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Chapter 1

Mathematical Tools

1.1 Review of Single Variable Calculus

A fundamental concern in economics is about how certain quantities change in response to
changes in other quantities. For example, suppose the government is considering levying a
tax on European cars, which it knows will raise their price. It might want to know how this
will affect the quantity of European cars purchased.

Let y = f(x) be a function of a single variable x ∈ R. The derivative of f at x, which we
denote dy

dx
, df(x)

dx
, or f ′(x), measures the rate of change of the output y as the input x changes

a small amount. We say that f ′(x) is the slope or ‘gradient’ of the function at the point x.

The gradient of a function can be approximated by:

slope ≈ ∆f(x)

∆x
=
f(x+ h)− f(x)

(x+ h)− x

where the approximation becomes more accurate as h is made increasingly small. Thus, we
formally define the derivative of f and x by:

f ′(x) =
df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h

Example 1. Let f(x) = x2 + 3x+ 5. Then:

f ′(x) = lim
h→0

[(x+ h)2 + 3(x+ h) + 5]− (x2 + 3x+ 5)

h

= lim
h→0

(2x+ 3)h+ h2

h
= lim

h→0
(2x+ 3 + h)

= 2x+ 3

7
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Of course, it would be cumbersome to have to evaluate these limits whenever we seek to
differentiate a function. Thankfully, we have some handy rules for differentiating common
functions and combinations of functions.

Derivatives of Common Functions

• Polynomial functions: If f(x) = axn, then f ′(x) = anxn−1.

• Exponential functions: If f(x) = aex, then f ′(x) = aex.

• Logarithmic functions: If f(x) = a ln(x), then f ′(x) = a
x
.

Derivatives of Composite Functions Let f(x) and g(x) be two functions.

1. Sums Rule: If h(x) = f(x) + g(x), then h′(x) = f ′(x) + g′(x).

2. Product Rule: If h(x) = f(x)g(x), then h′(x) = g(x)f ′(x) + f(x)g′(x).

3. Quotient Rule: If h(x) = f(x)
g(x)

, then h′(x) = g(x)f ′(x)−f(x)g′(x)
[g(x)]2

.

4. Chain Rule: If h(x) = f(g(x)), then h′(x) = f ′(g(x)) · g′(x)

Exercise 1. Do the following:

1. Find the derivatives of each of the following functions:

• f(x) = (5− 2x)3 + ln(x)

• g(x) = −6 lnx

e5−x2−3x

• h(x) = eln(x). (Simplify fully!)

2. Use the product rule to derive the quotient rule.

3. Let f(x) = ax for any constant a > 0. Show that f ′(x) = ax ln a.

Example 2 (Percentage Changes). Let f(t) be a function of time that is changing continu-
ously. Let ∆%f(t) denote the rate of change in f in percentage terms. Hence ∆%f(t) = f ′(t)

f(t)
.

By the chain rule, we have:

∆%f(t) =
d

dt
ln f(t)

[Convince yourself that this is true.] Show the following:

• If h(t) = f(t) · g(t), then ∆%h(t) = ∆%f(t) + ∆%g(t).
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• If h(t) = f(t)
g(t)

, then ∆%h(t) = ∆%f(t)−∆%g(t).

• If h(t) = [f(t)]n, then ∆%h(t) = n∆%f(t).

• If Y (t) and N(t) denote GDP and population size at time t, and y(t) = Y (t)
N(t)

denotes
per-capita GDP, show that per-capita economic growth is economic growth minus
population growth.

1.2 Optimization

Suppose we wish to find the optimizer x∗ that maximizes or minimizes f(x) on its domain.
We can often use calculus to find optimizers. Loosely speaking, to achieve a maximum, a
function must increase (have a positive slope) and then turn around and decrease (have a
negative slope). Hence, at the maximal point, the function will be flat —its gradient will be
zero. Hence, to find maxima, we should search for values of the function where the derivative
is zero.

Definition 1. A critical point of a function f(x) is a point x at which f ′(x) = 0 (i.e. the
function is flat).

We say the function satisfies the first order conditions at its critical points. The critical
points are candidate optimizers —although we must be careful; not every critical point is an
optimizer, and not every optimizer is at a critical point.

Example 3. Let f(x) = 20− 24x+ 9x2 − x3 be a function on the domain {x |x ≥ 0}. The
critical points are given by:

f ′(x) = −24 + 18x− 3x2 = 0

x2 − 6x+ 8 = 0

(x− 2)(x− 4) = 0

x = 2, 4

Hence, there are two critical points. Evaluating the function at the critical points gives:
f(2) = 0 and f(4) = 4. But note that f(0) = 20 > f(4) and f(6) = −16 < f(2). Hence,
the critical points select neither the maximum nor the minimum of the function. Indeed,
the maximum is achieved at the corner solution x∗ = 0. The function has no minimum.
However, x = 2 is a local minimum and x = 4 is a local maximum. We can easily see this
by plotting the function.

Lemma 1 (Second Order Condition). Suppose x∗ is a critical point of the function f . Then:

• x∗ is local minimum if f ′′(x∗) > 0.

• x∗ is a local maximum if f ′′(x∗) < 0.
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Example 4. A firm faces a demand curve: P (Q) = 100−Q. Hence, if it produces quantity
Q of output, it must sell them at price P (Q). The firm has production costs given by
C(Q) = 1

3
Q3 − 10Q2 + 156Q+ 16/3.

1. What quantity maximizes its revenue?

2. What quantity maximizes its profit?

To answer (1), note that revenue is R(Q) = P (Q)×Q = 100Q−Q2. The first order condition
implies R′(Q) = 100− 2Q = 0, and so we have Q = 50. To answer (2), note that profit is

Π(Q) = R(Q)− C(Q) = −1

3
Q3 + 9Q2 − 56Q− 16/3

The critical values are the solutions to Π′(Q) = −Q2 + 18Q− 56 = 0, which implies Q = 4
or Q = 14. Now, Π(4) = −$106.67, whilst Π(14) = 60. Clearly Q = 4 cannot be profit
maximizing. In fact, Q = 4 is a profit minimizer.

In fact, we can verify this by checking the second order conditions. Π′′(Q) = 18 − 2Q.
Evaluating the second derivative at the critical points gives: Π′′(4) = 10 > 0 and Π′′(14) =
−10 < 0. Thus, Q = 4 is a local minimum and Q = 14 is a local maximum.

Lemma 2. Consider a function f(x).

• Suppose f ′′(x) < 0 for all x. If x∗ is a critical point of f , then x∗ is the global maximum.

• Suppose f ′′(x) > 0 for all x. If x∗ is a critical point of f , then x∗ is the global minimum.

1.3 Multivariate Calculus

In the previous sections, we considered functions of a single variable f(x). We now extend the
analysis to multivariate functions —those that take multiple inputs. For example, consider
the bi-variate function: f(x1, x2) = x2

1 − x1 lnx2.

In single variable calculus, we constructed the derivative by taking small changes in the
input (x) and asking how quickly the output f(x) changed in response. Derivatives in the
multivariate setting are defined analogously: we take a small change in one of the inputs
(either x1 or x2) and ask how quickly the output changes, assuming the other input is held
fixed at its original level. We call this a partial derivative, which we denote ∂f

∂xi
or fi(x1, x2)

where xi is the variable that is allowed to change.
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Naturally, rather than having a single derivative, we now have two partial derivatives —one
associated with a change in x1 and the other associated with a change in x2. Formally, we
have:

∂f

∂x1

= lim
h→0

f(x1 + h, x2)− f(x1, x2)

h
∂f

∂x2

= lim
h→0

f(x1, x2 + h)− f(x1, x2)

h

The first is the partial derivative of f with respect to x1, and the second is the partial
derivative of f with respect to x2.

We can compute partial derivatives in much the same way we computed derivatives in the
single variable case, using the rules we noted above. When doing so, we treat all variables
other than the one that we are taking the derivative with respect to as if they are constants.

Example 5. Consider the bivariate function f(x1, x2) = x2
1+x1 lnx2. The partial derivatives

are:

f1(x1, x2) =
∂f

∂x1

= 2x1 + lnx2

f2(x1, x2) =
∂f

∂x2

=
x1

x2

When computing the partial derivative w.r.t. x1, we treat x2 as if it were constant. So the
function is effectively of the form: x2

1 + ax1, where a stands in for lnx2 (which we treat as a
constant). Clearly the derivative will be of the form 2x1 + a. Similarly, when computing the
partial derivative w.r.t. x2, we treat x1 as if it were constant. So the function is effectively
of the form: b+ c lnx2, where b and c stand in for x2

1 and x1 (which we treat as constants).
Clearly the derivative will be of the form c

x2
.

We describe the derivatives as partial derivatives because they only show the (partial) effect
of a change in the output —that coming from a change in a single input alone. In economics,
often-times, several inputs will change simultaneously. The total derivative accounts for all
of these changes, whereas the partial derivative takes each in isolation.

Just as we can find higher-order (second, third, ...) derivatives of single-variable functions,
so can we of multi-variate functions. In single variable calculus, the second derivative is the
derivative of the derivative. When the function is bi-variate, we know that that there are
two derivatives to consider —and each of these can be differentiated with respect to each of
two variables (i.e. we can take the (partial) derivative of ∂f

∂x1
w.r.t. x1 or w.r.t. x2, and we

can take the (partial) derivative of ∂f
∂x2

w.r.t. x1 or w.r.t. x2). Thus, there are four second
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order partial derivatives:

f11(x1, x2) =
∂2f

∂x2
1

=
∂

∂x1

(
∂f

∂x1

)
f22(x1, x2) =

∂2f

∂x2
2

=
∂

∂x2

(
∂f

∂x2

)
f12(x1, x2) =

∂2f

∂x2∂x1

=
∂

∂x2

(
∂f

∂x1

)
f21(x1, x2) =

∂2f

∂x1∂x2

=
∂

∂x1

(
∂f

∂x2

)
We refer to the first two as ‘own’ second-order partial derivatives, and the second two as
‘cross’ second-order partial derivatives. The reason for this nomenclature should be obvious.

Example 6. Continuing the previous example, we have: f11 = 2, f12 = 1
x2

= f21, and
f22 = −x1

x22
.

Exercise 2. For each of the following functions, find all of the first-order and second-order
partial derivatives:

1. f(x1, x2) = 2x1
lnx2

+ x1x2 + 5

2. g(x, y, z) = x2 + 2xy − y2 + 2y
z

+ z

1.4 Unconstrained Optimization

We can find local optima of multivariate functions in much the same way we do with uni-
variate functions. The intuition is the same. For a single variable function, if the derivative
is non-zero, then there is some small change that will cause the function to increase. Thus,
to be at the maximum, it must be that the derivative is zero —there are no further oppor-
tunities to increase the function. In the multivariate case, the same logic applies, except we
now need all of the partial derivatives to be zero. This guarantees that the function cannot
be improved by making a small change to any of the inputs.

Definition 2. A critical point of a function f(x, y) is a point (x, y) at which both ∂f
∂x

= 0

and ∂f
∂y

= 0.

We say the function satisfies the first order conditions at its critical points. As before, the
critical points are candidate optimizers, but not every critical point is an optimizer, and not
every optimizer s a critical point.

Lemma 3. Let f(x, y) be a bivariate function. Suppose (x∗, y∗) is a critical point of f .
Then:
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• (x∗, y∗) is a local minimum if: (i) fxx > 0 and fyy > 0, and (ii) fxxfyy − fxyfyx > 0,
where the second-order partial derivatives are all evaluated at (x∗, y∗).

• (x∗, y∗) is a local maximum if: (i) fxx < 0 and fyy < 0, and (ii) fxxfyy − fxyfyx > 0,
where the second-order partial derivatives are all evaluated at (x∗, y∗).

Example 7. A firm can produce a quantity of output q by combining k units of capital and
l units of labour. The firm’s production function is q = k0.25l0.5. The firm can hire as much
capital and labour as it desires. The per unit cost of capital is 10 and the per worker wage
is 5. Firms can sell any quantity of output produced on the market at price 20. How much
of each input should it hire? What quantity of output should it produce? What is the firm’s
optimal profit?

The firm’s profit is π = 20q − 10k − 5l. Since the firm’s output is determined by its
production function, we have π = 20k0.25l0.5 − 10k− 5l. Thus, the firm’s profit is a function
of two variables: k and l. The firm’s problem is:

max
k,l

20k0.25l0.5 − 10k − 5l

The first order conditions are:

∂π

∂k
= 5k−0.75l0.5 − 10 = 0

∂π

∂l
= 10k0.25l−0.5 − 5 = 0

Combining these gives: 1
2
l
k

= 2, and so l = 4k. Substituting this into the first condition
gives:

5k−0.75(4k)0.5 = 10

2k−0.25 = 2

k∗ = 1

Then, since l∗ = 4k∗, we have l∗ = 4.

Next, we must check that the second-order conditions hold so that we can confirm we have
indeed found a maximum. Below are each of the second derivatives evaluated at the critical
point:

πkk = −3.75k−1.75l0.5 = −3.75(1)−1.75(4)0.5 = −7.5

πll = −5k0.25l−1.5 = −5(1)0.25(4)−1.5 = −0.625

πkl = 2.5k−0.75l−0.5 = 2.5(1)−0.75(4)−0.5 = 1.25

πlk = 2.5k−0.75l−0.5 = 2.5(1)−0.75(4)−0.5 = 1.25

Hence, we verify that πkk < 0, πll < 0 and πkkπll − πklπlk = −7.5×−0.625− 1.25× 1.25 =
3.125 > 0. The second order conditions are satisfied.
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1.5 Constrained Optimization

Fundamentally, economics is the study of choice. Agents only have genuine choices to make
when they face constraints that prevent them from getting everything they want. (Such
constraints might include budget constraints, time constraints, technological constraints,
institutional constraints, etc.)

Example 8. Two canonical examples of constrained optimization problems:

1. Utility Maximization subject to a budget constraint. There is an agent who must choose
quantities of goods x and y to purchase to maximize her utility subject to those goods
being affordable. We have:

max
x,y

u(x, y) s.t. pxx+ pyy = I

2. Profit Maximization subject to a technological constraint. There is a firm that must
choose quantities of inputs capital k and labor l to hire, and the quantity of output to
produce q, subject to the output being technologically feasible given the inputs. We
have:

max
q,k,l

pq − rk − wl s.t. q = f(k, l)

Consider a generic problem:
max
x,y

f(x, y) s.t. g(x, y) = 0

f(x, y) is the objective function, whilst g(x, y) is the constraint function. (It should be clear
that we can express each of the constraints in the above examples in the form g(·) = 0.)

Absent the constraint, we know what to do —find the critical points of f by setting all
the first-order partial derivatives to zero. But these critical points may not satisfy the
constraints (i.e. they may not be feasible). Our solution is to incorporate the constraint
into the objective function so that it is already taken into account when we take first order
conditions.

Consider a new function:
L(x, y, λ) = f(x, y)− λg(x, y)

where λ is a new variable called the Lagrange Multiplier. The new function L is called the
Lagrangian. It turns out that to find the constrained maximizer of the original objective
function, it suffices to find the unconstrained maximizer of the Lagrangian. To see why,
notice that the Lagrangian has the constraint incorporated into it. In fact, it is simply the
objective function, augmented with a penalty whenever the constraint is not satisfied. The
size of the penalty is given by the Lagrange multiplier.

Notice that the penalty term will be zero whenever the constraint is satisfied, since
g(x, y) = 0. This ensures that, when the constraint is satisfied, the Lagrangian function
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simply coincides with the true objective function, so that maximizing the Lagrangian and
constrained maximizing the objective function amount to the same thing. If the constraint
is not satisfied, then the correction term (λg(x, y)) will be positive, which causes the La-
grangian to take a lower value than the objective. If we seek to maximize the Lagrangian
then, we will be deterred from settling on values that violate the constraint.

But how do we choose the size of the penalty, λ? We let the calculus do it for us! Notice that
∂L
∂λ

= −g(x, y). Hence, if we take the first order condition with respect to λ, we effectively
get the condition g(x, y) = 0, which guarantees that the constraint will be satisfied.

In summary, to do constrained optimization, we:

1. Form the Lagrangian function, which incorporates the constraint, in a way that penal-
izes the maximization whenever the constraint is violated.

2. Find the unconstrained optimum of the Lagrangian. To do so, we take first order
conditions with respect to the original variables x and y, as well as the penalty variable
λ (i.e. the Lagrange multiplier).

Example 9. Consider the following problem:

max
x,y
−x2 − y2 s.t. 2x+ y = 5

Clearly, the unconstrained maximum is achieved when x̂ = 0 = ŷ —you can easily check this
by taking first order conditions —but this obviously does not satisfy the constraint.

The Lagrangian is:
L = −x2 − y2 − λ(2x+ y − 5)

Taking first order conditions, we have:

∂L
∂x

= −2x− 2λ = 0

∂L
∂y

= −2y − λ = 0

∂L
∂λ

= 5− 2x− y = 0

We have a system of 3 equations in 3 unknowns. From the first two equations, after solving
for λ, we get:

λ = −x = −2y

which implies that x = 2y. Substituting this into the third equation gives 5− 2(2y)− y = 0,
which implies y = 1. Then, since x = 2y, it must be that x = 2. Finally, since λ = −x = −2y,
we have λ = −2. The constrained optimum is (x∗, y∗) = (2, 1).

Notice that the penalty λ∗ = −2 is negative. Does this make sense? To get from the
constrained optimum to the unconstrained optimum, both x and y would need to decrease,
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which would cause the constraint (2x + y − 5) to become negative. If λ were positive,
the penalty would be negative, and since the penalty is subtracted, this would cause the
Lagrangian to be larger than the objective. Clearly this cannot be the case. This explains
why λ < 0.

Example 10 (Firm’s Choice cont.). Return to Example 8 about a firm choosing which
inputs to hire. Recall, the firm faces a production technology q = k0.25l0.5, output price
p = 20, and input prices r = 10 and w = 5. The firm must choose the quantity of output to
produce q and the quantities of each input k and l.

We can reformulate the firm’s problem as a constrained optimization problem:

max
q,k,l

20q − 10k − 5l s.t. k0.25l0.5 = q

The Lagrangian is:
L = 20q − 10k − 5l − λ

(
q − k0.25l0.5

)
The first order conditions are:

∂L
∂q

= 20− λ = 0

∂L
∂k

= −10 + λ
(
0.25k−0.75l0.5

)
= 0

∂L
∂l

= −5 + λ
(
0.5k0.25l−0.5

)
= 0

∂L
∂λ

= k0.25l0.5 − q = 0

Using the first condition, we have λ = 20. Substituting this into the second and third
equations gives: (

0.25k−0.75l0.5
)

=
1

2(
0.5k0.25l−0.5

)
=

1

4

This is a system of two equations in two variables identical to what we had in the previous
example. Solving, we get k = 1 and l = 4. Finally, substituting these into the fourth
equation gives q = (1)0.25(4)0.5 = 2.

Hence, the solution is q∗ = 2, k∗ = 1, and l∗ = 4.



Chapter 2

Consumer Theory

Lionel Robbins’ famous definition of economics states: “Economics is the science which stud-
ies human behaviour as a relationship between ends and scarce means which have alternative
uses." At its most basic level, economics is the study of how individuals and societies make
choices. In this chapter, we explore the canonical theory of rational choice.

Let X denote the set of possible alternatives. In much of this chapter, X will represent the
set of consumption bundles that a consumer may purchase. But the setup is more general.
X may also denote:

1. candidates in the 2020 Democratic primary. X =
{Biden, Buttigieg, Harris, Warren, ...}.

2. quadruples of courses for which students can register on Bionic.

3. which of my children I visit this weekend.

4. to which charities to donate, and how much.

In different contexts, only a subset of choices may be available to the agent. (For example,
amongst the set of feasible course-quadruples, a student may not choose those for which a
pre-requisite is missing, or which includes courses already taken.) Our goal is to develop a
theory that explains the agent’s choice from different feasible choice sets.

We will do this in two parts. First, we consider preferences —which specify an agent’s
ranking of all possible outcomes (regardless of whether they are ‘feasible’ or not). Next, we
explore how various constraints limit the set of feasible choices. We then combine the two
to find the agent’s optimal choice.

