘cook’ — ‘cooked’)
C. fpasi(miet) = ge+miet+et (‘rent’” — ‘rented’)

The first generalization—that the suffix -f is -et when the stem ends in an alveolar
stop—is modeled with the FST fragment in Fig. 14. In this FST the symbol T =
{t, d} and ? again abbreviates everything else. Note that the allomorphy is handled
straightforwardly with the final output function: in state T the appended suffix is -et.

The second generalization—that the -et allomorph is also used when the stem
ends in a consonant cluster of a non-liquid followed by a nasal—is described with
the portion of the FST in Fig. 15. In this FST the symbol N is used for any nasal and
L is used for any liquid. Again ‘?’ represents all other segments. The -er allomorph is
appended at state ‘?N’, which corresponds to any stem-final sequence of a non-liquid
and a nasal. Stems that end in a liquid-nasal cluster will end in state LN, were the
-t allomorph is appended instead. Thus the distribution of the two suffixes can be

@ Springer

618 J. Chandlee

Fig. 15 Fragment of ISL FST for German circumfixation

achieved by keeping track of the last two segments of the input string, making it a
3-ISL map.

This leaves infixation. McCarthy and Prince (1993, 1996) identify two types of
infixation within their framework of prosodic circumscription: negative and positive
circumscription. In negative circumscription, a prosodic constituent is skipped over
or put aside while a morphological operation applies to the remainder of the string.
An example is um-infixation in Tagalog, shown in (20) (French 1988; McCarthy and
Prince 1993; Orgun and Sprouse 1999). The infinitive affix um appears as a prefix
before vowel-initial stems and after the initial onset of consonant-initial stems.

(20) Tagalog
a. fir(abot) = um+abot (‘reach for’ — ‘to reach for’)
b. fiy(sulat) = s+um--ulat (‘write” — ‘to write”)
c. finr(gradwet) = gr+um+adwet (‘graduate’ — ‘to graduate’)

Because the infixation map can determine the correct placement of the infix by ex-
amining at most the first three segments of the string, it is a 4-ISL map (the fourth
symbol is x). The FST in Fig. 16 models Tagalog um-infixation. Since once the infix
is placed the rest of the string is just outputted unchanged, all subsequent states have
been collapsed to a single ‘?” state for readability.

In contrast, in positive circumscription the infix attaches to a prosodic constituent.
For example, in Ulwa (Bromberger and Halle 1988; Hale and Blanco 1989; Sproat
1992; McCarthy and Prince 1993; Roark and Sproat 2007) the possessive is formed
by infixing a pronoun after the first syllable if it is heavy, otherwise after the second
syllable.

2D Ulwa
a. fpos(bas) =bas+ka (‘hair’ > ‘his hair’)
b. fpos(ki:) = ki:+ka (‘stone’ > ‘his stone’)
C. fpos(sana) =sana+ka (‘deer’ — ‘his deer’)

@ Springer

Computational locality in morphological maps 619

Fig. 16 4-ISL FST for Tagalog um-infixation

More generally, the possessive affix is attached after the first iambic foot. The options
for the form of this foot are disyllables in which the first vowel is short and monosyl-
lables with either a long vowel or a coda. These options are shown in template form
in (22):

(22) a. (C)VCV(V)
b. (O)VV
c. (C)VvC

This operation requires examining at most the first 6 segments of the string (the first
segment being x).!6 If the first vowel is followed by another vowel, then we know
we have a heavy monosyllabic foot (22b) and so the infix can be attached at this point
(XCVV 1 xCVV+ka). Otherwise, we have to keep going to determine whether
we have a closed monosyllabic foot (22¢) or a disyllabic foot (22a). After CVC, if
what follows is another C then the infix can be attached between the two consonants:
XCVCC — xCVC+ka+C. If what follows is a V, then one additional segment after
that must also be examined; if it’s the second half of a long vowel, the infix is attached
after the long vowel (xCVCV V| — xCVCVV|+ka), butif it’s a different vowel
or a consonant, the infix is attached prior to it (XCVCV [V, > xCVCV|+ka+V,,
XCVCVC — xCVCV+ka+C). These last two cases represent the upper bound on
the number of segments that must be read, 6, to model the operation as ISL.

One might object to this analysis of Ulwa because it just examines the segments
directly and does not actually make use of the metrical structure. But again the goal
here is to simply answer the question of whether or not the map can be modeled
with the restrictions of an ISL function, and the answer to that question in this case
is yes. There do, however, exist cases of affixation conditioned by metrical and/or
prosodic structure that cannot be modeled as ISL based on segments alone (or even at

16This is assuming long vowels are represented as VV; if the alphabet instead includes a V: symbol then
only the first 5 segments need to be examined.

@ Springer

620 J. Chandlee

Fig. 17 Left subsequential FST
for Sami Illative Plural

all). Three cases will be reviewed here, from Sami, Yidip, and Tagalog, all of which
require some mechanism for counting the number of syllables in the word.!”