17
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2.1 Preferences

2.1.1 Baseline Assumptions

Preferences describe an agent’s attitude toward the various available choices. Differences in
the way agents perceive their options are captured by differences in preferences. In economics,
preferences are taken as primitive —two agents are different from one another insofar as they
have distinct preferences.

We represent an agent’s preference between any two elements x, y ∈ X using a preference
relation �. We write x � y to mean that ‘x is at least as preferred as y’, or ‘x is weakly
preferred to y.’

The weak preference relation is sufficient to capture strict preferences (‘x is more preferred
than y’) and indifference (‘x and y are equally preferred’). We denote the strict preference
and indifference by � and ∼, respectively.

The following are true:

• x � y iff (if and only if) x � y and y 6� x.

• x ∼ y iff x � y and y � x.

Definition 3 (Rationality). The preference relation � is rational if it satisfies:

• completeness: for all x, y ∈ X, either x � y or y � x (or both).

• transitivity: for all x, y, z ∈ X, if x � y and y � z, then x � z.

Completeness requires that, when confronted between two alternatives, the agent is always
able to assert a preference between them (even if to say that she is indifferent). Transitivity
requires that the agent’s ranking of outcomes be consistent —she cannot prefer x to y, and
y to z, and z to x. We say an agent is rational if she can always rank outcomes and do so
consistently.

Note of caution —our use of the term ‘rational’ is different from the common usage. Ra-
tionality in economics simply means consistency; it does not convey in any sense that the
agent makes the ‘right’ choice. For example, suppose I assert that it is preferable to smoke
habitually than to smoke socially; and that it is preferable to smoke socially than to not
smoke at all. Then, as long as I also assert that it is preferable to smoke habitually to not
smoking at all, I am rational. My ranking of outcomes might not be advisable, but that does
not make it ‘irrational.’
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Example 11. Suppose an individual encounters 2 slices of cake in the kitchen: one mud cake
and one cheese cake. They must decide whether to eat both slices (B), one slice (and if so,
which (M or C)) or neither (∅). Let X = {B,M,C, ∅} denote the set of possible alternatives
for me. Let �1, �2 and �3 be different preference relations, with:

B �1 C ∼1 M �1 ∅
C �2 B �2 ∅ �2 M

∅ �3 C ∼3 M �3 B

The first preference can be described in words as follows: ’The agent prefers more cake
to less. They are indifferent between flavors.’ By contrast, the second preference can be
described: ‘The agent prefers cheese cake and dislikes mud cake. She would rather have
both than neither.’ We might think of the third preference as capturing a person dedicated
to a healthy diet.

A rational preference relation can be expressed as a list —as we have shown in the example.
But listing outcomes can be cumbersome, especially as the list becomes long. It often helps
to represent the information in the list using numbers.

Definition 4. A utility function u : X → R represents the preference relation � if for all
x, y ∈ X, x � y iff u(x) ≥ u(y).

A utility function is an assignment of numbers to elements in the choice set X, such that
higher numbers are assigned to outcomes that are more preferred, and the same number is
assigned to outcomes that are indifferent.

Proposition 1. A preference relation � can be represented by a utility function u iff it is
complete and transitive.1

Exercise 3. We can represent preference relation �1 from Example 11 using the utility
function: u1, where: u1(B) = 100, u1(C) = 1, u1(M) = 0 and u1(∅) = −20. Can you:

• Find functions u2 and u3 that represent �2 and �3?

• Find different functions v1, v2 and v3, that also represent �1, �2 and �3, respectively?

As the above exercise makes clear, there is nothing special about the numbers we assign, as
long as they respect the appropriate ordering. The binary relation � is ordinal. It merely
ranks outcomes. It says nothing about the strength of an agent’s preference. Similarly, a
utility function simply communicates this ranking. The distance between the utility numbers
is inconsequential. Suppose x � y � z. We can represent this by: u (x) = 30, u (y) = 20

1For students who have a background in Analysis: Technically, if X is uncountable, we need � to
additionally satisfy the assumption of Continuity. Continuity requires that for a sequence of outcomes
xn → x and yn → y, if xn � yn for each n, then x � y.
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and u (z) = 10. This does NOT mean that y is twice as preferred as z and x is three times
as preferred. Simply that y is preferred to z (and so is x).

There is no unique scale to represent utility. It cannot be measured with ‘hedonometer’.
The same preference relation can be represented by many different utility functions.

Lemma 4. Suppose u represents � and let g(·) be a strictly increasing function. Then
v(x) = g(u(x)) also represents �.

Dispelling some myths about utility: The notion of utility in no way commits us to the
idea that preferences are over money, wealth, commodities etc. The agent’s preferences can
be over anything. They may care about things that are not commodifiable. For example,
the agent may have preferences over how much time they spend with a loved one (and what
they do during that time). Similarly, their preferences may relate to outcomes that affect
other agents. For example, the agent might care about the outcomes of their child or spouse
or friends. (We say such an agent has ‘other-regarding’ preferences.) Our theory makes no
commitments to ideas of ego-centrism or individualism. It is perfectly consistent with the
social aspects of human feelings —love, envy, guilt etc. Moreover, we make no commitments
about how the agent ranks outcomes — one agent may prefer more chocolate to less, another
may have an intense dislike of chocolate. Individuals may prefer less material goods and more
experiential goods, including the experience of quiet, peace, simplicity etc.

Example 12. Return to the cake example. Suppose the individual has a friend, whom
they must decide whether to share the cake(s) with. An alternative now is a pair (P,Q)
where P denotes what the individual receives, and Q denotes what the friend receives. The
set of alternatives is: X = {(B, ∅), (M,C), (M, ∅), (C,M), (C, ∅), (∅, B), (∅,M), (∅, C), (, ∅)}.
Clearly there are many possible ways to rank these outcomes. Here are a couple: (For the sake
of exposition, suppose both agents have individual preferences given by B �M � C � ∅).

(B, ∅) �4 (M, ∅) �4 (M,C) �4 (C, ∅) �4 (C,M) �4 (∅, ∅) �4 (∅, C) �4 (∅,M) �4 (∅, B)

(B, ∅) �5 (M, ∅) �5 (C, ∅) �5 (∅, ∅) �5 (M,C) �5 (∅, C) �5 (C,M) �5 (∅,M) �5 (∅, B)

(∅, B) �6 (C,M) �6 (∅,M) �6 (M,C) �6 (∅, C) �6 (B, ∅) �6 (M, ∅) �6 (C, ∅) �6 (∅, ∅)

Agent 4 prefers to get what he individually wants, and conditional upon that, to deny her
friend what she wants. Agent 5 prefers to deny his friend what she wants, and conditional
upon that, to get what he individually wants. Agent 4 is self-centered and mean-spirited,
whilst agent 5 is malicious or vindictive. Agent 6 prefers to first give his friend what she
wants before tending to himself. Agent 6 is generous or sacrificing.

2.1.2 Additional Assumptions

Completeness and Transitivity alone are insufficient to build a predictive theory. Why? They
are too permissive —any (consistent) ranking of outcomes is possible. But if so, how could
we ever predict what choices an agent will make, if in principle, their ranking of outcomes
could be anything? To say something more concrete, we need more structure. Two things
are worth noting:
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• There is no ‘correct’ way to add additional assumptions. In this course, we will fo-
cus on the canonical approach, although we will consider alternative (‘behavioral’)
assumptions from time to time. Each approach has strengths and weaknesses.

• The more structure we add, the stronger predictions our theory can make, but also
the more likely it will be that we’ve introduced false assumptions. Hence, we face a
trade-off between making strong predictions and making correct predictions.

The canonical approach adds 2 additional assumptions about the nature of preferences. To
reiterate: we do not think these assumptions always hold —but we do think they are reason-
able approximations over a large range of contexts. Naturally they will be less reasonable in
other contexts.

For concreteness, we will focus most of our attention on a particular context of interest
—choosing over bundles of goods. (For example, choosing how much of various goods to
buy each month.) We plot the quantity of good X on the horizontal axis and the quantity
of good Y on the vertical axis. A consumption bundle is a pair (x, y) which indicates the
amounts of good X and good Y being consumed. The Consumption Space is the set of
all possible consumption bundles - in this case, the non-negative orthant of the Cartesian
plane. We assume goods are perfectly divisible - so I can consume 3

8
of a good, or π goods.

We write ‘(x1, y1) ≥ (x2, y2)’ to denote the relationship between bundles (x1, y1) and (x2, y2)
such that x1 ≥ x2 and y1 ≥ y2 —i.e. bundle 1 contains at least as much of each good as
bundle 2.

Definition 5. The preference relation � is:

• monotone if (x1, y1) ≥ (x2, y2) implies (x1, y1) � (x2, y2).

• convex if (x1, y1) � (x2, y2) implies (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) � (x2, y2), for
all λ ∈ [0, 1].

Monotonicity captures the idea that ‘more is better’.2 Convexity captures the idea that
agents prefer moderate quantities of all goods to large quantities of some and small quantities
of others. (More formally, the (weighted) average of two bundles is at least as good as the
worst of the two bundles.)

Let u(x) represent �.

• If � is monotone, then u is increasing in each dimension, i.e., ∂u
∂x
> 0 and ∂u

∂y
> 0.

2In fact, monotonicity is stronger than we need, although it will be convenient for our purposes. It
suffices to assume that preferences satisfy local non-satiation, which states that for every (x1, y1), and every
ε > 0 there exists (x2, y2) in an ε-neighbourhood of (x1, y1) s.t. (x2, y2) � (x1, y1). Local non-satiation says
that there is always something (nearby) that is better, whereas monotonicity says that something has ‘more’.
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• If � is convex, then u is quasi-concave. This implies that the second order conditions
are satisfied at any critical point.

We can represent consumer preferences diagrammatically using indifference curves. An
indifference curve is a line joining all consumption bundles over which the consumer is in-
different, i.e., if two bundles a and b are on the same indifference curve, then u(a) = u(b).

Properties of Indifference Curves

1. Indifference curves are downward sloping (This follows from the monotonocity assump-
tion. By monotonicity, every bundle in quadrant III must be preferred to a. Similarly,
every bundle in quadrant I is inferior to a. Hence, bundles which are indifferent to a
must lie in either quadrant II or IV - but this implies that the indifference curve is
downward sloping.)

a

I

II III

IV

x

y

2. Indifference curves do not cross. (We show this by contradiction. Suppose there are
two indifference curves which intersect. Let a be the bundle corresponding to the point
where they intersect. Since they both lie on IC1, then a and b must be indifferent.
Similarly, since a and c both lie on IC2, then a and c must be indifferent. Then by
transitivity, b and c must be indifferent. But b clearly contains more of both goods
than c. Hence by monotonicity, b must be preferred to c. This is a contradiction!
Hence, there cannot be two indifference curves which intersect.)

a

c

b

x

y
IC2

IC1
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a

b

x

y
IC2

IC1

c

3. Higher indifference curves are preferred to lower ones. In the figure below, notice that
a is on a higher indifference curve than b, but our assumptions do not allow us to
directly rank them. However, there is another bundle c, lying on the same indifference
curve as a (and thus for which a ∼ c), which we can compare to b using monotonicity
(c � b). Then, by transitivity, it must be that a � b. Using this logic, we can show
that every bundle on a higher indifference curve must be preferred to every bundle on
a lower indifference curve.

4. Indifference curves are convex. (This follows from the convexity assumption. Let a
and b be indifferent and suppose they lie on IC1. Draw a straight line connecting a
and b. This line represents bundles which are an average of a and b. By the convexity
assumption, we know that each of these bundles is strictly preferred to both a and b.
Hence, they must all lie above IC1. Put differently, IC1 must lie below the line joining
a and b. This implies that the indifference curves are convex.)

a

b
x

y

The slope of an indifference curve is known as the marginal rate of substitution (MRS).
The MRS indicates how much of good Y the consumer is willing to forgo in order to get
one extra unit of good X. The MRS is changing along the indifference curve. In fact, as
one moves along the indifference curve from left to right, the MRS decreases. (To see why,
suppose we are at a point towards the left end of the IC. Such a bundle contains a lot of
good Y and relatively little X. By convexity, we know that the consumer prefers moderation
to extremes. Hence, the consumer will be willing to give up a lot of Y in order to get a little
extra X. Hence the MRS is high. Now, consider a point towards the right end of the IC.
This bundle contains a lot of good X and very little Y . Again, since the consumer prefers
moderation, they will be very unwilling to give up too much more Y to get an extra unit of
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x

y

Figure 2.1: The marginal rate of substitution (slope of indifference curve) decreases as we
move along the indifference curve.

X - since they already have a lot of X and very little Y . Hence, the MRS is small at this
point.)

In fact, we can derive the marginal rate of substitution using calculus. Consider an arbitrary
indifference curve, along which the utility level is u0. Consider a bundle along this indifference
curve. If we know the quantity of good x, then we can immediately determine the necessary
quantity of good y to ensure the bundle lies on the indifference curve, i.e., the indifference
curve defines a function y(x) s.t.

u(x, y(x)) = u0

The marginal rate of substitution is simply dy
dx
. To find this, totally differentiate this expres-

sion w.r.t x., We have:

∂u

∂x
+
∂u

∂y

dy

dx
= 0

dy

dx
= −

∂u/∂x
∂u/∂y

MRS = −MUx
MUy

Hence the marginal rate of substitution is the ratio of marginal utilities.

2.1.3 Special Cases

Two special types of indifference curves are worth noting.

• If goods are perfect substitutes (e.g. nickels and dimes), then the indifference curve is
linear. (Clearly, I will always be willing to exchange two nickels for a dime, and so the
MRS is constant all along the indifference curve.)
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x

y

I
py

I
px

slope = −px
py

Figure 2.2: The Budget Set

• If goods are perfect complements (e.g. left shoes and right shoes), then the indifference
curves are L-shaped. (It should be clear that getting more left shoes is only utility
enhancing if I also get more right shoes. Hence, a consumer will be indifferent between
the bundles (2, 2) and (2, 4) - since the additional 2 right shoes give them no extra
utility. Similarly, a consumer will be indifferent between the bundles (2, 2) and (5, 2),
since the additional 3 left shoes provide no additional utility.)

Perfect Substitutes Perfect Complements

2.2 Budget Set

Consider a consumer with income I and suppose the prices of goods are px and py, respec-
tively. The budget set is the set of all consumption bundles which the consumer can afford
given their income and given the prices of goods. The budget set is given by:

B (px, py, I) =
{

(x, y) ∈ R2
+ | pxx+ pyy ≤ I

}
The frontier of the budget set is known as the budget constraint or budget line. All
consumption bundles along the budget line are just affordable, i.e., if the consumer purchases
a bundle along this line, then they will exhaust their income. A point on the interior of the
budget set represents a bundle where the consumer is not spending all of their income. Any
point along the budget constraint must satisfy:

pxx+ pyy = I
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It is easy to verify that the intercepts of the budget line are
(
I
px
, 0
)
and

(
0, I

py

)
and that

the slope of the budget line is slope = −px
py
. The slope of the budget constraint represents

the opportunity cost of consuming one extra unit of good X (in terms of the amount of good
Y that must be forgone). Note: the slope of the budget constraint is based on the relative
price of goods and is independent of the level of income.

Example 13. A consumer has income I = 24 and faces prices px = 3 and py = 4. If they
spend all their income on good X, then they can purchase 8 units of X. (This corresponds
to the X- intercept.) Instead, if they spends all of their income on good Y , then they can
purchase 6 units of Y . (This corresponds to the Y - intercept.) For each additional unit of
good X that they consume, they must forgo 3

4
units of good Y . This is the opportunity cost

of good X. You should verify that the bundles (4, 3) and (6, 1.5) are just affordable, that
the bundle (2.5, 4) lies in the interior of the budget set, i.e., the consumer will have surplus
income if they purchase this bundle, and that the bundle (5, 4) is not affordable.

2.3 Optimisation

So far, we have considered questions of what consumers can afford, and what they would
like to purchase, in isolation. We now bring these two concepts together. Consumers are
assumed to be rational utility maximisers. Hence, they will choose the bundle which is most
preferred from amongst those which are affordable. Such a bundle must lie on the highest
possible indifference curve which is contained within the budget set.

We can reformulate the consumer’s problem in the following way:

max
x,y

U (x, y)

s.t. pxx+ pyy = I

We can solve this problem using constrained optimisation techniques. The solution is the
consumer’s demand.

2.3.1 Two Examples

Example 14. Suppose the consumer’s utility function is given by u (x, y) = log x + log y
and that px = 2, py = 3 and I = 12. Then we have:

max
x,y

U (x, y) = log x+ log y

s.t. 2x+ 3y = 12

The Lagrangian is:
L(x, y, λ) = log x+ log y − λ(2x+ 3y − 12)
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The first order conditions are:
∂L
∂x

=
1

x
− 2λ = 0

∂L
∂y

=
1

y
− 3λ = 0

∂L
∂λ

= 2x+ 3y − 12 = 0

Using the first two conditions, we have:

λ =
1

2x
=

1

3y

x =
3

2
y

Substituting this into the third condition gives:

12− 2

(
3

2
y

)
− 3y = 0

12− 6y = 0y∗ = 2

Then, using the fact that x = 3
2
y, x∗ = 3.

In the above example, we used specific values for prices and incomes. This generated a
specific equilibrium bundle. If we keep the analysis more general, and solve the problem for
generic px, py and I, then we can find the consumer’s demand functions for any price and
income level.

Example 15. Suppose the consumer’s utility function is given by U (x, y) = − 1
x
− 1

y
(believe

it or not, this satisfies the conditions for a utility function!). We have:

max
x,y

u (x, y) = −1

x
− 1

y
s.t. pxx+ pyy = I

We use the method of Lagrange Multipliers. We have:

L = −1

x
− 1

y
+ λ (pxx+ pyy − I)

The first order conditions are:
∂L
∂x

=
1

x2
− λpx = 0

∂L
∂y

=
1

y2
− λpy = 0

∂L
∂λ

= I − pxx− pyy = 0
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Combining the first two conditions, we have:

λ =
1

x2px
=

1

y2py

→ y =

√
px
py
x

Substituting this into the third gives:

pxx+ py

√
px
py
x = I

x∗ (px, py, I) =
I

√
px
(√

px +
√
py
)

and then from the optimality condition:

y∗ (px, py, I) =
I

√
py
(√

px +
√
py
)

General Insights Return to the generic problem. The problem is:

max
x,y

U (x, y)

s.t. pxx+ pyy = I

Again formulate the Lagrangian. We have:

L = u(x, y) + λ (pxx+ pyy − I)

The first order conditions are: The first order conditions are:
∂L
∂x

=
∂u

∂x
− λpx = 0

∂L
∂y

=
∂u

∂y
− λpy = 0

∂L
∂λ

= I − pxx− pyy = 0

Combine the first two conditions, and solve out for λ. Then, we have a system of two
equations in two variables which we can use to solve for the optimal demands, x and y. We
have:

−MUx
MUy

= −px
py

pxx+ pyy = I

Two important insights:
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x

y

a

b

Figure 2.3: Tangency

1. The optimal consumption bundle will always lie on the budget constraint, rather than
in the interior of the budget set. (Why? Suppose the consumer chooses a bundle in
the interior of the budget set. Then he does not spend all of his income. Such a bundle
cannot be optimal, since (by monotonicity) the consumer could do better by spending
the surplus income, and purchasing a little more of each good.)

2. The optimal consumption bundle will satisfy the tangency condition:

MRS = −px
py

slope of IC = slope of BC

(We see this immediately from the above condition. Alternatively, I offer a proof by
contradiction. Suppose the optimal bundle is a, and at this point indifference curve
and budget constraint are not tangential. Then, at a, the curves must cross. But
then, there is a point along the indifference curve (b, say) which is in the interior of
the budget set. Moreover, a and b are indifferent - and so if a is an optimal choice,
then so is b. But we know that b cannot be optimal, since it is in the interior. There
is a point on the budget line (c, say) which is strictly preferred to b. Furthermore, by
monotonicity, c is preferred to a. But then a cannot be an optimal choice, since c is
affordable and c is preferred to a. This is a contradiction.)

The second result says that the rate at which the consumer is willing to forgo good Y for good
X, i.e., the MRS, is the same as the rate which he must actually exchange the goods in the
market, i.e., the opportunity cost. If this is the case, then it is impossible for the consumer
to reallocate goods in such a way as to increase his utility. Why? LetMRS = slopeBC = 2.
Suppose the consumer tries to increase their utility by consuming 1 extra unit of good X. In
order to do so, they must forgo 2 units of good Y (since the slope of the budget constraint -
which is the opportunity cost of consuming X - equals 2). But sinceMRS = 2, the consumer
is exactly willing to forgo 2 units of good Y in order to get 1 extra unit of X, and moreover,
they are indifferent between these alternatives. Hence, such a reallocation of consumption
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leaves the consumer just as well off - but no better off. By the same argument, the consumer
cannot increase their utility by consuming 1 fewer unit of good X.

Suppose instead MRS = 3 and slopeBC = 2, and the consumer decides they want to
reallocate goods in such a way to get 1 extra unit of X. To be able to afford this, they must
forgo 2 units of Y. But they are willing to forgo 3 units of Y. If forgoing 3 units of Y leaves
them equally well off, then forgoing only 2 units will make them better off. Hence, there
is an opportunity to reallocate goods in such a way that improves utility. This cannot be
optimal. Thus, if MRS 6= slopeBC, then there is always an opportunity for the consumer
to reallocate their consumption in such a way as to improve their welfare. It follows that, at
the optimum, MRS = slopeBC.

A different way of interpreting the tangency condition is in terms of marginal-
benefit/marginal-cost analysis. Re-write the tangency condition as:

MUx = −px
py
MUy

The left hand term is the marginal benefit of purchasing one more unit of good X. The right
hand side is the product of two terms. −px

py
is the number of units of good Y that must be

forgone to afford one additional unit of good X, given the budget constraint. MUy is the
utility lost from consuming one fewer unit of good Y . Since the agent must consume px

py
fewer

units, the right hand side gives the opportunity cost of consuming one more unit of good
X, in terms of lost utility from forgone consumption of good Y . The tangency condition
states that at the optimum, the net benefit of consuming one more unit of good X (and
commensurately less of good Y ) must be zero. Why? If the net benefit were positive, then
the agent would do strictly better to reallocate their consumption bundle by adding more of
X. By contrast, if the net benefit were negative, then the opposite is true —the agent would
do strictly better to reallocate their consumption bundle by adding more of Y .

2.4 Comparative Statics

It should be clear from the above discussion that the agent’s consumption choice depends
upon the prices of goods and their level of income. We now consider the effect of a change
in these factors on consumption choices.

2.4.1 Changes in Income

First, consider the effect of a change in income. For concreteness, suppose there is an increase
in income. Since prices are unchanged, the consumer can now afford to purchase more of
each good. The budget constraint shifts outward in a parallel fashion. (Why? Recall the
slope of the budget constraint is given by the ratio of prices. Since prices have not changed,
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Figure 2.4: Effect of an increase in income

the slope of the budget constraint remains the same. Hence, there must be a parallel shift
in the budget line.)

Although income has increased, it does not immediately follow that agents will increase their
consumption of a good. Recall - the effect of income on demand depends on whether the
good is a normal good or an inferior good. We illustrate this with Figure 2.4.

Note —in both cases above, good Y behaves as a normal good, i.e., when income increases,
the demand for good Y increases. It should be clear that whilst one good (either X or Y )
can be inferior, it is not possible for both goods to be inferior. (Why? Suppose both goods
were inferior goods. Then, following an increase in income, the demand for both goods would
decrease. But this means the consumer would be choosing a bundle on the interior of the
budget set. We argued above, that this is never optimal. Hence, when income increases, the
demand for at least one good must increase.) We conclude that, in general, not all goods
can be inferior - at least one good in the economy must be normal.

2.4.2 Changes in Prices

Next, consider the effect of a change in the price of one good. For concreteness, suppose
there is an increase in the price of good X. Since there is a change in the relative price of
goods, the slope of the budget constraint will now change. Note further that if the agent
spends all their income on good Y , then the amount of good Y they can purchase will not
change (since only the price of good X has changed). Hence, the y−intercept does not shift.
For each quantity of Y chosen, the agent is now able to afford less of good X. Hence, the
budget line ‘swivels’ inwards. We have:

A few comments are worth noting:

• In the above diagrams, the demand for good X obeys the law of demand. Since the
price of good X increases, the quantity demanded falls. It is, however, possible for the
‘law of demand’ to be violated (see below).
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Figure 2.5: Effect of an increase in the price of good x

• Furthermore, in the left hand figure, the quantity demanded of good Y also falls. In
this case, it must be that X and Y are complements

• In the right hand figure, the quantity demanded of good Y increases. Hence, in this
case, X and Y must be substitutes.

• In each case, regardless of whether quantities of goods increase or decrease, the agent
is forced onto a lower indifference curve. The reason for this should be intuitive. When
facing higher prices, there are fewer bundles which are feasible for the consumer to
choose. Hence, they must make their choice from a smaller set of alternatives.

Income and Substitution Effects In the above examples, the increase in price resulted in
a decrease in quantity demanded for two reasons. First, when the price is higher, consumers
have an incentive to substitute their consumption towards cheaper alternatives, since the
marginal (opportunity) cost of consuming the good has now increased. Second, when the
price is higher, the purchasing power of income decreases, and so demand falls. (To make
this latter point most stark, suppose my income is $100 which I will always spend on DVDs
irrespective of price. When the price of DVDs is $10, I will purchase 10 DVDs. If the price
increases to $20, then the quantity I purchase will fall to 5 - not because I am substituting
towards other goods, but simply because the purchasing power of my income is no longer as
strong.) We refer to these effects as the substitution and income effects, respectively. In this
section, we will make these concepts precise.

Consider the diagram below. The agent originally chooses bundle A when the price is low.
After the price increase, the agent actually chooses bundle B, which is on a lower indifference
curve. Suppose we (hypothetically) compensate the consumer by increasing their income just
enough so that they return to the original indifference curve. (We do this by shifting the
new budget constraint BC1 outwards just until it is tangent with the original indifference
curve - i.e. to BCh.) With this compensation, the agent chooses bundle C, rather than the
original bundle A. (We refer to bundle C as the compensated demand or Hicksian demand.)
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Figure 2.6: Income and Substitution Effects

What does this mean? Since we compensate the agent, ‘affordability’ is not an issue. The
agent simply chooses the bundle of goods which makes them just as happy as they were
before the price change. This is the substitution effect. It measures the change in demand
which arises purely because the agent reallocates their consumption - taking out the effect
of affordability considerations. In the above diagram, the substitution effect refers to the fall
in demand from x0 to xh (where xh refers to the hypothetical level of demand that arises
when the consumer is compensated for the price change).

For any price increase, the substitution effect must be negative, i.e., the hypothetical bundle
must contain more of good X and less of good Y . Why? Since the hypothetical bundle is
chosen optimally, it must satisfy the tangency condition. We know that:

MRS =
px
py

= slopeBC

Since px has increased, the slope of the new budget constraint is higher, and so at the
optimum, the MRS must also be higher. But we know that the MRS is decreasing as we
move along the demand curve. Hence, the new tangency will occur at a point to the left of
bundle A, where MRS is higher. At this new point, the amount of good X will be lower
and the amount of good Y will be higher.

The Law of Demand is the claim that the substitution effect is negative.

Having (hypothetically) compensated the agent and found the substitution effect, we then
take this compensation away from the consumer (so that they are returned to the original
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level of income). This involves a parallel shift in the budget constraint, from the hypothetical
budget constraint BCh, to the new budget constraint BC1. Note - an increase in price results
in a decrease in income (since the purchasing power of income is now relatively lower). Since
this change involves a pure decrease in income, with no change in prices - we can interpret
this as a measure of the change in demand due to considerations of affordability. The income
effect is the change in demand from xh to x1.

A few comments about the income effect might be appropriate at this stage. Whilst an
increase in price results in a decrease in income, this does not immediately imply that
quantity demanded will decrease. From the previous section, we know that the effect of a
change in income on demand depends on whether a good is normal or inferior. We have:

• If a good is normal, then an increase in price causes a decrease in income, which
in turn causes a decrease in quantity demanded, i.e., the income effect is negative.
This complements the decrease in demand which arises due to the substitution effect.
Hence, for a normal good, an increase in demand unambiguously results in a decrease
in quantity demanded.

• If a good is income neutral, then there is no income effect.

• If a good is inferior, then an increase in price causes a decrease in income, but this
causes quantity demanded to increase, i.e., the income effect is positive. Then, the
income effect counteracts the substitution effect. If the magnitude of the substitution
effect is large relative to the income effect, then the overall effect of a price increase
will still be for the price to decrease. (See diagram below.)

X

IC1

y1

y0

x0

yh

A

C

B

xh x1

IE

Substn Effect

Y

• It is theoretically possible for the income effect to be larger than the substitution effect.
If so, then quantity demanded actually rises in response to an increase in price! (See
diagram below.) Such a good is known as a Giffen good. Whilst their existence is
theoretically possible, few examples of Giffen goods exist.

But doesn’t this contradict the law of demand? Yes and no. The statement of the law of
demand above is somewhat sloppy. The law should more properly state that an increase in
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Figure 2.7: x is a Giffen good

prices causes the compensated demand to fall, i.e., the substitution effect is negative. The
law of demand is silent on the effect of income changes. So in this sense, a positive income
effect is perfectly consistent with the law of demand. (It is also worth noting that there are
very few examples of Giffen goods. So even though it is not absolutely correct, it turns out
that our first version of the law of demand holds in the vast majority of cases.)

2.4.3 Demand Homogeneity

What happens to the optimal consumption bundle if all prices and income double? Then, the
relative prices of goods are unchanged (since both prices increase by the same proportion).
Similarly, the purchasing power of income is unchanged, since income increases at the same
rate as prices. It follows that in this scenario, the budget line is unchanged. (To convince
yourself of this, suppose px = 5, py = 2 and I = 20 and draw the budget line. Then double
all of these, so that px = 10, py = 4 and I = 40. Verify that the two budget lines coincide.)

We refer to this property as demand homogeneity. If income and all prices increase (or
decrease) by the same proportion, then there is no change in the consumer’s optimal choice.
It follows that an agent’s choice does not depend on actual prices and income, but rather on
relative prices,i.e., opportunity cost, and real income (purchasing power). Since the actual
price levels do not matter, I can scale these up and down as I see fit, and this will not affect
the consumer’s decision. Often, for convenience, we set the price of some ‘base’ good equal
to one, and then rescale all other prices and income relative to this good. This good is known
as the numeraire.

2.4.4 Summary

You should have noticed in the above sections that we have a lot of freedom to draw indiffer-
ence maps in particular ways to generate particular outcomes. Depending on how we ‘bend’
indifference curves, we can cause goods to be normal or inferior, complements or substitutes,
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or even Giffen goods. At first glance, it might appear that we’re cheating (maybe if you’re
creative enough in drawing curves, you can show anything?) In response to this criticism, I
make the following two points. First, given that different consumers can have vastly different
preferences, we should take comfort (rather than concern) at the fact that our theory is so
versatile! (Recall - the only assumptions we placed on preferences were that indifference
curves were downward sloping and convex, and that they did not intersect. This allows for
a wide variety of preferences across goods.)

Second, it is not true that we can show anything simply by bending the indifference curve
in the appropriate way. Consumer choices must satisfy a variety of consistency properties.
We have already outlined a few:

• The substitution effect must be negative.

• Not all goods can be inferior —there must be at least one normal good.

• Not all goods can be Giffen goods —at least one good must obey the Law of Demand.

• Not all goods can be complements —there must be at least one substitute good.

• Demand homogeneity must be satisfied.

Moreover, there are several other properties that must be satisfied which we will not cover
here. (If you are interested, look up the following: Engel Aggregation, Cournot Aggregation
and Slutsky Symmetry.)

2.4.5 Deriving the Demand Curve

So far, we have found the quantity demanded for a good, for a given price and income level. If
we repeat this procedure for a variety of different prices (holding income and the price of other
goods constant), then we can find the relationship between price and quantity demanded for
a particular good. This is the demand curve. We illustrate this process diagrammatically.
In the top diagram, we plot the budget line and optimal consumption bundles for three
different values of px (holding py and I fixed at some arbitrary level), where p0 < p1 < p2.
Then, in the bottom diagram, we plot these optimal consumption choices against the price
level which induced them.
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In the first section, we said that a change in income caused a shift in the demand curve. We
can easily show this to be the case as well. For concreteness, suppose the good is normal, and
there is an increase in income. Then, in the top diagram, each of the 3 budget constraints
will shift outwards in a parallel fashion. This will cause the optimal bundles x0, x1 and x2

to also increase. Then, plotting these new demand points on the lower diagram (and noting
that prices have not changed), we see that the entire demand curve has shifted to the right.
(Verify this for yourself. To simplify the diagram, consider only 2 prices, rather than 3.)
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Chapter 3

Applications of Theory

In the previous chapter, we used utility theory to analyse consumer choices between two
different goods. In this chapter, we expand the analysis to increase choices over other ‘goods’
—such as the decision of how much to spend and save, or the decision of how much time to
spend working and how much to spend in leisure.

3.1 Optimal Inter-temporal Choice - The Consump-
tion/Saving Decision

Consider an individual who lives for two periods. The consumer earns income Y1 and Y2 in
periods 1 and 2 (respectively), and must decide how much to consume in each period. In
the first period, the consumer can borrow and lend at an interest rate r. The loan is paid
back with interest in the second period. (Obviously there can be no borrowing or lending in
the second period, as there is no third period in which to settle the loans).

3.1.1 inter-temporal Budget Constraint

First, consider the inter-temporal budget constraint. In period one, suppose the individual
consumes C1 and saves S = Y1 − C1. (Note —the consumer may consume more than he
earns in the first period. If so there is negative saving - i.e. borrowing.) In period two, the
individual will receive back his savings with interest (or he will have to pay back his loan with
interest). Hence, total consumption in period 2 is C2 = Y2 + (1 + r)S. (It should be clear
that if period one consumption exceeds period one income, then period two consumption
must be less than period two income —since the agent must pay back his loan in the second
period. The converse is also true.)

39
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Figure 3.1: Inter-temporal Budget Constraint

Combining these expressions, we have:

C2 = Y2 + (1 + r) (Y1 − C1)

C1 +
1

1 + r
C2 = Y1 +

1

1 + r
Y2

The right hand side expression is called the net present value of income or net present
wealth. (To see why this should be the case —note that if I have 1

1+r
Y2 today and I invest it

at interest rate r, then (with interest) it will be worth Y2 in the next period. Hence receiving
Y2 worth of income in the second period is equivalent to receiving 1

1+r
Y2 worth of income

today. This is why we refer to the expression as the present value.) It may be helpful to
write W = Y1 + 1

1+r
Y2. We have:

C1 +
1

1 + r
C2 = W

which is the usual form of our budget constraint. Note that the price of period 1 consumption
is 1 (period one consumption is the numeraire), whilst the price of period 2 consumption is

1
1+r

. The slope of the budget constraint is given by − (1 + r). (You should confirm this for
yourself). We can draw the inter-temporal budget constraint as follows:

The expressions for the intercepts are worth explaining. The vertical intercept refers to a
situation in which the agent saves all of his period one income (which generates interest)
and the spends this in the second period along with his period two income. Hence, his total
period two consumption is Y2 +(1 + r)Y1. On the other hand, the horizontal intercept refers
to the situation in which the agent borrows against his entire second period income, in the
first period - so that his entire second period income is spent repaying the loan. Clearly
this is the maximum amount he can borrow, since if he tried to borrow a higher amount,
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he would be unable to repay it. The maximum amount he can borrow is 1
1+r

Y2, since with
interest, this amounts to Y2. In the above diagram, I drew a situation where the agent
borrows slightly in the first period (and so consumes more than his first period income), but
has to repay this loan in the second period, and so consumes less in the second period than
his second period income.

3.1.2 Inter-temporal Preferences

Next, we describe agent’s inter-temporal preferences. The usual assumptions over preferences
carry over. We assume preferences are monotonic, and so consumers prefer more consumption
in either period to less. Furthermore, we assume preferences are convex, and so consumers
tend to prefer similar levels of consumption in both periods, rather than large consumption
in one period and very little in the next. (This latter behaviour is often referred to as
‘consumption smoothing’). Although it is not crucial to the analysis, we assume moreover
that consumption is a normal good - so that when wealth increases, consumers will prefer
to increase their consumption in both periods.

We can represent inter-temporal preferences using indifference curves. The inter-temporal
rate of substitution is the rate at which consumers are willing to forgo future consumption
for 1 extra unit of current consumption. (ITRS is the inter-temporal analogue of the MRS).
From the above discussion, we can calculate the inter-temporal rate of substitution by:

ITRS =
MU1

MU2

where U (C1, C2) is the utility function defined over consumption levels in the two periods,
and MUi = ∂U

∂Ci
for i = 1, 2.

It is common to represent inter-temporal preferences by

U(C1, C2) = u(C1) + βu(C2)

where β ∈ (0, 1) and u is the ‘per period’ utility function, assumed to be increasing (u′ > 0)
and concave (u′′ < 0). The former says that more consumption is better, and the second
reflects diminishing marginal utility of consumption.

The parameter β is known as the discount factor, and reflects the present-bias of the con-
sumer. To see this, note that now:

IRTS = − u′(C1)

βu′(C2)

If C1 = C2, so that consumption is perfectly smoothed across time, then IRTS = − 1
β
< −1.

The agent would be willing to forgo more than 1 unit of future consumption in order to get
one more unit of current consumption. The agent is biased towards current consumption
over future consumption. Of course, if C1 > C2, so that consumption is already skewed
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towards the present, then u′(C1) < u′(C2) (by the assumption that u′′ < 0), and so IRTS
may be less steep. Since consumption is already skewered, the agent will not be willing to
forgo much future consumption to skew it further towards the present.

Sometimes, rather than using the discount factor β, we instead caputre the agent’s present
bias using the subjective rate of time preference ρ > 0. We define: β = 1

1+ρ
, so that, for

example, if β = 0.95, then ρ ≈ 0.05. The agent’s lifetime utility then becomes:

u(C1) +
1

1 + ρ
u(C2)

Notice that this has the same flavor of discounting the future as was present in the NPV
calculations to find the lifetime budget constraint. The difference is that the agent discounts
future utility according to her subjective rate of time preference ρ, whereas she discounts
future incomes according to the market interest rate r.

The inter-temporal rate of substitution now becomes:

IRTS = − u′(C1)
1

1+ρ
u′(C2)

= −(1 + ρ)
u′(C1)

u′(C2)

We can similarly interpret ρ. If C1 = C2, so that consumption is perfectly smoothed, then
the agent requires 1+ρ units of consumption in period 2 to compensate for a 1 unit decrease
in period 1 consumption.

3.1.3 Equilibrium

The agent’s problem is:

max
C1,C2

u(C1) + βu(C2) s.t. C1 +
C2

1 + r
= Y1 +

Y2

1 + r

The Lagrangian is:

L = u(C1) + βu(C2)− λ(C1 +
C2

1 + r
− Y1 −

Y2

1 + r
)

The first order conditions are:
∂L
∂C1

= u′(C1)− λ = 0

∂L
∂C2

= βu′(C2)− λ

1 + r
= 0

∂L
∂λ

= Y1 +
Y2

1 + r
− C1 −

C2

1 + r
= 0
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By the first two equations, we have:

λ = u′(C1) = β(1 + r)u′(C2)

This is Euler Equation. If we expressed preferences in terms of ρ rather than β, the Euler
Equation becomes:

u′(C1) =
1 + r

1 + ρ
u′(C2)

Now, suppose β(1+ r) = 1 (or equivalently ρ = r). Then, the rate at which the agent wishes
to trade-off consumption across time coincides with the rate at which market demands the
trade-off. Then u′(C1) = u′(C2), and since u′′ < 0, this implies that C1 = C2. The agent
perfectly smoothes consumption through time.

By contrast, suppose that β(1 + r) > 1 (or equivalently, ρ > r. Then the rate at which the
agent can transform period 1 consumption into period 2 consumption in the market rate,
is larger than the rate that the agent requires to keep him indifferent. Hence, the agent
will want to push her consumption into the future. By the Euler equation, u′(C1) > u′(C2),
which implies that C1 < C2 (since u′′ < 0).