In Sami, the illative plural has two allomorphs that are selected based on whether
the noun has an even or odd number of syllables.

(23) Sami Illative Plural (Bergsland 1976; Hargus 1993)
a. fipi(Ciega) = Ciega+ide ‘corner’
b. fipi(mallasi) = méllési+ida ‘feed’

This is suffixation, which was analyzed above as being 1-ISL. But tracking
whether a string has an even or odd number of syllables is beyond the ability of
any ISL FST. It is however, subsequential and therefore still subregular. Figure 17
presents a left subsequential FST for the Sami Illative Plural operation. This 2-state
FST keeps track of the even/odd parity of the number of syllables by counting the
vowels modulo 2 (V abbreviates the set of vowels and diphthongs). The FST will
always be in state 0 when the vowel count is a multiple of 2; otherwise it will be in
state 1. The final output function from each state appends the appropriate suffix.

Similarly, in Yidip, a final syllable deletion process targets words with an odd
number of syllables, with the added restriction that the post-deletion form must end
in one of {1, r, [, y, m, n, 1, n}. Examples are given below; the vowel lengthening in
(24a) is due to a penultimate lengthening process that also targets words with an odd
number of syllables.'®

(24) Yidinp Final Syllable Deletion (Dixon 1977; Hayes 1999)
a. bupa+pygu — bupaiy ‘woman (ergative)’
b. gindanu+ngu — gindanuggu ‘moon (ergative)’

The result is two allomorphs that are selected based on the even/odd parity of the
number of syllables in the stem. For the ergative these are - and -ggu, though the
same pattern is observed with a number of other suffixes. Though the suffixation op-
eration itself is still a simple 1-ISL function, the subsequent phonological changes of
vowel lengthening and syllable deletion still need to be addressed, as their condition-
ing on syllable number reflects global information about the string that falls beyond
the capability of ISL.

As with the Sami data above, the map that achieves the suffixation as well as the
lengthening and deletion processes can be modeled with a left subsequential FST,
which has the ability to determine whether an input string contains an even or odd

7 Thanks to an anonymous reviewer for bringing these cases to my attention.

185ee Hayes (1982, 1999) for additional examples of processes in this language that depend on the number
of syllables in the word.

@ Springer

Computational locality in morphological maps 621

number of syllables. The analysis of Hayes (1982), however, provides an alternative
approach in which the map is still ISL. He argues that the environment for lengthening
and deletion is assessed by whether or not the word ends with an unparsed syllable.
For example, lengthening applies in (24a) but not (24b) because the former has a
final unparsed syllable (which in turn means the whole word has an odd number of
syllables):

(25) a. [bupag]gu — [bupaig]gu
b. [ginda][nupgu] — [ginda][nungu]

Such a map is ISL, provided the input is already parsed for foot structure. Because
the substring of interest includes both segmental material and foot structure (here
represented with bracketing), the k-value of this map is 7:

(26) V(O)ICV(CO)x = V:(C)]CV(C)

The consequences of allowing such non-segmental markup in the input (and alterna-
tively, the extension of this framework to non-linear representations), raises important
questions that are being left for future work.

Lastly, in addition to the um-infixation case analyzed above, Tagalog also has per-
fective in-infixation that follows the two patterns described in (27) (examples are
given in (28) and (29)).

27 Tagalog perfective infixation (Avery and Lamontagne 1995; Yu 2007)
a. Pattern A: If the stressed syllable is an odd number of syllables from
-in-, the affix appears after C; and before an epenthetic vowel.
b. Pattern B: If the stressed syllable is an even number of syllables from
-in-, the affix appears after either C; or Cs.

(28) Tagalog perfective infixation Pattern A

a. fperr(plahiy6) = p-in-alahiy6 ‘plagiarized’
b. fpes(premyuhdn) = p-in-iremyuhdn ‘rewarded’
C. fper(plantsa) = p-in-aldntsa ‘ironed’

(29) Tagalog perfective infixation Pattern B'°
a. fpey(prenthan) = pr-in-endhan ‘braked’
b. fperr(klipdn) = kl-in-ipan ‘cremated’
C. fpey(promét) = pr-in-omot ‘promoted’

The description in (27) of which pattern applies to which word refers to -in- itself,
which in the context of morphological maps as defined in this paper will only be
present in the output form. To recast the distribution in terms of the input, we could
revise (27) as follows:

19 All of these examples have the infix appear after C;, though the description and data from Avery and
Lamontagne (1995), Yu (2007) suggest there is some free variation that has it placed between the two
consonants. Free variation cannot be modeled with the deterministic FSTs used throughout this paper,
though it may be possible to adapt them to handle variation by making them p-subsequential (Mohri
1997) or semi-deterministic (Beros and de la Higuera 2016).

@ Springer

622 J. Chandlee

(30) Tagalog perfective infixation

a. Pattern A: If the stressed syllable is an even number of syllables from
the beginning of the word (), then -in- appears after C; and before an
epenthetic vowel.

b. Pattern B: If the stressed syllable is an odd number of syllables from
the beginning of the word, then -in- appears after either C; or C,.