Similarly, if β(1+r) < 1 (or equivalently, if ρ < r), the agent will front-load her consumption.

Example 16. Consider an agent with utility U = lnC1 + β lnC2. The agent works during
the first period and earns income Y1 = 100. In the second period, the agent retires and but
receives a pension of $50. What is the optimal inter-temporal allocation of consumption?
What is the level of saving?

The Euler condition implies:
1

C1

= β(1 + r)
1

C2

C2 = β(1 + r)C1

Substituting this into the budget constraint, we have:

C1 +
β(1 + r)C1

1 + r
= Y1 +

Y2

1 + r

(1 + β)C1 = Y1 +
Y2

1 + r

C∗1 =
1

1 + β
Y1 +

1

(1 + β)

Y2

1 + r

Then: c∗2 = β
1+β

(1 + r)Y1 + β
1+β

Y2 and:

S∗ = Y1 − C∗1

= (1− 1

1 + β
)Y1 −

1

1 + β

Y2

1 + r

=
β

1 + β
Y1 −

1

1 + β

Y2

1 + r
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Figure 3.2: Effect of an Increase in Wealth (due to an increase in either either Y1 or Y2.

When does the agent save? S∗ > 0 is:

β

1 + β
Y1 >

1

1 + β

Y2

1 + r

Y2 < β(1 + r)Y1

Hence, if future income is small relative to current income, the agent will save, and vice
versa.

3.1.4 Comparative Statics

What happens when income increases? Suppose there is an increase in Y1. This causes
net present wealth to increase, and so the inter-temporal budget constraint shifts outward.
Since, consumption is normal good, this will cause consumption to increase in both periods.

Note - although the agent’s income only increases in period 1, his consumption increases
in both periods, because of the incentive to smooth consumption. In the above diagram,
when first period income increases, the agent further increases his level of saving, in order
to sustain a high level of period 2 consumption. It should be clear that if Y2 had increased
rather than Y1, the consumer would still increase consumption in both periods - but in this
case, he would borrow in the first period against the higher second period income.

What happens when the interest rate changes? (Recall - the interest rate determines the
relative price of second period consumption in terms of first period consumption.) Suppose
there is an increase in the interest rate. The budget constraint swivels about the point
(Y1, Y2). (To see why, note that if the consumer did not borrow or lend, and simply consumed
his income in each period, then his choice is unaffected by the interest rate. Hence, the point
(Y1, Y2) must lie on every budget constraint, regardless of the level of interest rates.) We
illustrate this graphically:
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Figure 3.3: Effect of an Increase in Interest Rates

3.2 Allocation of Time - The Consumption/Leisure deci-
sion

3.2.1 Time and Budget Constraints

Consider an individual with T hours of discretionary time each week, which he may allocate
between work (Z) and leisure (L). Leisure does not involve any monetary cost - it is simply
time not spent working. The agent has unearned income of M , and earns an hourly wage
rate w for each hour worked. The time constraint is given by:

z + L = T

The agent works in order to earn income to purchase goods and services. We set the price
of consumption equal to one, and so the budget constraint is:

C = M + wZ

C = M + w (T − L)

C + wL = M + wT

This last expression is particularly insightful. The expression on the right hand side is known
as the level of full income. It is the total possible income the consumer could have, if he
spent all of his discretionary time working. For each hour not worked (i.e. spent in leisure),
the consumer forgoes w worth of consumption. Hence, the wage rate w is the shadow price
(opportunity cost) of leisure. We can think of the consumer ‘purchasing’ leisure at a cost of
w, for each hour he chooses not to work.

Note —whilst it appears that there are 3 choice variables for the agent, C,L and Z - in reality
the consumer only chooses one of these. The others follow immediately. For example - if the
agent decides that he will only work for 20 hours per week, then this both determines his
income (and hence consumption), as well as the amount of time he has left over for leisure.
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Figure 3.4: Allocation of Time and the Budget Constraint

3.2.2 Preferences

We assume that agents derive utility out of both consumption and leisure. Agents actually
derive disutility from working, but they may still choose to work in order to be able to
consume more goods. The usual indifference map follows. Consumption and leisure are
both ‘goods’, in the sense that the agent prefers to bundles which have more of either, to
ones which have less. Moreoever, we maintain our usual convexity assumption. Agents prefer
to have moderate levels of both leisure and consumption - and this is preferable to being rich
but having no leisure, or to having a lot of leisure time, but not being able to clothe or feed
oneself. Finally, we assume that consumption and leisure are both normal goods —when
unearned income increases, agents will increase both their material consumption and the
amount of time spent in leisure.

3.2.3 Equilibrium

The equilibrium consumption/leisure choice must satisfy the tangency condition (as usual).
Diagrammatically, we have:

Comparative Statics Consider the effect of an increase in unearned income m. For
each level of work effort, the consumer can now purchase more goods and services. Hence
the budget constraint shifts vertically upwards. There is a pure income effect. Since both
consumption and leisure are assumed to be normal goods, then this will cause both to
increase. It follows that work effort falls. Why? The agent can now satisfy more of his
consumption using his unearned income - hence he has less need to work - and is able to
devote more time to leisure. The agent achieves a higher level of utility, since he has a greater
level of income at his disposal (and hence can choose amongst a greater range of bundles).

Next, consider the effect of an increase in the wage rate w. This causes the relative price
of consumption/leisure to change, and so the slope of the budget constraint changes. More
precisely, leisure now becomes more expensive, since for every hour spent in leisure, the agent
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Figure 3.6: Effect of an Increase in Unearned Income

forgoes a greater amount of income/consumption. Hence, the budget constraint becomes
steeper. There are two effects at play:

1. Substitution Effect - since leisure is now more costly, agents will tend to substitute
from leisure to work. This increases the level of work and consumption and decreases
the level of leisure.

2. ‘Income’ Effect - for each hour worked, the agent now receives more income. Hence, can
satisfy his consumption needs without needing to work as many hours. This increases
the level of consumption and leisure, but decreases the level of work effort.

There is an unambiguous increase in the level of consumption. The effect of a wage increase
in work effort is ambiguous. On the one hand, the substitution effect causes work effort to
increase, whilst on the other, the income effect causes the level of work effort to decreases.
The net effect will depend on the relative magnitudes of these two effects. In the above
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Figure 3.7: Effect of an increase in the wage.

diagram, the substitution effect is larger than the income effect, and so the labour supply
increases (and leisure decreases).

Note —in the above example, we generated the usual story regarding the effect of wages on
labour supply. If agents are paid more, then they will work harder. However, as we argued
above, the effect of an increase in wages on work effort is ambiguous. In the diagram below,
the the income effect outweighs the substitution, and so work effort actually decreases in
response to a wage increase! Moreover, this implies that as the price of leisure increases, the
amount of leisure consumed increases. I.e. the demand curve for leisure is upward sloping -
leisure can be a Giffen good!

3.2.4 Deriving the Labour Supply Curve

In the above section, we found the optimal work level for two different wage levels. If we
find the optimal labour choice for various different wage levels and plot these wage-effort
combinations, we have the labour supply curve. (The process is identical to the process
we used to derive the demand curve for an individual good, above.) I illustrate this in the
diagram below:
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There is some empirical evidence to suggest that when the wage is low, the substitution
effect tends to dominate the wealth effect, and so an increase in wages causes an increase in
labour supply (i.e. Ls is upward sloping). But for high wages, the wealth effect dominates,
and so a further increase in wages will actually cause labour supply to decrease. We say the
labour supply curve is backward bending.

Example 17 (Mathematical Derivation of Labour Supply). Consider a consumer with utility
function U (C,L) = logC + 1

2
logL and facing the budget constraint pC + wL = M +

wT . Derive the consumption demand function and labour supply function.The consumer’s
problem is:

max
C,z

U (C, z) = logC +
1

2
logL

s.t. pC + wL = M + wT

The Lagrangian is:

L = logC +
1

2
logL− λ(pC + wL−M − wT )

The first order conditions are:
dL
dC

=
1

C
− λp = 0

dL
dL

=
1

2L
− λw = 0

dL
dλ

= M + wT − pC − wL = 0
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Combining the first two conditions gives:

1

λ
= pC = 2wL

Then from the third condition (budget constraint), we have:

(2wL) + wL = M + wTL∗ =
M + wT

2w
=
T

2
+
M

2w

which provides an expression for the demand for leisure. Substituting back into the tangency
condition gives:

C∗ =
M + wT

p

Finally, substituting into the time constraint gives the labour supply function:

z∗ =
T

2
− M

2w

We notice several features:

• Consumption is increasing in unearned income M , wages w, and decreasing in con-
sumption prices p.

• Labor supply is decreasing in unearned income M and increasing in the wage w (pro-
vided that M > 0).

• If there is no unearned income (M = 0), the agent works for half the discretionary
time, regardless of the wage. (In this case, the ‘income’ and substitution effects exactly
balance.

3.3 Vouchers and Foodstamps

Consider the following scenario - there is an economy with two goods: fruit and beer. The
price of fruit is $2 per kg, and the price of beer is $5 per pint. Unemployed persons currently
receive welfare from the government in the form of a $50 weekly allowance. Suppose there
are two types of welfare recipients - those who prefer fruit to beer, and those who prefer beer
to fruit. We illustrate the consumption decision of each type of agent in the diagram below:



3.3. VOUCHERS AND FOODSTAMPS 51

Beer Beer

Fruit Fruit

10 10

25 25

8

20

2

5

Fruit Lover Beer Lover

A

B

Since fruit lovers have a strong preference for fruit, they were willing to give up a lot of beer
to receive an additional unit of fruit. Hence, fruit lovers have relatively steep indifference
curves. This results in a tangency at point A, where the amount of fruit consumed is high
and the amount of beer is low. By contrast, beer lovers are willing to give up very little
beer to receive an additional unit of fruit. Hence, their indifference curves are relatively flat.
This results in a tangency at point B, where the amount of fruit consumed is low and the
amount of beer is high.

The government is concerned that the consumption decisions of the beer-lovers is a wasteful
use of public funds. The government proposes a different welfare scheme whereby the un-
employed receive a $30 weekly allowance and 10 units worth of fruit vouchers. What is the
effect of such a policy? There is a change in the budget constraint. (The decrease in cash
income causes an inwards parallel shift in the budget line. In addition, consumers can now
purchase 10 additional units of fruit, and so the budget constraint shifts 10 units to the right
- but not upwards). We have:

Beer Beer

Fruit Fruit

10 10

25 25
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2

5

Fruit Lover Beer Lover

A

B

C
6 6

1010

The new budget line has the same slope as the original budget line, but it has a kink at the
point (10, 6). The reason for this is as follows. Since the relative price of beer/fruit has not
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changed, the slope of the budget constraint is unchanged. Moreover, whilst his income has
fallen by $20, he also receives $20 in fruit vouchers. Hence, the consumer can still purchase
up to $50 worth of fruit if he so chooses. The only difference is that with vouchers, the
consumer can now purchase a maximum of only $30 of beer. Once he has purchased $30 (or
6 units) of beer, then he has exhausted all his cash income. All he can then do is to cash in
some/all of his fruit vouchers.

From the diagram above, it should be clear that for fruit lovers, the introduction of vouchers
is inconsequential. (Although it causes the budget constraint to change, these consumers
were never going to purchase goods along the part of the budget constraint which is affected.)
Fruit lovers will continue to purchase bundle A. By contrast, the introduction of vouchers
does affect the behaviour of beer lovers. These consumers can no longer afford their preferred
bundle (point B). Instead they maximise their utility by consuming at point C. This bundle
contains the maximum amount of beer which they can afford. The policy is effective in the
sense that it forces beer lovers to consume less beer and more fruit. Clearly bundle C is on
a lower indifference curve than bundle B, and so beer lovers experience lower utility as a
result of the government policy. (Obviously, one can argue that this might be a good policy,
notwithstanding the disutility experienced by beer lovers.)

Important note —From the above example, it should be clear that restrictions/constraints
on consumer choices can never increase utility. If the constraint is non-binding (i.e. if it
is inconsequential to the agent), then obviously it has no effect on utility. However, if the
constraint is binding, then it restricts the consumers choice set - and this has the effect of
reducing utility.



Chapter 4

Welfare

In the previous chapter, we analyzed the effect of a change in prices or income on utility, i.e.,
welfare. However, we were only able to talk about these changes in welfare in a qualitative
sense - a utility increase or decrease. In this chapter, we seek to quantify the effect of policy
changes on welfare. By how much does welfare change?

How should we measure the magnitude of welfare changes? At first glance one might expect
that we should simply calculate the amount by which utility changes. However, this approach
has two problems:

1. The utility function is an ordinal function. This means it simply ranks bundles accord-
ing to preferences —but says nothing about the strength of preferences. (To make this
point stark, suppose u(a) = 10, u(b) = 20 and u(c) = 30. Then all we can say is that
c is preferred to b which is in turn preferred to a. It does not follow that b is twice as
preferred as a. Similarly, it does not follow that the increase in welfare in going from
a to b, is the same as the increase in welfare in going from b to c.) As should be clear,
the size of the change in utility conveys very little information.

2. There is no standard unit of measure for utility. For example. Consider two individuals
with the same preferences. Suppose individual A has utility given by the function
u(x, y). Must individual B have the same utility function? No. e.g. suppose B’s utility
function is v(x, y) where v(x, y) = [u(x, y)]3. These utility functions both represent the
same preferences, since whenever u(a) > u(b), v(a) > v(b). But then, if we measure
the change in utility associated with a given policy, we will get different answers for
the two individuals - even though they both have the same preferences!

We need another way of measuring the welfare effect of policy changes. A measure which
avoids this problem is to use the consumer’s own monetary valuation of the policy change.
(i.e. how much would they pay to avoid the policy change? or how much money do they
require as compensation for the policy change.) Since this measure is purely in terms of
money, it does not suffer from the problems of comparison which we noted above.

53
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4.1 Compensating and Equivalence Variations

We focus on the effect of changes in the price of a single good X (which we plot on the
horizontal axis). For simplicity, we assume that the good on the vertical axis is a composite
bundle of ‘all other goods’, whose price is normalised to 1. Hence, the consumer’s choice
involves how much of good X to purchase, and how much to spend (in dollar terms) on all
other goods. This has the convenient property that the unit of measurement on the vertical
axis is simply dollars.

4.1.1 Compensating Variation

Suppose the price of good X increases. The consumer originally chose bundle A on IC0.
After the price change, he chooses bundle B on IC1. Clearly the consumer is worse off after
the price increase. The Compensating Variation asks how much money we need give the
consumer to compensate him for the loss in utility. What is this amount? It is just enough
money, so that the consumer can afford a bundle which is on the original indifference curve
IC0, although not necessarily the one he previously had purchased. (This leaves him just as
well off after the price change, as before it.)

X

A

C

B

IC1

AOG

CV

m0

m1

IC0

If we increase income from m0 to m1, then at the new price, the consumer can afford bundle
C which lies on the original indifference curve IC0. Notice that at point C, IC0 is tangential
to the new budget constraint. (This should be obvious, since the consumer will choose the
new consumption bundle optimally, given his new level of income and the higher prices.)
You should have noticed that the move from bundle A to bundle C, corresponds to the
substitution effect. Since the price of good X is now higher, the consumer can achieve the
same utility by consuming less of good X, and more of the composite bundle. The addi-
tional income we had to give the consumer (m1 −m0) is referred to as the compensating
variation.
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The compensating variation is the minimum amount of income we must give (or the max-
imum amount we must take away from) the consumer to compensate them for an actual
change in the price. Clearly, if the price of good X fell, then the consumer would be better
off, so we would have to take income away from them, to bring them back to the original
level of utility. In this case, the compensating variation is negative.

4.1.2 Equivalence Variation

Rather than imposing a price change and then compensating the consumer, we could ask the
following question. What is the maximum amount the consumer be willing to pay to avoid
the price increase altogether? If the price increase is implemented, the consumer’s utility
falls to IC1. For each dollar the consumer pays to avoid the price change, his utility falls
(since he has less income to spend on consumption). The consumer will be willing to pay to
avoid the price change, so long as the utility he achieves with the income he has remaining
is no lower than IC1. Hence, the maximum amount he is willing to pay, is precisely the
amount that would cause him to choose a bundle along IC1. We refer to this amount as the
equivalence variation.

X

A
B

IC1

AOG

IC0
C

m1

m0

EV

The equivalence variation is the maximum amount of income the consumer is willing to pay
(or the minimum amount which he will demand), to avoid the price change from occurring.
Clearly, if the price of good X fell, then the consumer would be better off, so he would
demand payment in lieu of the utility increase he would enjoy if the price decrease actually
went ahead.

Important note —the compensating variation is calculated assuming that the price change
actually happens. So when we draw the budget lines, we draw them for the new prices. The
equivalence variation, on the other hand, is calculated assuming that the price change does
not happen. Hence, the budget lines are drawn using the old prices.
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4.2 Applications

We have two different measures of welfare - CV and EV . Which should we use? The answer
depends in part on the context we wish to analyse. Consider the following example:

The government is concerned that the price of fresh fruit and vegetables is too high and that
this is affecting the eating habits of low/middle income earners. The government proposes
to subsidise the cost of fresh fruits and vegetables, and to pay for the subsidy by levying a
lump-sum income tax. Then, the appropriate measure of welfare would be the compensating
variation. The compensating variation measures how much income the consumer is willing
to give up in return for receiving the subsidy. If the lump-sum income tax is less than CV ,
the consumers are unambiguously better off. If the income tax is larger than CV , then
consumers are worse off.

I illustrate these scenarios in the diagram below:
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B
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Tax

Tax

CV

D
C

CV

X

AOG AOG

X

A

In the above diagram, the thick lines represent the actual budget constraints. The steep line
is the budget constraint before the price decrease. The flatter line is the budget constraint
after the change in price and income. (In the left hand panel, the magnitude of the income
tax is small, relative to the right hand panel.) The thin line is the budget constraint if
there was a price decrease (only) and no decrease in income. The dotted line is the budget
constraint after the price change, and if just enough income is taken away from the consumer,
so that they return to the original level of utility. In both diagrams, point A is the original
consumption bundle; point B is the bundle that would’ve been chosen if there was only a
price decrease, but not corresponding decrease in income; point C is the bundle that would
be chosen at the new prices, if just enough income was taken away from the consumer to
leave them as well off as they were prior to the price change; and point D is the actual new
consumption bundle. Note that points A,B and C are identical in both panels - only point
D differs. Clearly, if tax > CV then the consumer is worse off, and consumes a bundle on
a lower indifference curve. Conversely, if tax < CV , then the consumer is better off, and
consumes a bundle on a higher indifference curve.
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Suppose, on the other hand, the government decides to not decreases prices, but instead
determines to supplement consumers’ incomes, so that they can better afford fresh foods.
Then, the appropriate measure of welfare would be the equivalence variation. The equiva-
lence variation measures how much income the consumer would need to receive to make him
as well off as he would’ve been had the subsidy been implemented. If the magnitude of the
income supplement is larger than the EV , then clearly consumers are better off. Conversely,
if the income supplement is smaller than EV , the consumer would’ve been better off with
the subsidy.

4.2.1 Taxation/Subsidies and Excess Burden

We know that the government can affect consumer welfare by intervening in the market by
providing price subsidies funded by lump-sum income taxes (or conversely by taxing goods
and compensating consumers with income supplements). A natural question is this: can
the government in such a way that consumers are better off AND there is no net cost to
the government? If so, then there is a strong argument for government intervention in the
market.

We define the excess burden as the net cost to the government of implementing some
policy, such that consumer welfare is unchanged. (If the excess burden is negative, then
the government can - by implementing some policy - raises a net revenue, whilst leaving
consumer welfare unchanged.

Example: School Vouchers Consider the following example. The government wishes to
increase participation in education. It can do this by subsidising the cost of education (and
hence reduce the price from p0 to p1), with the subsidy being funded through a lump-sum
income tax. Suppose the government levies the largest possible tax that does not make
consumers worse off (relative to their utility prior to the implementation of the price subsidy
and income tax) - this is the compensating variation. (Recall that since the subsidy makes
consumers better off, the compensating variation is negative.) Consumers originally choose
bundle A, and after the price and income changes, choose bundle B. The amount of revenue
that the government raises through the lump-sum income tax is given by CV = I0 − I1.
Note that the consumer’s utility is unchanged.
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In the above diagram, the dashed line is parallel to the old budget line, but contains the
new consumption bundle B. The cost of the subsidy to the government is given by I2 − I1.
(This is the difference in intercepts of two budget lines that contain point B - one reflecting
the old prices and one reflecting the new prices.) To see this formally, note that the formula
for the new budget constraint is:

p1E1 + y1 = I1

and the formula for the dotted line is:

p0E1 + y1 = I2

where (E1, y1) represents the amount of education and all other goods after the policy change,
and p0 and p1 represent the original and final prices of education. (Recall the price of all-
other-goods is normalised to 1). Subtracting these two equations gives:

(p0 − p1)× E1 = I2 − I1

The left hand side of the expression is exactly the cost of the government subsidy. (The
government provides the supplier with (p0 − p1) for each unit produced, and the suppliers
sell EB units.) Hence, the cost of the subsidy can be represented by the distance between I2

and I1.

Note that the cost of the subsidy is more than the amount of revenue that the government
can generate using income taxes. The excess burden of costs over revenues is given by I2−I0.
This illustrates a more general principle, that government policies that distort relative prices
are less efficient than lump-sum transfers.

We could think of this problem slightly differently. Suppose the government, after imple-
menting the subsidy, decided to raise taxes sufficiently to pay for the cost of the subsidy.
Then, it must raise taxes by more than the compensating variation (since we have just shown
that, if it raises taxes just by the level of CV , this will be insufficient to cover the entire cost
of the subsidy). But doing so makes consumers worse-off than they were prior to the subsidy.
Hence, it is not possible for the government to affect a policy through subsidies, which both
maintains the welfare of consumers and keeps the government’s budget in balance.



Chapter 5

Producer Theory

5.1 Technology - the Production function

In this chapter, we study decision making by firms. We identify firms by their production
technology—which describes the relationship between the inputs consumed in the production
process and the output generated. Consider a firm which produces a single output y using
two inputs, (x1, x2). The Production Function describes the maximum amount of the
output which can be produced, given a set of inputs, if they are used in their most efficient
way. We have:

y = f (x1, x2)

The firm’s production technology and production function are analogous to the consumer’s
preference relation and utility function. Both are taken as primitives —they describe the
fundamental characteristics of firms and consumers, respectively. As in the Consumer Theory
section, we seek to build a theory of firm decision making, taking its technology as given.

As with the chapter on consumer theory, we assume that quantities of inputs and output are
perfectly divisible, so that firms can employ fractional units of inputs and produce fractional
outputs. Themarginal product of input 1 is the amount of extra output that is produced
when one additional unit of input 1 is added to the production process, holding constant all
other inputs. We have

MP1 =
∂f

∂x1

The marginal product of input 2 is similarly defined.

In general, we assume MP1 ≥ 0. (i.e. adding inputs to the production process usually does
not decrease output. I note that in some cases, adding extra inputs may cause the process
to become so congested and actually cause output to decrease - as the old adage goes: ‘too
many cooks spoil the broth’.) Furthermore, we assume that marginal product decreases as
we add more units of an input to the production process, holding constant the level of all
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Figure 5.1: Law of Diminishing Marginal Returns

other inputs. (i.e. the additional contribution to output of each successive unit of an input
is less than the previous unit.) This implies:

∂MP1

∂x1

=
∂2f

∂x2
1

< 0

We refer to this property as the Law of Diminishing Marginal Returns. Diminishing
marginal returns implies that we cannot continue to increase output at a rapid rate by
simply increasing the level of one input, ignoring the others. (For example, we cannot
produce enough food to feed the world by simply adding more and more water to a single
flower pot.) We illustrate the notion of diminishing returns in Figure 9.1. Notice that when
the quantity of input x1 used in the production process increases from 1 to 2, the increase in
output is significantly larger than the corresponding increase in output when the quantity
of input x1 increases from 7 to 8. (The quantity of x2 is held constant throughout.)

We also typically assume that the production function exhibits decreasing returns to
scale. This means that if we increase the level of all inputs by some proportion then output
will increase, but by a proportion less than the increase in inputs. I.e. if we double (or treble)
the level of each input, output will increase, but will not double (or treble). Mathematically,
we have:

f (λx1, λx2) < λf (x1, x2) for any λ > 0

We refer top this property as diseconomies of scale. (Traditionally we assume that up
to a particular point, when a firm increases its scale, it can produce goods more efficiently
by employing more specialised inputs and exploiting efficiencies that arise when producing
goods in bulk. If so, the technology exhibits increasing returns to scale or economies of scale.
However, economies of scale cannot continue to persist forever. At some point, the size of
a firm becomes so large, that production becomes efficient - perhaps due to the growth of
sinusoids. Hence - eventually - we assume that the technology will exhibit diseconomies of
scale.
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Comments:

1. When considering the firm’s production decisions, we distinguish between the short-
run and the long-run. The short-run is defined as the period short enough that the
firm cannot vary all of the inputs used in the production process. (e.g. the size of a
factory assembly line cannot be changed over-night. In the short run, the size of this
capital input is fixed.) The long-run is defined as the period long enough that the firm
can vary all of its inputs. (e.g. continuing with the previous example, given sufficient
time, the firm can increase the size of its assembly line to meet growing demand, or
downsize a plant if needed.)

2. It is important to distinguish the concepts of diminishing marginal product and dis-
economies of scale. Diminishing marginal product is a short run phenomenon. It
says that if increasing quantities of a variable input are added to a fixed input, the
marginal contribution of each additional variable input falls. Diseconomies of scale on
the other hand, is a long run phenomenon. It says that even if we scale up all inputs
in proportion, output wont increase by as much.

5.2 Cost Minimization

Our theory of the firm has two components. We must determine: (i) the quantity of output
that the firm should produces, and (ii) the quantities of inputs that the firm should utilize
in the production process. Ultimately we assume that firms are profit maximizers, and will
produce the quantity that maximizes profit.

But there are multiple input combinations that produce this optimal output. Which com-
bination should the firm choose? When contemplating producing any quantity of output y,
we assume that firms choose the input combination that minimizes the cost of producing
that output. To be clear —we are not saying that the firm’s ultimate goal is to minimize
costs; their goal is to maximize profits. Cost minimization is simply the criterion to choose
amongst input combinations that achieve the same output. The cost minimizing input com-
bination is the one that produces the desired output in the most efficient way. Suppose a
firm wishes to produce y units of output. Let w1 and w2 be the input prices of labor and
capital, respectively. An isoquant represents the set of all inputs which can be combined
to produce the same level of output. (We can think of an isoquant as the producer theory
analogue of an indifference curve.)

Properties of Isoquants

1. An isoquant must be downward sloping. (This follows from the assumption thatMPi >
0 for each input. Consider the diagram, below. Every input bundle in quadrant III
must produce more output than a, since it consists of at least as much of each input
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as a. Similarly, every input bundle in quadrant I must produce less output than a.
Hence, bundles which produce the same level of output as a must lie in quadrants II
and IV. But this implies that the isoquant is downward sloping.)

a

I

II III

IV

k

l

2. Higher isoquants represent input bundles which produce a higher level of output. (This
again follows from the fact that MPi > 0.)

a

b

k

l
IQ2

IQ1

c

3. Isoquants cannot cross. (To see why, suppose two isoquants did indeed cross, and let
a be the point at which they cross. Then a is a bundle which produces two distinct
levels of output - and this obviously cannot be the case.)

a

c

b

k

l
IQ2

IQ1

4. Isoquants are convex. (This follows from the assumption of diminishing marginal
returns.)
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a
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The slope of an isoquant is called the marginal rate of technical substitution (MRTS).
(Again, the MRTS is the producer theory analogue of the marginal rate of substitution.)
MRTS is the amount by which we must reduce input 2 if we increase input 1 by one unit,
and wish to keep overall output unchanged.

Let x2(x1) define an isoquant. For each x1, it tells us how much x2 is needed to achieve the
desired output level y. Naturally, along this indifference curve, f(x1, x2(x1)) = y.

Totally differentiate w.r.t. x1:

∂f

∂x1

+
∂f

∂x2

dx2(x1)

dx1

= 0

dx2

dx1

= −
∂f/∂x1
∂f/∂x2

MRTS = −MP1

MP2

The marginal rate of technical substitution decreases as one moves long an isoquant. This
follows from the law of diminishing marginal product. (To see why, suppose we are at the
top of an isoquant, where there is a large amount of input 2 and very little of input 1.
Then the additional contribution to output of each unit of x2 must be small relative to the
additional contribution of each unit of x1. Hence, if we increase the amount of L by one
unit, we can afford to take many units of x2 out of production and keep output at the same
level. Hence the isoquant is relatively steep. Now consider a point towards the bottom of the
isoquant, where there is a large input of x1 and very little input of x2. Then, the additional
contribution to output of a unit of x1 will be very small, whereas the additional contribution
to output of each unit of x2 is relatively large by comparison. Hence, if we add one additional
unit of x1 to the production process, we can only afford to release a small amount of x2 in
order to keep the production level unchanged.)

An isocost line represents the set of all input bundles (x1, x2) which have the same cost.
The isocost line is given by:

IC = {(x1, x2) |w1x1 + w2x2 = c}



64 CHAPTER 5. PRODUCER THEORY

The slope of the isocost function is given by slope IC = −w1

w2
. The slope of the isocost

line is the amount of input 2 that the firm must take out of the production process when
it increases the amount of input 1 by 1 unit —if it wishes to keep total costs unchanged.
Higher isocost lines represent bundles with higher costs.

x1

x2

IC1 IC2

Slope = −w1

w2

5.2.1 Optimisation

We want to find the input bundle which minimises the cost of producing quantity y of output.
(This amounts to find the the bundle on the isoquant corresponding to output quantity y,
which lies on the lowest achievable isoquant.) Formally, we have: minx1,x2 w1x1 + w2x2 s.t.
y = f(x1, x2).

The Lagrangian is:
L = w1x1 + w2x2 − λ(f(x1, x2)− y)

The first order conditions are:

∂L
∂x1

= w1 − λ
x1

= 0

∂L
∂x2

= w2 − λ
x2

= 0

∂L
∂λ

= y − f(x1, x2) = 0

Combining the first two conditions gives:

λ =
w1

MP1

=
w2

MP2

(5.1)

Two important insights:
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k

l

a

b

Figure 5.2: Optimal Input Choice

1. The optimal input bundle must lie on the isoquant which corresponds to the quantity
y which we seek to produce.(Why? If the bundle lies on a different isoquant, then we
are either producing more output than we need to, or not producing enough to satisfy
our needs.)

2. The optimal consumption bundle will satisfy the tangency condition:

slope of IQ = slope of IC

MRTS = −MP1

MP2

= −w1

w2

which follows from (9.1). (We can also prove this by contradiction. Suppose the optimal
bundle is a, and at this point, the isoquant and isocost curves are not tangential. Then,
at a, the curves must cross. But then, there is a point along the isoquant curve (b,
say) which achieves a lower isocost line than a does. Since input bundles a and b both
produce y units of output, and b is cheaper than a, then it cannot be optimal for a
firm to choose input combination a. We have a contradiction.)

The tangency condition says that the rate at which producers are able to substitute between
inputs and keep total output unchanged (i.e. MRTS) must be the same as the rate at which
they are able to a substitute between inputs and keep total cost unchanged (i.e. slope of IC).
If this is the case, then it is impossible for the firm to reallocate inputs in the production
process in such a way as to reduce costs. Why? Let MRTS = slopeIC = −2. Suppose the
firm tries to reallocate production by using one additional unit of x1. Then to keep output
unchanged, the firm must reduce the amount of x2 utilised by 2 units. But since the slope
of IC is −2, then if the firm increases x1 by 1 unit and reduces x2 by 2 units, then its total
cost is unchanged. Hence, the firm cannot reduce costs by increasing the amount of input x1

in the production process. By a similar argument, there is no gain to reducing the amount
of x1 in the production process.

By contrast, suppose in MRTS = −3 and slopeIC = −2, and the firm decides to reallocate
inputs by using 1 additional unit of 1. This requires that he uses 3 fewer units of input 2.
But for a unit increase in x1, reducing the amount of x2 by 2 units leaves costs unchanged -
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so reducing the amount of x2 by 3 units will cause costs to fall. Hence, it is possible for the
firm to reallocate inputs in the production process in such a way as to reduce costs. But if
so, the original input choice could not have been optimal. Hence, if MRTS 6= slopeIC, then
there is always an opportunity for the firm to reallocate inputs in such a way as to reduce
costs. It follows that, at the optimum, MRTS = slopeIC.

We note that the tangency condition can be restated as:

MP1

w1

=
MP2

w2

How do we interpret this? MP1 is the additional output produced when 1 additional unit
of x1 is added to the production process. If the firm employs $1 of x1, then additional
quantity of x1 which it hires is 1

w1
. Hence, the last dollar that the firm spent to employ

input 1 generated MP1

w1
additional units of output. We interpret MP2

w2
in the same way. We

require that for the last dollar spent on each input, the additional contribution to output
be the same. Why? Suppose this was not the case. For concreteness, suppose MP1

w1
> MP2

w2
.

Then the last dollar spent on labor contributed more to output than the last dollar spent
on capital. If we take the last dollar spent on capital and instead spend it on labor, we lose
MP1

w2
of output and gain MP1

w1
of output. Since MP1

w1
> MP2

w2
, total output has increased, whilst

our costs have remained the same (since we are merely reallocating a dollar of expenses).
Clearly, then, the original input choice could not have been optimal.

We can also restate the tangency condition as:

w1

MP1

=
w2

MP2

How do we interpret this? 1
MP1

is the amount of additional units of input 1 that needs to
be hired in order to produce 1 additional unit of output. (If you unsure of this, consider
the following numerical examples. Suppose MP1 = 3. Then 1 additional unit of input 1
generates 3 additional units of output. Hence 1

3
additional unit of input 1 will suffice to

increase output by one unit. Similarly, suppose MPK = 1
2
. Then 1 additional unit of x2

generates 1
2
a unit of additional output. Hence, 2 extra units of x2 are needed to increase

output by one unit.) Then w
MP1

is the cost of producing one additional unit of output by
increasing the amount of input 1 alone. The tangency condition written in this way says
that the cost of producing one extra unit of output should be the same, regardless if we do
this by using more of input 1, or more of input 2, or any combination of these inputs.

5.2.2 Comparative Statics

From the above discussion, it should be clear that the firm’s optimal input bundle choice
depends upon the input prices (w1 and w2) and the quantity of output being produced (y).
How does the optimal input bundle change when there are changes in these factors?
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k & l are normal inputs

k

l

a

b

k0 k1

l0

l1

k is an inferior input

k

l

a

b

k0k1

l0

l1

Figure 5.3: Effect of an increase in target output on conditional factor demands.

Changes in Quantity If the quantity being produced increases, then production must
occur along a higher isoquant. In the diagram, below, we illustrate the effect of changes in
y on the optimal input-bundle choice. The expansion path is the locus of optimal input
bundles, traced out as the quantity of output required increases, but holding input prices
constant. The expansion path describes how the optimal input bundle changes as the firm
increases or decreases the scale of its production.

We note that when the quantity required increases, the amounts of inputs utilised do not
necessarily increase in proportion. For example, when quantity increases from y1 to y2, the
quantity of input x2 utilised increases by more than the amount of input x1. On the other
hand, when the quantity increases from y2 to y3, the amount of input x1 used increases, but
the amount of input x2 used decreases. We classify inputs in the following way:

• An input is normal if the quantity employed increases when output increases.

• An input is inferior if the quantity employed decreases when output increases.

Changes in input prices Next, consider the effect of an increase in the price of an input.
For concreteness, suppose w1 (the price of input x1) increases. This causes the slope of
the isocost cost curve to become steeper. In fact, the isocost line will become steeper. We
illustrate the effect of an increase in input prices in the diagram below:

In the above diagram, the increase in the price of input x1 causes the isocost lines to become
steeper. As is apparent, an increase in the price of an input causes the amount of that input
used in the production process to decrease. We refer to this as the input substitution
effect. The input substitution effect must be negative. (To see why, note that an increase in
the price of an input causes the isocost line to become steeper. But since the optimal input
bundle must satisfy the tangency condition, then the optimum will occur at a steeper part of
the isoquant. But since the isoquant is convex (i.e. since the slope of the isoquant decreases
as we move along it), this implies that the new tangency point is at a point higher up the
isoquant. Hence, the optimal bundle will consist of less of the input whose price increased,
and more of the other inputs.)



68 CHAPTER 5. PRODUCER THEORY

k

l

a

b

k0k1

l0

l1

Figure 5.4: Effect of an increase in input price (r) on conditional factor demands.

5.2.3 Deriving the Conditional Factor Demand Functions

In the previous section, we illustrated the effect of an in the price of input x1 on the optimal
input bundle. If we repeat this procedure for various different input prices (holding constant
the prices of other inputs and the quantity of output produced), we can find the relationship
between input price and the quantity of that input We refer to this as the conditional
factor demand function. (The factor demand is ‘conditional’, because it is defined for a
particular quantity y. As we will show in a subsequent section, the optimal quantity is itself
a function of factor prices.)

Suppose the price of input x1 increases from w to w′ to w′′ (where w < w′ < w′′). This
causes the level of input x1 consumed in the production process to decrease from x1 to x′1 to
x′′1. We represent this situation diagrammatically:
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where IC0, IC1 and IC2 are drawn for factor prices w1, w
′
1 and w′′1 respectively. (Since

w′1 > w1, the slope of IC1 must be steeper than the slope of IC0.) The conditional factor
demand function is drawn by plotting all the price-quantity combinations for factor x1,
holding constant the prices of other inputs and the quantity of output. Since the input
substitution effect is negative, the conditional factor demand function must be downward
sloping.

As with usual demand functions, changes in the price of the input cause movements along
the conditional factor demand curve, whilst changes in other factors cause the entire factor
demand curve to shift. An increase in the price of another input will cause the factor demand
curve to shift to the right if the two inputs are substitutes in production, and it will cause
the factor demand curve to shift to the left, if the two inputs are complements in production.
Similarly, an increase in the quantity of output to be produced will cause the conditional
factor demand to shift to the right, if the input is normal, and it will cause demand to shift
to the left if the input is inferior.
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5.2.4 Cost Function

The conditional factor demand functions give the input bundles which minimise the cost
of producing a particular quantity of output y, given input prices w. The cost function
specifies this minimised cost, for each potential output quantity.

Given the conditional factor demand functions (x̂1 and x̂2) it is easy to calculate the min-
imised cost. We have:

C (w1, w2, y) = w1x̂1 + w2x̂2

The marginal cost, is the cost of producing one extra unit of output. Formally, we have:

MC =
∂C (w, y)

∂y

We noted above, that the cost of producing one extra unit of output is the same whether
we do so by increasing the amount of input 1 only, or the amount of input 2 only, or some
combination of the two. Hence, we have:

MC =
w1

MP1

=
w2

MP2

Properties of the Cost and Marginal Cost Functions

1. C (w, y) ≥ 0. (This follows straightforwardly from the fact that factor prices and
conditional factor demands cannot be negative)

2. MC = ∂C
∂y

> 0 which implies the cost function is upward sloping in y. (This follows
from the fact thatMC is the ratio of input prices and marginal products, both of which
are non-negative. This result should be relatively intuitive. The cost function gives the
minimum cost of producing a particular level of output when inputs are combined in
the least cost way. In order to increase the level of output produced, we must use more
inputs in the production process - and this will clearly increase the cost of production.)