Though again not ISL because of the need to track the even/odd parity of the number
of syllables before the stressed syllable, this map is subsequential. More specifically,
it is right subsequential, meaning the input must be read from right-to-left. Once the
stressed syllable is found (starting from the right), the FST can keep track at all times
of whether it has seen an even or odd number of additional syllables. When it reaches
the end of the string (which in a right subsequential FST would correspond to the
start of the word), it will know whether to apply Pattern A (epenthesizing and placing
the infix) or Pattern B (placing the infix without epenthesis). The FST will be a bit
more complicated than the one in Fig. 17, because the placement of the infix means
the consonants can’t be ignored in the same way (i.e., those transitions can’t just
be loops). Instead, there needs to be multiple paths from the ‘even’ to the ‘odd’ state
(and vice versa), one for each possible syllable type (e.g., CVC, CCVC, CVCC, etc.).
Nonetheless, this FST will still be subsequential.

A note of clarification on right subsequential functions. Since string reversal is
itself a non-regular operation, then under the assumption that reading the input from
right-to-left requires string reversal, the classification of a pattern as right subsequen-
tial (and therefore subregular) might appear to be negated by this non-regular pre-
processing of the input string. However, right subsequential functions do not literally
reverse the input, they simply begin reading it starting from the end instead of the
beginning.

This review of affixation maps has already shown some variation, though the na-
ture of this variation is significant in two respects. One, all of the maps surveyed
are either ISL for some k or subsequential, meaning they are all subregular. Two,
those maps that are properly subsequential all involve conditioning based on metri-
cal and/or prosodic structure. The case of Yidip in particular provides an example of
a map whose classification differs depending on whether or not the input is already
parsed into feet. A more thorough analysis of the computational nature of metri-
cal parsing and prosodic marking themselves, as well as how these domains interact
with phonological and morphological maps, is being left for future work. But these
examples suggest that such an investigation may reveal important insights into the
morpho-phonological interface.

4.2 Local partial reduplication

Partial reduplication in general involves copying a portion of the base and then affix-
ing that copied material. ‘Local’ varieties are those in which the location of the affix
is adjacent to the material that it was copied from. Two examples are given below.
In (31) (again from Tagalog), a CV-prefix is copied from the beginning of the base
to derive the future tense of a verb. And in (32) (from Marshallese) a CVC-suffix is
copied from the end of the base to derive an adjective from a verb.

@ Springer

Computational locality in morphological maps 623

Fig. 18 4-ISL FST for Tagalog reduplicative prefixation

Fig. 19 4-ISL FST for <A c:C
Marshallese reduplicative A Ccvc ove
suffixation x:A x:

a3 Tagalog (Blake 1917)
ffur(sulat) = su+sulat (‘write’ — ‘will write”)

(32) Marshallese (Byrd 1993)
Jfaqj(ebbok) = ebbok+bok (‘to make full’ — ‘puffy’)

In (31), the initial CV is copied and prefixed to the base. The FST that models this
map needs to retain the initial CV sequence up to the point when it needs to be
affixed; a 4-ISL FST can do this easily. Figure 18 is a schematized FST for this map;
the complete FST would have states for all possible initial CV sequences. Only the
initial portion is shown (up to state xCV, at which point the reduplication has taken
place) for ease of reading. All additional states are collapsed to the ‘?’ state.

The Marshallese pattern is also 4-ISL. Recall that in a 4-ISL FST, the only way
to be in a given state, such as state bok, is if the last three segments of the input are
bok. Ending in the state, as would be the case for the input ebbok, therefore means
those are the last three segments of the string. The reduplication can then be achieved
straightforwardly using the final output function: the output on the x transition for
all CVC states is that same CVC. This is schematized in the FST in Fig. 19. Again
the complete FST would have states for all possible CVC sequences. But no matter
what path leads to a state CVC (as indicated by the ...), strings that end in that state
will have the final CVC appended as a suffix.

An example of reduplicative infixation comes from Pima (Riggle 2006). The plural
of a noun is derived from the singular by copying either (1) the initial C or (2) the
initial CV. These options are shown in (33) and (34) below. The copied material is
infixed after the first vowel.

33) Pima
fpi(mavit) = ma+m+vit (‘lion” — ‘lions’)

Considering first just the C-copying variant, the map can be modeled with the
schematized FST in Fig. 20.

Riggle (2006) argues that C-infixation is the default pattern and the CV variant
occurs to avoid certain consonants in coda position. For example, CV is copied in

@ Springer

624 J. Chandlee

Cy:+C 1 V+Cy

Fig. 21 4-ISL FST for Pima reduplicative infixation

(34) because laryngeals (34a) and palatal nasals (34b) are not preferred as codas.20
Copying CV instead of C puts these consonants in onset position instead. CV is also
copied when copying C would result in a coda cluster with a sonority plateau