3. ∂MC
∂y

= ∂2C
∂y2

> 0. (i.e the MC curve is upward sloping) This implies that the cost of
producing additional output increases at an increasing rate. (Why? We know thatMC
is inversely proportional to marginal product, and that MP decreases by virtue of the
law of diminishing marginal returns. Since adding additional units of an input to the
production process has a increasing lower effect on output, we must add increasingly
more inputs to the production process to increase output, as the level of existing output
becomes large. But then the cost of increasing output becomes increasingly expensive.)
Note —to the extent that the production function may exhibit increasing returns when
the level of input is low, the marginal cost may be downward sloping for low levels of
output. But this effect will disappear, as soon as diminishing returns begins to take
effect).
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We illustrate the shape of the marginal cost curve in the diagram below. In addition to
marginal cost, we define the average cost of production:

AC =
C (w, y)

y

With a little reflection, it should be apparent that the average cost and marginal cost func-
tions are intimately related. In particular, suppose MC < AC. This implies that the cost
of producing one additional unit of output (MC) is less than the average cost of producing
all the previous units of output. Then, if this additional unit is produced, it will cause the
average cost of production to fall (since the final unit cost less than the previous ones, on
average). Hence, if MC < AC, then the average cost will tend to fall. Similarly, suppose
MC > AC. Then the cost of producing one additional unit of output is more than the
average of the costs of producing the previous units. Then, producing this additional unit
causes the average cost to rise. Finally, if MC = AC, then cost of producing an additional
unit of output is the same as the average cost of producing all the previous units. Producing
this additional unit does not cause the average to change.

We verify this relationship mathematically, by noting that:

∂AC

∂y
=

y ∂C
∂y
− C
y2

=

∂C
∂y
− C

y

y

=
MC − AC

y

(Clearly if MC > AC, then ∂AC
∂y

> 0 and so AC is increasing and so on.)

It follows that:

• If MC is above AC, then AC must be increasing (upward sloping)

• If MC is below AC, then AC must be decreasing (downward sloping).

• If MC and AC intersect, then AC must be at a critical point. We can verify that this
will be a minimum point of the average cost function.

Using these facts, we plot the average and marginal cost functions:
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y

C

MC

Region I Region 2

A

AC

Consider the above diagram. In region 1, MC > AC and so AC is decreasing. By contrast,
in region 2, since MC < AC, it follows that AC must be increasing. AC and MC intersect
at point A. At this point AC is neither increasing nor decreasing. This is represents the
turning point of the AC curve - it is the level of output where average costs are minimised.

5.3 Profit Maximization

Having derived the cost function, we can now analyse the firm’s profit maximisation problem.
Suppose the price of output is p. Then, the firm chooses the level of output y that maximises
its profit:

π = py − C (w1, w2, y)

The optimal level of output y∗ must satisfy the first order condition:

p = MC (w1, w2, y
∗)

(Why must this be the case? Suppose y is profit maximising, but at y, p 6= MC (y). For
concreteness, suppose p > MC. Then, if the firm produces one additional unit of output, it
will receive an additional revenue of p and incur an additional cost of MC. Since p > MC,
producing this additional unit has the net effect of increasing the firm’s profit. But if so, then
the original output y could not have been profit maximising. Similarly, suppose p < MC.
Then, the last unit of output produced generated additional revenue of p, but incurred an
additional cost of MC. Since p < MC, the last unit produced generated a net loss for
the firm. The firm could increase it’s profits by decreasing it’s output. But if so, then the
original output y could not have been profit maximising. Hence, at the optimum, we must
have p = MC.)

We illustrate this situation diagrammatically:
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The MC curve intersects the price line at point A. This implies that the profit maximising
level of output is y∗. At this level of output, the firm’s revenue is py∗ which is indicated
in the diagram by the area OPAy∗. Furthermore, for this level of output, the average cost
of production is AC (y∗) = c. Then, the total cost of production is given by cy∗ which is
indicated by the area OcBy∗. The firm’s profit is its revenue less its cost - this is indicated
by the shaded area cPAB.

5.4 Firm Supply

The firm’s supply function y∗ (p, w1, w2) gives the profit maximising level of output as a
function of the output and input prices. The supply function has the following properties:

• The supply function must be upward sloping
(
∂y∗

∂p
> 0
)
. (Why? We know that the

marginal cost function is increasing in output y. If the output price p increases, then the
profit maximisation condition requires MC to be higher. But this requires an increase
in y. More formally, by totalling differentiating the profit maximisation condition with
respect to p, we note that;

p = MC (w1, w2, y
∗)

1 =
∂MC

∂y∗
· ∂y

∗

∂p
∂y∗

∂p
=

1
∂MC
∂y∗

Then, since ∂MC
∂y∗

> 0, it follows that ∂y∗

∂p
> 0.

• If an input is normal (in the sense that when output increases, more of the input is
consumed in the production process), then an increase in the factor price will cause
supply to decrease. (i.e. ∂y∗

∂wi
< 0 if wi is normal) An increase in the price of a normal

input causes the supply curve to shift to the left.
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• If an input is inferior (in the sense that when output increases, less of the input is
consumed in the production process), then an increase in the factor price will cause
supply to increase (i.e. ∂y∗

∂wi
> 0 if wi is inferior). An increase in the price of an inferior

input causes the supply curve to shift to the right.

Example 18. Suppose the production function is given by y = 2x0.5
1 x0.25

2 . Given generic
output and factor prices (p, w1, w2), find the firm’s supply function. Verify that it is increasing
in the output price p. What is the effect of an increase in factor prices w?

From the previous example, we know that the cost function is given by C (w1, w2, y) =
3
4
w

2
3
1 w

1
3
2 y

4
3 . Then, the marginal cost function is:

MC (w1, w2, y) =
∂C

∂y

= w
2
3
1 w

1
3
2 y

1
3

Profit maximisation requires:

p = MC (w1, w2, y)

p = w
2
3
1 w

1
3
2 y

1
3

y
1
3 = pw

− 2
3

1 w
− 1

3
2

y∗ =
p3

w2
1w2

Clearly, the supply function is increasing in p and decreasing in w1 and w2. It follows that
x1 and x2 must both be normal inputs. (We confirmed that this was the case in the previous
example.)

5.5 Factor Demand

The profit maximisation condition also informs the firm’s decision about what combination
of inputs to use in the production process. Recall in the section on cost minimisation, we
showed that the marginal cost could be expressed as:

MC =
wi
MPi

where wi is the price of input xi and MPi = ∂f
∂xi

is the marginal product of that factor.
Substituting this expression into the profit maximisation condition, we get:

p =
wi
MPi
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which implies both of the following:

p ·MPi = wi (5.2)

MPi =
wi
p

(5.3)

What do these conditions mean? Suppose the firm hires one additional unit of input i. Then,
its costs increase by wi. Furthermore, by hiring the additional input, the firm produces MPi
additional units of output, which generates total additional revenue of p ·MPi. (We refer
to this latter quantity as the marginal revenue product.) Condition (5.2) states that the
additional revenue gained from hiring another unit of any given input must equal the cost
of hiring that input. (Why? Suppose not. For concreteness, suppose p ·MPi > wi. Then
the additional revenue gained by hiring one extra unit of input i exceeds the cost of hiring
that input. The firm could increase its profit by hiring more of input i. But if so, then the
original input decision could not have been optimal. The opposite is true if p ·MPi < wi.
(The firm could increase its profit by hiring less of input i.) Hence, at the optimum, we must
have p ·MPi = wi, for each input i)

Condition (5.3) restates this condition in real (rather than monetary) terms. The right hand
side of (5.3) wi

p
is the real wage that the firm must pay input i. The real wage is the number of

units of output which the owner of the input can afford to purchase with the wage he receives
for contributing one unit of the input. (e.g. if my hourly wage is $5/hr and the output cost is
$2, then my real wage is the equivalent of 2.5 units of output.) Profit maximisation requires
that at the optimum, the real wage paid to each input is equal to the marginal product of
that input. (Why? Suppose this was not the case. For concreteness that MPi >

wi

p
. Then,

hiring one additional unit of input i generates MPi units of additional output for the firm.
The firm need only pay the input a wage equivalent to wi

p
units of output. Hence, by hiring

one additional unit of output, the firm can increase it’s production at no net cost. But if
so, the original input bundle could not have been optimal. The opposite argument holds if
MPi <

wi

p
.)

We can use conditions (5.2) or (5.3) to derive the firm’s factor demand functions
x∗ (p, w1, w2). Consider the following diagram:

MPi

x*

w/p
real wage

xi
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The factor demand functions have the following properties:

• The factor demand function for input i is decreasing in the factor price wi. (i.e.
∂x∗i
∂wi

< 0). (To see why, keeping the output price constant, an increase in the input
price wi causes the real wage wi

p
to increase. Since the marginal productivity must

equal the real wage at the optimum, this requires MPi to increase. But this implies
the quantity of input employed must decrease, since MPi is decreasing in the level of
input employed. More formally, taking the total derivative of (5.3) with respect to wi,
we have:

∂MPi
∂x∗i

∂x∗i
∂wi

=
1

p

∂x∗i
∂wi

=
1

p∂MPi

∂x∗i

< 0

since ∂MPi

∂x∗i
< 0 by diminishing marginal returns.)

• If an input is normal, then an increase in the output price p will cause the demand
for that input to increase. (i.e. ∂x∗i

∂p
> 0 if input i is normal. To see why, note that

an increase in p causes optimal output y∗ to increase. But since input i is normal,
this requires more of xi to be contributed to the production process). An increase in p
causes the factor demand curve to shift to the right.

• If an input is inferior, then an increase in the output price p will cause the demand
for that input to decrease. (i.e. ∂x∗i

∂p
< 0 if input i is inferior. To see why, note that

an increase in p causes optimal output y∗ to increase. But since input i is inferior,
this requires less of xi to be contributed to the production process). An increase in p
causes the factor demand curve to shift to the left.

Example 19. We calculate the factor demand function for the firm with production function
given in the above example: y = 2x0.5

1 x0.25
2 . Recall, the marginal product functions are given

by:

MP1 = x−0.5
1 x0.25

2

MP2 =
1

2
x0.5

1 x−0.75
2

Applying condition (5.3), we have the following two equations:

x−0.5
1 x0.25

2 =
w1

p
(5.4)

1

2
x0.5

1 x−0.75
2 =

w2

p
(5.5)

Rearranging (9.2) gives:

x2 =

(
w1

p

)4

x2
1 (5.6)
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Substituting this into (9.3), we have:

1

2
x0.5

1

[(
w1

p

)4

x2
1

]−0.75

=
w2

p

1

2
x−1

1

(
w1

p

)−3

=
w2

p

x∗1 =
p4

2w3
1w2

Then, by (9.4), we have:

x∗2 =

(
w1

p

)4

x2
1

=

(
w1

p

)4 [
p4

2w3
1w2

]2

=
p4

4w2
1w

2
2

We confirm that the factor demand functions are decreasing in their own factor prices, and
increasing in the output price p (since - as we showed previously - these inputs are normal).

In the section on cost minimisation, we derived the conditional factor demand functions
x̂i (w1, w2, y). How are these distinct from the factor demand functions x∗i (w1, w2, p)? The
conditional factor demand functions gave the input bundles that a firm would employ if it’s
objective was to produce some arbitrary level of output y, in the least cost way. This output
level need not be the profit-maximising level - indeed, we do not take output prices into
account when constructing the conditional factor demand functions. The conditional factor
demand functions are the producer theory analogue of the compensated (Hicksian) demand
curves. Recall the the compensated demand functions gave the optimal consumption bundles
that a consumer would choose, if his goal was to achieve some arbitrary level of utility, and
if affordability wasn’t a consideration. The conditional factor demand functions give the
optimal input bundle that a firm would choose, if its goal was to achieve some arbitrary
level of output, and if profitability wasn’t a consideration. To this extent, conditional factor
demand functions - like the compensated demand functions - are a theoretical construct.
What we actually observe are the factor demand functions.

Note - we can calculate the factor demand functions using the conditional factor demand
functions and the supply function. Intuitively, we should have:

x∗i (w1, w2, p) = x̂i (w1, w2, y
∗ (w1, w2, p))

I.e. The factor demand functions are simply the conditional factor demand functions, eval-
uated at the optimal output level (which is given by the supply function). We illustrate this
numerically:
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Again consider the production technology in the example above. We showed in a previous
example that the supply function was given by:

y∗ (w1, w2, p) =
p3

w2
1w2

and the conditional factor demand functions were given by:

x̂1 (w1, w2, y) =
1

2

(
w2

w1

) 1
3

y
4
3

x̂2 (w1, w2, y) =

(
1

2

)2(
w1

w2

) 2
3

y
4
3

It follows that the factor demand functions are given by:

x∗1 (w1, w2, p) =
1

2

(
w2

w1

) 1
3
[

p3

w2
1w2

] 4
3

=
p4

2w3
1w2

x∗2 (w1, w2, p) =

(
1

2

)2(
w1

w2

) 2
3
[

p3

w2
1w2

] 4
3

=
p4

4w2
1w

2
2

which correspond to the factor demand functions which we calculated in the previous exam-
ple.



Chapter 6

Choice Under Uncertainty

6.1 Expected Utility

6.1.1 Motivation

In the previous models, the agent was required to make choices over known outcomes. How-
ever, in reality, we often have to make choices whose outcomes are uncertain. For example
—suppose I am running late for an interview. Should I speed or not? If I speed, then,
there is some chance that I will get caught, and have to pay a fine (and will be even later).
However there is also a chance that I will not get caught, and I will arrive at the interview
on time. On the other hand, if I do not speed, I will definitely arrive late. But this could
either be a problem (if my lateness is noticed), or not a problem (if the interview panel is
itself running over time). What should I do?

In this chapter, we develop a theory of how agents make choices when the outcomes are
uncertain. In a model with uncertainty, agents are no longer making choices over the set of
available consumption bundles. Instead, they choose amongst the set of available lotteries.

A lottery P is an uncertain prospect, which specifies outcomes and their associated prob-
abilities. More formally, let x = (x1, ..., xn) be a set of mutually exclusive and exhaustive
outcomes. (I.e. we know that when the uncertainty is resolved, the agent will receive exactly
one of the prizes from amongst the set {x1, ..., xn} .) A lottery P , assigns to each outcome
xi, a probability pi of that outcome occurring. The assignment of probabilities must satisfy
the usual assumptions on probability measures. I.e.

1. 0 ≤ pi ≤ 1 ∀i

2.
∑n

i=1 pi = 1

The following are examples of lotteries:

79
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• P1 : (betting on number 23 in roulette) Win $175 with probability 1
37

and lose $5 with
probability 36

37
.

• P2 : (when discussing politics with my father) Get into a heated argument with prob-
ability 0.71 or talk amiably with probability 0.29.

• P3 : (when buying an employment insurance policy) Receive a guaranteed $50, 000
level of income with probability 1 (i.e. regardless of whether I lose my job or not)

Comments

• The probability of outcomes in a lottery can be either objective (as in the case of P1)
or subjective (as in the case of P2).

• P3 is a special type of lottery - in which the outcome is certain. We refer to this as a
degenerate lottery.

• In this course, we will focus on lotteries which have monetary prizes (outcomes).

The Expected Value E[X] of a lottery is given by:

E[X] =
n∑
i=1

pi · xi = p1x1 + ....+ pnxn

We can think of the expected value of a lottery as the average payoff which an agent would
receive if he played the lottery repeatedly.

Example 20. Consider the following gamble. I roll a fair die. If I roll a 6, then I win $11.
Otherwise, I lose $1. The outcomes are {−1, 11} and the probabilities of these events are
Pr(−1) = 5

6
and Pr(11) = 1

6
. The expected value of this lottery is:

E[X] =
5

6
(−1) +

1

6
(11) = 1

Hence, if I play this game repeatedly, then on average I will win $1 —although in any given
round, I will either win $11, or lose $1.

We classify lotteries in the following way:

• A lottery is said to be a fair bet if its expected value is 0.

• A lottery is said to be a favourable bet if its expected value is positive.

• A lottery is said to be an unfavourable bet if its expected value is negative.
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The lottery in example 20 is a favourable bet since the expected value is positive. By contrast,
lottery P1 above is an unfavourable bet. To see this, note that:

E[P1] =
1

37
(175) +

36

37
(−5) = −0.135

Agents will accept all favourable bets and reject all unfavourable bets. They will be indif-
ferent accepting and rejecting fair bets.

Let us test this conjecture. Consider the following two gambles:

1. A fair coin is tossed. If the coin shows heads, you win $100. If the coin shows tails,
you lose $100.

2. A fair coin is tossed. If the coin shows heads, you win $105. If the coin shows tails,
you lose $100.

Which of these gambles would you be willing to accept? The first gamble is a fair bet - and
so according to the conjecture, agents should be indifferent between accepting and rejecting
this gamble. If so, we should observe some people choosing to accept the gamble and others
choosing to reject. In reality, almost every person would reject such a gamble! The second
gamble is a favourable bet. Then according to our conjecture, agents should always accept
this gamble. In reality, most people would reject this gamble, although a small fraction do
accept.

Our conjecture doesn’t seem to quite work. To make the argument even more stark, consider
the following famous example:
Example 21 (St. Petersburg Paradox). A fair coin is tossed repeatedly until the first heads
comes up. If heads comes up on the first toss, you receive $2. If heads comes up on the
second toss, you receive $4. If heads comes up on the nth toss, you receive $2n. What is the
expected value of this game? Would you be willing to pay $5 to participate in this game?
What about $20? What is the maximum amount you would be willing to pay to participate
in such a game?

First, let us calculate the probability of each outcome. The probability that heads comes up
on the first toss is 1

2
. The probability that heads first comes up on the second toss is 1

4
(Why?

This requires that tails came up on the first toss, and heads came up on the second toss.
Each of these events has probability 1

2
and so the joint probability is 1

4
.) The probability

that heads first comes up on the nth toss is
(

1
2

)n. Then the expected value of the lottery is:

E [X] =
1

2
($2) +

1

4
($4) +

1

8
+ ....+

1

2n
($2n) + .....

= 1 + 1 + 1 + ....+ 1 + .....

= ∞
Hence, if we play this game repeatedly, on average our payoff will be infinite. If so, we
should be willing to pay ANY amount to take part in this game (since whatever we pay,
the expected payoff will still be greater). And yet some people would not even pay $5 to
participate in the game, and most people would not pay $20.
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6.1.2 von Neumann-Morgenstern Expected Utility

Clearly our conjecture doesn’t work. What is happening? Our conjecture assumes that
agents are concerned with dollar amounts of the prizes they receive - and that they will
choose the lottery which has the highest expected dollar prize. However, it is clear that
agents do not behave in this way. Rather, agents are concerned with the utility they derive
when they receive various prizes. They will choose the lottery which has the highest expected
utility.

Example 22. Suppose has $100, and with this money he can feed himself for a week.
The agent is offered a gamble in which he wins $10 with probability 1

2
and loses $10 with

probability 1
2
. If he wins $10, then his total wealth is $110, and now he can afford to have

a glass of wine with his dinner. If he loses $10, then his total wealth is $90, and he can no
longer afford dinner every night. (He must go hungry for one night.) Although the monetary
value of his winnings/losses are the same ($10), the utility loss associated with forgoing one
dinner, must be larger than the utility gain associated with having wine with dinner. Hence,
the agent will reject the gamble.

Let P be a lottery with prizes {x1, ..., xn} which are received with probabilities {p1, ..., pn}.
Let u(xi) describe the utility which the agent derives upon receiving prize xi. We refer to
u(xi) as the utility index over prizes. Then, the agent’s preference for the lottery is given by
the utility function:

U (X) =
n∑
i=1

piu (xi) = p1u (x1) + ....+ pnu (xn)

U(P ) is referred to as the expected utility function, or the von Neumann-
Morgernstern utility function. (It is name for John von Neumann and Oskar Morgenstern
who pioneered the research into expected utility theory.)

We need to be careful to distinguish two different notions of utility. The utility index u (·)
refers to the utility which the agent derives when he receives a particular prize. But agents
do not choose amongst prizes. Rather - they choose amongst lotteries, each of which specifies
the probability with which they will receive a given prize. The utility associated with the
lottery is given by U (·). (Note - at the end of the day - when the uncertainty is resolved,
then the agent will actually receive a single prize, and his utility will be given by the function
u (·). However, he must make his choice over lotteries before knowing which prize he will
receive. Hence, he chooses the lottery which maximises his utility, in expectation.)

Example 23. An agent with initial wealth of $100 is faced with the following lotteries:

• P1 : receive $20 with probability 1
3
and lose $10 with probability 2

3
.

• P2 : receive $25 with probability 1
6
and lose $5 with probability 5

6
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The agent’s utility index over his wealth level is given by u(w) =
√
w. Which lottery should

he choose?

We calculate the expected utility for each lottery. We have:

U (P1) =
1

3

√
120 +

2

3

√
90 = 9.976

U (P2) =
1

6

√
125 +

5

6

√
95 = 9.986

Hence, the agent will choose the second lottery, since this gives him a higher expected utility.

Two features of the above example are worth noting.

• The expected value of both lotteries is the same. (They are both fair bets, and so they
both have zero expected value.) However, the agent still prefers P2 over P1. In this
case, the agent seems to be averse to losses. Whilst P2 has a larger chance of incurring
a loss, the size of this loss is lower.

• The agent would be better off, if he could avoid the gambles altogether. To see this,
suppose the agent had the choice of not gambling, and keeping his $100 with certainty.
(We refer to this as the degenerate lottery P3) Then his utility is given by U (P3) =
1 ·
√

100 = 10. Clearly, this is strictly larger than the expected utility associated with
each of the gambles offered. (As we will show below, the agent may even wish to pay
a small amount, to avoid having to accept either gamble.)

6.1.3 Risk Preferences

The utility index u (·) represents an agent’s attitude towards risk. We characterise risk
preferences into 3 categories: risk averse, risk neutral and risk loving. We explore each of
these preferences below:

Risk Averse Preferences An agent is risk averse if the loss in utility associated with
a decrease in wealth is larger than the gain in utility associated with an equivalent increase
in wealth. The utility index for risk averse agents is concave in wealth. As is apparent from
the diagram, the utility loss associated with a decrease in wealth is larger than the utility
gain from an equivalent increase in wealth.

Recall —the utility index in the diagram above represents the utility that the consumer
derives when he receives a prize with W with certainty. How do we represent the expected
utility over lotteries? Consider a lottery with 2 prizes, such that the final wealth levels are
W1 and W2 (with W1 < W2). Let u (W1) and u (W2) be the corresponding utility levels
associated with these prizes. Suppose the probability of receiving the good prize is p. Then,
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w

u

w + x

u(w + x)

w − x

u(w − x)

w

u(x)
u(x)

gain

loss

Figure 6.1: Utility Index for a Risk Averse Agent

the expected utility is simply a convex combination of the utilities associated with the final
prizes. I.e.

U [P ] = (1− p)u (W1) + pu (W2)

As before, the expected value of the lottery is given by:

E [P ] = (1− p)W1 + pW2

Example 24. A consumer has initial wealth of w0. Let wL < w0 < wH . The consumer can
either keep his initial wealth for sure (I denote this by the degenerate lottery X0) or he can
accept one of the following lotteries

• X1 : receive wH with probability 1
4
and receive wL with probability 3

4

• X2 : receive wH with probability 1
2
and receive wL with probability 1

2

• X3 : receive wH with probability 2
3
and receive wL with probability 1

3

• X4 : receive wH with probability 9
10

and receive wL with probability 1
10

For different lotteries, we represent the expected value along the horizontal axis and the
expected utility along the vertical axis. The blue line associates expected values and corre-
sponding expected utilities. The higher is the probability of the good outcome, the further
along the blue line is the lottery. A 50-50 lottery appears half way along the line. A lottery
with a 2

3
probability of the good outcome, and a 1

3
probability of the bad outcome (i.e. lottery

X3) appears 2
3
of the way along the line. If the agent chooses to keep his original wealth for

sure, then he can guarantee himself a utility level u (w0) . It follows that he will accept any
of the above lotteries, if the expected utility of the lottery is at least as large as u (w0).

We note the following properties of the above lotteries. X1 represents an unfavourable bet,
and gives the consumer less utility than if he took w0 for sure. X2 represents a fair bet.
The consumer receives w0 in expectation. However, the agent is better off is he rejects the
gamble, and keeps his initial wealth for sure. (We see this in the fact that the expected
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Figure 6.2: Comparing Expected Values and Expected Utilities

utility associated with X2 is below u(w0)). X3 represents a favourable bet. However, the
agent is still better off accepting w0 for sure. Finally, X4 represents a favourable bet, which
the consumer actually prefers to the sure thing. (In this case, although there is a still a
chance of receiving only wL, this is so small in comparison to the chance of receiving wH ,
that the agent is willing to accept the risk.)

We note the following results:

• A risk averse agent rejects all unfavourable bets. (Why? The agent is averse to losses,
and he is more likely than not to lose in an unfavourable bet.)

• A risk averse agent rejects all fair bets. (Why? The agent values losses more than
equivalent gains.) To see this most clearly, note that a fair bet has the same expected
payoff as the sure thing. But the utility associated with the sure thing lies on the curved
utility function, whilst the utility associated with the gamble lies on the straight line.
Since the curve always lies above the line, a risk averse agent always prefers the sure
thing to a fair bet.

• A risk averse agent will accept some favourable bets (if they are favourable enough),
and reject others.

Note —risk averse agents may differ in their degree of aversion to risk. This is reflected
in the curvature of the utility index. An agent who is only slightly risk averse will have a
utility index which curves very gently, whereas an agent who is very averse to risk will have
a highly ‘bowed’ utility function. We represent this in the diagram below, where agent A is
slightly risk averse and agent B is highly risk averse:
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u(B)

u(A)

W2E[X]W1 W
W

u

u(W2)

u_B(W)

U(X)
u_A(W)

u(W1)

The above diagram considers a situation with two risk averse agents (A and B), both of
whom have initial wealth W . Agent B is more risk averse than agent A. Both agents are
offered a favourable bet X. As should be clear from the diagram, agent A will accept the
lottery, since it improves his utility from uA (W ) to U (X), whilst agent B rejects the same
lottery. As agents become more risk averse (i.e. as the utility index becomes more "steeply
curved"), agents will be less likely to accept favourable bets.

Risk Neutral Preferences An agent is risk neutral if the loss in utility associated with
a decrease in wealth exactly matches the gain in utility associated with an equivalent increase
in wealth. It follows that the utility index associated with risk neutral preferences is linear
in wealth. Suppose u (w) = α + βw. Then the expected utility of a lottery is given by:

U(P ) = E[α + βw] = α + βE[w]

It follows that the utility index over prizes and the utility function over lotteries coincide!
Diagrammatically, we have:

We note the following results:

• A risk neutral agent rejects all unfavourable bets.

• A risk neutral agent is indifferent between fair bets.

• A risk neutral agent accepts all favourable bets.

Risk Loving Preference An agent is risk loving if the loss in utility associated with a
decrease in wealth is smaller than the gain in utility associated with an equivalent increase
in wealth. The utility index for risk averse agents is convex in wealth. As is apparent from
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Figure 6.3: Utility Index for a Risk Neutral Agent
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Figure 6.4: Utility Index for a Risk Loving Agent
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the diagram, the utility loss associated with a decrease in wealth is smaller than the utility
gain from an equivalent increase in wealth.

In the above diagram, X0 represents the degenerate lottery in which the original wealth level
is received with certainty. X1 represents a fair bet (in which the agent has a 50-50 chance
of gaining or losing $x). As we can see, a risk-loving agent prefers the gamble to the sure
thing! (Why? the agent savours the prospect of a wealth gain more than the prospect of an
equivalent wealth loss.) We have the following results:

• A risk loving agent rejects some unfavourable bets (if they are unfavourable enough)
and accepts others.

• A risk loving agent accepts all fair bets.

• A risk loving agent accepts all favourable bets.

6.2 Applications of Expected Utility Theory

6.2.1 Insurance & Risk Premia

Certainty Equivalent In the previous section, we saw that agents are not necessarily
indifferent between prizes received with certainty, and lotteries that yield the same expected
value. Risk averse agents prefer certain prizes to lotteries with the same expected value.
Risk loving agents, on the other hand, prefer lotteries to the certain prize. It follows that if
a risk averse agent is indifferent between a lottery and a certain prospect, then the expected
value of the lottery must be larger than the prize received with certainty. Similarly, if a risk
loving agent is indifferent between a lottery and a prize received with certainty, then the
value of the prize must exceed the expected value of the lottery.

Let X be any lottery.

Definition 6. The certainty equivalent of X, denoted CE (X) is the monetary value of
the prize which if received with certainty, yields the same utility as the lottery itself.

By definition, we must have:
u (CE (X)) = U (X)

As we argued above:

• for a risk averse agent: CE (X) < E [X]
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Figure 6.5: Certainty Equivalents and Risk Premia for Risk Averse and Risk Loving Agents.

• for a risk neutral agent: CE (X) = E [X]

• for a risk loving agent: CE (X) > E [X]

We represent the certainty equivalent in the following diagrams:

In each case, the agent faces the same lottery X (which gives prize W1 with probability
1 − p and prize W2 with probability p). The expected value of the lottery is clearly the
same for both agents. However, the risk averse agent is indifferent between receiving a prize
W ∗ < E [X] for sure, and accepting the outcome of the lottery. On the other hand, the risk
loving agent is indifferent between receiving a prize W ∗∗ > E [X] for sure, and accepting the
outcome of the lottery. W ∗ and W ∗∗ are the certainty equivalents for the risk averse and
risk loving agents, respectively.

Example 25 (Finding the Certainty Equivalent). Bob has utility index over monetary prizes
given by u (W ) = lnW . Bob is offered a job which pays in bonuses. He knows that he will
earn $150, 000 with probability 0.6 (if business is good), but only $50, 000 with probability
0.4 (if business is bad). What is his certainty equivalent?

The agent’s income is a lottery, with expected value:

E [X] = $150, 000× 0.6 + $50, 000× 0.4 = 110, 000

His expected utility is:

U (X) = ln (150000)× 0.6 + ln (50000)× 0.4 = 11.479

The certainty equivalent W ∗, is a level of income which is received with certainty and yields
the same utility as the lottery. Hence, we have:

u (W ∗) = U (X)

lnW ∗ = 11.479

W ∗ = $96, 659
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Hence, Bob is indifferent between accepting the risky job, and a job which pays a sure income
if $96,659.

Risk Premium Consider an agent who faces a risky prospect X, with expected value
E [X]. Suppose the agent is offered the option to replace the risky prospect off the agent’s
hands with a certain prize of E [X]. (This is clearly advantageous for the risk averse agent.
In monetary terms, he is just as well-off in expectation, but now faces less risk.) How much
will the agent be willing to pay for such an insurance service?

The agent will at most pay an amount that causes his utility from the sure thing (less the
risk premium) to equal the utility from continuing to face the risky prospect. I.e. the agent
will accept the switch as long as:

u (E [X]−RP ) ≥ U (X)

It follows that the maximum price the agent will be willing to pay is RP ∗, where RP ∗
satisfies:

u (E [X]−RP ∗) = U (X)

But we know that u (CE (X)) = U (X). Hence, we have:

CE (X) = E [X]−RP ∗

RP ∗ = E [X]− CE (X)

The risk premium associated with a lottery is the amount that causes his net wealth to fall to
the certainty equivalent. Why? If he pays any more, then the utility of the certain prospect
will be less than the utility associated with the gamble. The agent would rather take the
gamble and get the potentially high payoff, than pay to avoid the risk;

Example 26. Consider the example of Bob’s income (above). Bob’s expected income is
$110, 000 and his certainty equivalent is $96, 659. An insurer offers to guarantee Bob a
certain income of $110, 000. (I.e. if business is good, the insurer gets $150, 000 and pays
$110, 000 to Bob, whilst if business is bad, the insurer gets $50, 000 and still pays $110, 000 to
Bob). How much will Bob pay for this insurance. Since Bob is indifferent between receiving
$110, 000 with uncertainty, and $96, 659 for sure, he will be willing to pay up to $13, 341 to
insure against this risk. (If he pays this amount in full, then he will be just as well off as he
was facing the risk. If he pays less than the full amount, then he is unambiguously better
off).

Since a risk averse agent prefers certain to uncertain outcomes, he will always be willing to
pay some amount to insure himself against a risk. (Mathematically, this follows from the
fact that CE (X) < E [X]).

Consider the following example:
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Example 27. Ben has a utility index over wealth given by u (W ) = lnW . At his current
job, Ben receives a fixed income of $100, 000. His boss offers him a promotion to a manage-
rial position that pays according to performance. Ben knows that he will receive $50, 000
with probability 1

3
(if the company performs badly) and $150, 000 with probability 2

3
(if the

company performs well). Should Ben accept the promotion? If he does how much will he be
willing to pay to insure himself against the risk? Suppose Ben keeps his current job. Then

his utility is u (100, 000) = ln (100, 000) = 11.513. If he accepts the promotion, then his
expected utility is:

U (X) =
1

3
ln (50, 000) +

2

3
ln (150, 000) = 11.552

Hence, Ben can increase his utility by accepting the promotion. Having accepted the promo-
tion, Ben now faces a risky prospect. Since he is risk averse, there is an incentive to insure
himself against this risk. To find the maximum insurance premium he is willing to pay, we
must find the certainty equivalent W ∗. We have:

u (W ∗) = U (X)

lnW ∗ =
1

3
ln (50, 000) +

2

3
ln (150, 000)

W ∗ = $104, 004

Hence, Ben is indifferent between the lottery and receiving a sure income of $104, 004. His
expected salary is 1

3
· 50000 + 2

4
· 150000 = $116, 667. The maximum insurance premium he

will be willing to pay is $12, 662. See Figure 27 below.

w
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u(50)

100
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E[X]

CE

u(x)

Figure 6.6: Ben’s Promotion and Insurance Decision

In the above example, the risk averse agent voluntarily accepts a risky prospect, and then
insures himself against it! At first blush it may appear contradictory that an agent would
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simultaneously accept risk and insure himself against it. The above example point highlights
two important facts:

1. Risk averse agents will accept risks if they are favourable enough. (In the above
example, the gamble was weighted so far in favour of the good outcome that the agent
was willing to voluntarily accept the risk).

2. Whenever a risk averse agent faces a gamble, there is an incentive to insure against it
- even if the agent accepted the gamble voluntarily.

6.3 The State-Space Approach

In the above section, we describe qualitatively whether an agent would accept a particular
gamble —and showed that the decision to do so depended on both the favourability of the
bet and the agent’s attitude towards risk. In this section, we seek to quantify this analysis.
In particular, we ask the question - if an agent is given the option of gambling some or all
of his wealth, how much will he choose to risk?

6.3.1 The Model

Budget Constraint Suppose the agent begins with a certain level of wealth. The agent
is offered a gamble in which he loses $b with probability πb and wins $g with probability πg
(where πb + πg = 1). There are two states of the world —Cb (the bad state) and Cg (the
good state) —which refer to the agent’s consumption, given the outcome of the lottery. The
agent can select multiple units of the gamble. (i.e. If he chooses 3 ‘units’, then he wins $3g
in the good state and loses $3b in the bad state. Similarly, if he chooses 1

2
units, then he

wins $1
2
g units in the good state and loses $1

2
b in the bad state.) By choosing how much to

gamble, the agent can achieve different levels of consumption in the good and bad states.

The state space approach to choice under uncertainty is analogous to the other models of
agent decision making we saw in the sections on Consumer Theory and its Applications .
However, rather than choosing between two goods (as in traditional consumer theory) or
between consumption in two periods, or between consumption and leisure, in this context,
the agent is required to choose between consumption in the good and bad states of the
world. The budget constraint shows the various combinations of Cb and Cg that the agent
can achieve by choosing to gamble different amounts.

Suppose the agent purchases x units of the gamble. Then, in the good state his consumption
is:

Cg = W + xg (6.1)
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, whilst in the bad state his consumption is:

Cb = W − xb (6.2)

From (6.2), we have x = W−Cb

b
. Substituting this into (6.1) we have:

Cg = W +

(
W − Cb

b

)
g

Cg +
g

b
Cb =

b+ g

b
W (6.3)

where (6.3) gives an expression for the budget constraint. The slope of the budget constraint
is:

slope BC = −g
b

which implies that for each additional unit of consumption the agent stands to lose in the
bad state (by gambling a little more), the agent stands to gain g

b
units of consumption in

the good state. (We can think of g
b
as the price of consumption in the good state, in terms

of consumption in the bad state which we must forgo).

The fair-odds line represents the combinations of consumptions in the good and bad states
in which the agent’s expected consumption is unchanged. (The fair-odds line can be thought
of the budget line that would arise if the agent was offered a fair-bet.) The fair-odds line is
defined by:

πbCb + πgCg = W

The slope of the fair-odds line is given by:

slope FO = −πb
πg

Suppose the actual gamble represents a favourable bet. Then we have:

πb (−b) + πg (g) > 0
g

b
>

πb
πg

which implies that the slope of the budget line is steeper than the slope of the fair-odds
line. We can similarly verify that if the actual gamble is unfavourable, then the slope of the
budget line will be flatter than the slope of the fair odds line.

The certainty line represents the set of consumption profiles in which the agent’s consump-
tion is certain (i.e. it does not depend on the state of the world). Clearly, along the certainty
line, we must have Cg = Cb.
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cb

cg

(wb, wg)

Slope = − πb
πg

Certainty Line

Slope = −g
b

Figure 6.7: Budget Constraint over Contingent Consumption Plans

Preferences We now characterise preferences over uncertain prospects. We can represent
preferences using indifference curves over consumption in the good and bad states. The usual
assumptions from consumer theory carry over. By monotonicity, we know that consumers
strictly prefer more consumption in both states to less - which implies that indifference curves
must be downward sloping. Moreover, indifference curves which are further from the origin
represent more preferred consumption profiles.

Recall, an agent’s expected utility over consumption profiles is given by:

U (X) = πbu (Cb) + πgu (Cg)

Then, an indifference curve defines the set of consumption profiles (Cb, Cg) which give the
same level of expected utility. This implies:

dU = πbu
′ (Cb) dCb + πgu

′ (Cg) dCg = 0

⇒ dCg
dCb

= −πb
πg
· u
′ (Cb)

u′ (Cg)

where this latter expression gives the slope of the indifference curve at any consumption
profile.

We note that along the certainty line (i.e. when Cg = Cb), the slope of any indifference curve
is given by:

dCg
dCb

= −πb
πg

= slope FO

Hence, along the certainty line, the indifference curve must be tangent to the fair-odds line.

The curvature of indifference curves depends upon the agent’s attitudes towards risk. Con-
sider a risk-averse agent. Recall, a risk averse agent values a loss in consumption by more
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cb

cg

Slope = − πb
πg

Certainty Line

cb

cg

Slope = − πb
πg

Certainty Line

Figure 6.8: Risk preferences and the shape indifference curves. The left panel shows indif-
ference curves for a risk averse agent. The right panel shows indifference curves for a risk
loving agent. Indifference curves for a risk-neutral agent are linear and have the same slope
as fair odds. Notice that, in all 3 cases, indifference curves have the same slope as fair odds
at the certainty line.

than an equivalent gain in consumption. Hence, a risk-averse agent requires a lot of extra
consumption in the good state to compensate for the loss of consumption in the bad state.
Moreover, since risk averse agents are more wary of large losses than small losses, the size of
the consumption necessary in the good start is increasing in the amount lost in the bad state.
This implies that risk-averse agents have convex indifference curves (as shown in Figure 6.8).

Risk-neutral agents value gains and losses in consumption equally. Hence, risk-neutral agents
have linear indifference curves, whose slope corresponds to the slope of the fair-odds line.
Finally, we noted above that risk-loving agents value losses in consumption by less than
equivalent gains in consumption. It follows that risk-loving agents have concave indifference
curves.

Optimisation The agent maximises his expected utility subject to the budget constraint.
He will choose to gamble the amount which causes his consumption profile to achieve the
highest possible indifference curve. In the usual way, such a consumption profile must satisfy
the tangency condition.

Suppose the agent is risk averse and is offered a favourable bet. Will the agent accept the
gamble? If so, how much will he choose to gamble? We have two important results:

Lemma 5. Suppose a risk averse agent faces a fair-odds gamble. Her optimal contingent
consumption plan will be certain (i.e. cb = cg).

To understand why, note that if a bet is fair, then the budget line corresponds to the fair odds
line. But we know that indifference curve is tangent to the fair-odds line at the certainty
line. Hence, the risk averse agent maximises his expected utility by choosing not to gamble.
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Figure 6.9: Decision making by a risk averse agent. The left panel shows that the risk averse
agent facing a fair-odds gamble will trade away all risk so that her consumption plan is non-
state contingent. The right panel shows that a risk averse agent facing a favorable gamble
will always leave some residual risk in her consumption plan. She will not fully insure herself.

We demonstrate this in Figure 6.9. It is also easy to verify that a risk-averse agent will
reject any unfavourable bet. To see why, note that the budget line for an unfavourable bet
lies below the fair-odds line. If so, by accepting an unfavourable bet, the agent guarantees
himself a strictly lower level of utility than if he remained on the certainty line.

A risk-averse agent will always accept some level of risk when faced with a favourable bet.
(Why? If the agent does not gamble, then he will be on an indifference curve which is tangent
to the fair-odds line. But since the bet is favourable, the budget line lies above the fair-odds
line. Hence, the original indifference curve lies in the interior of the budget set. But we know
that this cannot be optimal. The agent can achieve a higher indifference curve by gambling
a small amount.) In this case, the consumer will be willing to gamble $ (W − Cb) in the
hope of winning $ (Cg −W ).

Note —in the previous section, we said that a risk-averse agent would accept a favourable bet
only if it was favourable enough, and would often reject favourable bets. But now it seems
that a risk averse agent will always accept a favourable bet. Why is there a difference? In the
previous section we assumed that the agent was made an offer to purchase a single unit of a
gamble and to take the winnings/losses accordingly. In this section, we assume that agents
can purchase multiple units or fractional units of gambles. If at the optimum, the agent is
willing to purchase a fraction of a gamble (but not the entire gamble) —then in the previous
section we would’ve concluded that the agent would reject the offer. It should be clear that
the two approaches are not inconsistent —they just differ slightly in the assumptions about
how much is gambled.

Intuitively, it should be apparent that the degree to which risk averse agents are willing to
accept risks depends on the degree of risk aversion. The degree of risk aversion is reflected in
the curvature of the indifference curves. Agents who are highly risk averse will have "strongly
bowed" indifference curves, whilst agents who are only somewhat risk averse will have less
bowed indifference curves. (Note - regardless of the extent of risk aversion, it must still be
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the case that the slope of the indifference curve along the certainty line coincides with the
slope of the fair odds line.) Agents who are more risk averse will gamble a smaller portion
of their wealth than agents are who are less risk averse.

Example 28 (Numerical). A risk averse agent has utility index u (W ) =
√
W . The agent

originally has $100. She is offered the following gamble: A fair die is rolled. If the outcome
is high (either 5 or 6), then she wins $3. Otherwise she loses $1. How much will gamble?

Since the gamble is a favourable bet, we know that the agent will gamble a positive amount.
The budget constraint is given by:

Cg +
g

b
Cb =

b+ g

b
W

Cg +
3

1
Cb =

3 + 1

1
W

Cg + 3Cb = 400

and so, the slope of the budget constraint is:

slope BC = −g
b

= −3

Since u (W ) =
√
W , we know that u′ (W ) = 1

2
√
W
. The slope of the indifference curve is

given by:

slope IC = −πb
πg
· u
′ (Cb)

u′ (Cg)

= −
2
3
1
3

·
1

2
√
Cb

1

2
√
Cg

= −2

√
Cg
Cb

From the tangency condition, we have:

slope IC = slope BC

−2

√
Cg
Cb

= −3

Cg =
9

4
Cb

Substituting this into the budget constraint gives:(
9

4
Cb

)
+ 3Cb = 400

21

4
Cb = 400

C∗b =
1600

21
= 76.19



98 CHAPTER 6. CHOICE UNDER UNCERTAINTY

It follows that:
C∗g =

9

4
C∗b =

1200

7
= 171.43

The agent is willing to gamble up to 23.8% of his wealth, in the hope of getting the good
outcome in the favourable bet.

What about risk-neutral and risk-loving agents? We have already shown that a risk-neutral
agent is indifferent between fair bets (since the agent’s indifference curve and the budget
line for a fair bet, coincide). When faced with a favourable bet, a risk-neutral agent will
gamble his entire wealth. Conversely, the risk averse agent maximises his utility by rejecting
unfavourable bets. See Figure 6.10.

Risk Neutral Agent

cb

cg

Slope = − πb
πg

Certainty Line

w

a

Risk Loving Agent

cb

cg

Slope = − πb
πg

Certainty Line

w

a

Figure 6.10: Both a risk neutral (left panel) and risk loving (right panel) agent will gamble
their entire wealth when confronted with a favorable bet.

A risk-loving agent will gamble his entire wealth when faced with a fair or favourable bet.
See Figure 6.10. Furthermore, a risk-loving agent will gamble his entire wealth for some
unfavourable bets, but in others he will not gamble at all. (A risk-loving agent will never
choose to partially gamble. His participation in a gamble is either all or nothing).

6.3.2 Application: Optimal Participation in Crime

Consider a risk-averse individual who works T hours each week. The agent can choose to
allocate his working time between legitimate and illegitimate activities. Suppose for each
hour of legitimate work, the agent receives a wage w, and for each hour of illegitimate work,
he receives a wagem withm > w. The authorities can only police illegal activity imperfectly,
and so they catch workers doing illegitimate work with probability p. If caught, the worker
forfeits his wage for each hour of illegal work, and in addition must pay a fine f for each hour
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of illegitimate work. Suppose the agent has logarithmic utility index over consumption. i.e.
u (C) = lnC. (It follows that u′ (C) = 1

C
)

Let the bad and good states correspond to the states in which he is caught and not-caught,
respectively. What is the agent’s budget constraint? If the agent performs only legitimate
work, then his consumption will be the same in both periods - and he consumes Cb =
Cg = Tw. Suppose the agent spends x hours in illegal activity. Then, if he is caught, his
consumption is:

Cb = w (T − x)− fx = wT − (w + f)x (6.4)

If he is not caught, his consumption is:

Cg = w (T − x) +mx = wT + (m− w)x (6.5)

Rearranging (6.4) we have:

x =
wT − Cb
w + f

(6.6)

and substituting this into (6.5) gives:

Cg = wT + (m− w)

(
wT − Cb
w + f

)
Cg +

m− w
w + f

Cb =

(
m+ f

w + f

)
wT

which is our expression for the budget constraint. Moreover, the slope of the budget con-
straint is given by:

slope BC = −m− w
w + f

Will the agent choose allocate any of his time to illegal work? Since the agent is risk averse,
we know that he will engage in illegal work only if the payoff to illegitimate activity is a
favourable bet. (If the payoff to crime is either a fair or unfavourable bet, then the agent
maximises his utility by not accepting the gamble (i.e. by only engaging in legal activity).
How do check if the gamble is favourable or not? Recall, a gamble is favourable if the slope
of the budget constraint is steeper than the slope of the fair odds line.

What is the fair-odds line? Recall, the agent’s expected consumption does not change along
the fair odds line. Hence, we have:

(1− p)Cg + pCb = wT

The slope of the fair odds line is given by:

slope FO = − p

1− p
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Hence, illegal activity is favourable if:

|slope BC| > |slope FO|
m− w
w + f

>
p

1− p

f <
m− w
p
−m (6.7)

Comments

• Equation (6.7) states that the agent will participate in criminal activity if the fine f
is not too large (relative to the payoff to criminal activity and given the probability of
being caught).

• How large must the fine be if it is to be effective in deterring criminal activity? We
need the inequality to reverse, so that criminal activity is either a fair or unfavourable
gamble. The minimum effective fine is given by:

f ∗ =
m− w
p
−m

• We note that f ∗ is increasing in (m− w),which implies that the fine must be larger
when the net payoff to crime (m− w) is higher.

• We note further that f ∗ is decreasing in p, which implies that a smaller fine can
still be effective if the probability of being caught is larger. (i.e. if there is a more
extensive/efficient police force).

Now, suppose (6.7) is satisfied, so that even a risk averse agent has an incentive to engage
in criminal activity. How many hours of illegitimate work will he choose? The optimal level
of criminal activity must satisfy the tangency condition. The slope of the indifference curve
is given by:

slope IC = − p

1− p
u′ (Cb)

u′ (Cg)

= − p

1− p

1
Cb

1
Cg

= − p

1− p
Cg
Cb

Then, tangency requires:

slope IC = slope BC

− p

1− p
Cg
Cb

= −m− w
w + f

Cg =
1− p
p
· m− w
w + f

Cb
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Substituting this into the budget constraint, we have:(
1− p
p
· m− w
w + f

Cb

)
+
m− w
w + f

Cb =

(
m+ f

w + f

)
wT

1

p

m− w
w + f

Cb =

(
m+ f

w + f

)
wT

Cb = p
m+ f

m− w
wT

It follows that:

Cg =
1− p
p
· m− w
w + f

Cb

=
1− p
p
· m− w
w + f

[
p
m+ f

m− w
wT

]
= (1− p) m+ f

w + f
wT

Finally, by (6.6), the number of hours spent in illegal activity is:

x∗ =
wT − Cb
w + f

=

[
1− pm+ f

m− w

]
w

w + f
T

We verify that the number of hours spent in criminal activity is:

• decreasing in p - as the probability of getting caught increases, agents substitute away
from illegal activity, towards legitimate work.

• decreasing in f - as the punishment for illegal activity increases, agents spend less time
pursuing illegitimate activities

• increasing in (m− w) which is the net payoff to criminal activity. (It follows that one
method of disincentivising criminal activity is to increase the payoff to legitimate work,
by increasing w)

Example 29 (Calibration). Suppose w = 20,m = 50, T = 40,and p = 0.27. Then, the
minimum fine needed to disincentivise criminal behaviour is given by:

f ∗ =
m− w
p
−m

=
50− 20

0.27
− 50

= $61.11
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Suppose the fine is only f = 30. Then, the fine is sufficiently low that even risk averse agents
will choose to engage in some amount of criminal activity. How much will they choose? We
have:

x∗ =

[
1− pm+ f

m− w

]
w

w + f
T

=

[
1− 0.27 · 50 + 30

50− 20

]
· 20

20 + 30
· 40

= 4.48

Hence, there is an incentive for the typical risk averse worker to shirk for 1
2
a day each week,

and engage in illegitimate work activity.

Exercise 4 (Further Calibration). In the above application we assumed that agents have log
utility index over consumption. This represents a particular degree of aversion towards risk.
Suppose instead that the agent has utility index over consumption given by the Constant
Relative Risk Aversion (CRRA) function:

u (C) =
C1−θ

1− θ

where θ > 0 measures the degree of risk aversion. (If θ = 0, the agent is risk neutral.
As θ → ∞ the agent becomes increasingly risk averse, such that in the limit, he will never
accept risk. It turns out that the utility function we used above (u = logC) is a special case
of this utility function, when θ = 1.) Find the optimal level of illegal criminal activity as a
function of the risk aversion parameter θ. (It may help to consider a few different specific
cases, e.g. θ = 0.5, θ = 3 and so on). What happens to the optimal level of criminal activity
as θ →∞?

6.3.3 Application: Optimal Insurance

In the application on criminal activity, we assumed (implicitly) that agents began on the
certainty line (i.e. when they did not engage in criminal activity) and then voluntarily chose
to incur some risk in order to take advantage of the favourable-bet. In this application, we
consider a case where an agent originally finds herself facing a risky prospect and seeks to
insure herself against the risk.

Suppose the agent’s income is uncertain, and that she receives income yg in the good state
with probability πg, and income yb in the bad state, with probability πb. (We represent this
uncertain prospect by point A in the diagram below. For notational convenience, I will refer
to the lottery over income as the risky prospect Y ) The agent’s expected utility is given by:

U (Y ) = πgu (yg) + πbu (yb)

The indifference curve IC0 represents all the consumption profiles which give the agent
the same level of utility as the risky prospect Y . Since the agent is risk-averse, we know
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that the indifference will be convex shaped. Moreover, we know that when the indifference
curve intersects the certainty line, it will have the same slope as the fair-odds line. Point
B represents the certainty equivalent of the risky prospect Y . Recall - the certainty
equivalent is the level of income which the agent receives with certainty which leaves her just
as well off as if she faced the risky prospect Y .

Cb=CgCg

Cb

Ayg

yb

C

B

IC0
FO

IC1

y*

E[Y]

E[Y]y*

The expected value of the risky prospect Y is given by:

E [Y ] = πgyg + πbyb

The fair-odds line is the set of all consumption profiles which give the agent the same expected
consumption as under the risky prospect Y . The slope of the fair-odds line is given by:

slope FO = −πb
πg

Let point C be the intersection of the fair-odds line and the certainty line. By the definition
of the expected value, it should be clear that point C corresponds to the situation when
the agent receives E [Y ] for sure. We note that the certainty equivalent y∗ is less than the
expected value of the prospect E [Y ]. This follows from the fact that the agent is risk averse
—and so is willing to sacrifice income in order to avoid risk.

Insurance Suppose an insurance firm offers the agent the following insurance package:
The agent can purchase insurance in $1 increments. (She pays this amount prior to the
state of the world being realised.) If the good state of the world is realised, then the agent
forfeits the $1. If the bad state of the world is realised, then the agent receives $r (i.e. the
agent receives back her $1 plus a further $ (r − 1).) By purchasing insurance, the agent can
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reduce the risk associated with her income. If so, she will receive less income in the good
state (since she must pay the insurance cost), but she will receive more income in the bad
state. Suppose she purchases x packages of insurance. Then, her consumption in the good
and bad states is given by:

Cb = yb + (r − 1)x

Cg = yg − x

Combining these, gives the budget constraint associated with the insurance scheme. We
have:

Cg = yg −
Cb − yb
r − 1

1

r − 1
Cb + Cg =

1

r − 1
yb + yg (6.8)

The slope of the budget constraint is given by:

slope BC = − 1

r − 1

Actuarially Fair Insurance Consider the insurance scheme from the perspective of the
insurer. The insurer gains $1 with probability πg (i.e. if the state is good, and the insurer
does not need to compensate the agent) and loses $ (r − 1) with probability πb (if the bad
state is realised). The expected payoff to the insurer is:

EV = 1 · πg − (r − 1) · πb

We say that insurance is actuarially fair, if the expected payoff to the insurer is zero. (i.e.
the gains during the good periods exactly offset the loses during the bad periods). The
actuarially fair insurance package is given by:

EV = 1 · πg − (r − 1) · πb = 0

⇒ r =
πg
πb

+ 1 (6.9)

The budget line for an actuarially fair insurance package corresponds to the fair-odds line.
(The reason why should be fairly intuitive. The fair-odds line represents all the consump-
tion profiles in which the agent receives the same expected income. In an actuarially fair
insurance scheme, the income which the agent forgoes in the good state is exactly offset by
the compensation received in the bad state - so that expected income is unchanged). We
further verify (by rearranging (6.9) that:

−πb
πg

= − 1

r − 1
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Recall, the slope of the budget constraint is given by − 1
r−1

, and the slope of the fair-odds
line is given by − πb

πg
. Since these are equal (and both line pass through point A), we confirm

that the budget line for an actuarially fair insurance scheme coincides with the fair-odds
line.

If a risk averse agent is offered fair insurance, then she will completely insure herself against
the risk. (I.e. she will purchase sufficiently many ‘units’ of insurance, so that her consumption
is on the certainty line - i.e. Point C on the above diagram). Why must this be true? We
know that the optimal level of insurance must satisfy the tangency condition. Furthermore,
we know that indifference curves are tangent to the fair-odds line along the certainty line.
Hence - the optimal level of insurance must be the amount which alleviates the agent of all
risk.

Unfair Insurance In reality, we know that insurers will never offer actuarially fair odds.
(If they did, they would not be able to make any profit - let alone cover the costs of providing
the insurance services, such as paying wages of employees.) Insurers will more likely offer
unfair odds - i.e. those in which the expected return to the insurer is positive (or conversely,
where the expected return to the agent is negative). Faced with an unfavourable bet, will a
risk averse agent still choose to take out insurance?

The answer is yes! Consider the following diagram:

Cb=CgCg

Cb

Ayg

yb

C

IC0
FO

IC1

Cb

IC2

DCg

In the above diagram, the thick line is the budget constraint of the actuarially unfair in-
surance package, whilst the thin line is the fair odds line. (The budget constraint line lies
below the fair-odds line, since the agent must forgo more consumption in the good state to
guarantee a particular level of consumption in the bad state.) The optimal level of insurance
is given by point D. The agent purchases $ (yg − Cg) worth of insurance. Note - at this
point, the agent does not completely insure herself against risk. (How do we know this?
At points along the certainty line, no indifference curve can be tangent to the budget line.
Why? We know that, at points along the certainty line, every indifference curve has the
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same slope as the fair-odds line. But the slope of the budget line is steeper than the slope
of the fair-odds line. Hence, we cannot have tangency along the certainty line.) It should be
fairly intuitive that since the agent is getting an unfavourable deal, she will not be willing
to completely insure herself against risk - however she will still be willing to partially do so.

But doesn’t this contradict our previous claim that risk averse agents reject all unfavourable
bets? No. We made that claim in the context of an agent who had the choice between
keeping a certain level of wealth and opting to take an unfavourable bet. (Clearly in that
case, the agent would prefer to keep her sure income). In this context, the agent faces a risky
prospect. Even though she is offered an unfavourable bet, she will accept it to the extent
that it helps reduce the risk she faces.)

It shouldn’t come as any surprise that the willingness of an agent to accept unfair insurance
depends on her degree of risk aversion. In the diagram below, two different agents face the
same risky prospect Y , and are offered the same unfair insurance package. Point A represents
the risky prospect Y . Point C is the situation where the agent chooses to completely insure
herself against the risk. The individual in the left hand diagram is less risk averse than the
agent in the right hand diagram, and so she chooses a lower level of insurance.

Cb

Cg

Cg=Cb

yg

Cg

yb Cb

Cg

yg

yb Cb

A

B

C

A
B

C
y*

y*

y*

y*

Cg

Cg=Cb

Cb

More Risk AverseLess Risk Averse

Exercise 5. Suppose the agent is perfectly risk averse. What do the agent’s indifference
curves look like? How much insurance will the agent purchase? Will she completely insure
herself in the face of unfair insurance?

Example 30. Tom’s utility function is given by u (C) = lnC. Tom expects that there
will be a recession next year with probability πb = 0.2 . If so, he will lose his job (and
receive zero income). If not, then he keeps his job, which pays an annual salary of $100, 000.
An insurance firm offers to insure Tom against the risk of unemployment. Characterise an
actuarially fair insurance plan. Suppose the insurer offers an insurance package, which pays
Tom $3 if he loses his job, for each $1 packet of insurance purchased. How much insurance
will Tom purchase?
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Actuarially fair insurance satisfies:

1 · πg − (r − 1) · πb = 0

r =
πg
πb

+ 1

=
0.8

0.2
+ 1 = 5

Hence, if the insurance package was fair, Joe would receive $5 (if unemployed) for every $1
packet of insurance purchased.

The marginal rate of substitution is given by:

MRS = −u
′ (Cb)

u′ (Cg)
· πb
πg

= −
1
Cb

1
Cg

· πb
πg

= −1

4

Cg
Cb

The budget constraint is given by:
1

r − 1
Cb + Cg =

1

r − 1
yb + yg

1

2
Cb + Cg = 100000

and so, the slope of the budget constraint is:

Slope BC = − 1

r − 1
= −1

2

Then, the tangency condition implies:

MRS = slope BC

−1

4

Cg
Cb

= −1

2
Cg = 2Cb

Substituting this into the budget constraint, gives:
1

2
Cb + (2Cb) = 100000

Cb = $40000

and so:

Cg = 2Cb

= $80000

Tom pays $20, 000 in unemployment insurance. Since this pays out at a rate of 3 to 1, then
if he finds himself unemployed, he receives a net payments of $40, 000 from the insurer (after
payment for the insurance).
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6.3.4 Optimal Investment Portfolios

In this section, we consider the question of how agents choose an investment portfolio
amongst various risky instruments. When choosing amongst risky assets, the agent will
be interested in:

• the expected return to the asset (µ)

• the risk associated with this return. (We usually measure risk using the standard
deviation σ)

How do investors know the risk and expected return of assets? They might use historical
data to estimate these. Let rt be the return to the asset in period t, and suppose the agent
has data on returns for the last T years. We can estimate:

µ =
1

T

T∑
t=1

rt

σ =

√√√√ 1

T − 1

T∑
t=1

(rt − µ)r

Preferences over Risk and Return We assume that the investor has preferences over
the levels of risk and return. We can represent these preferences (using indifference curves)
on over the space of risk-return profiles. Consider a risk averse agent and an asset with risk
and return as shown in the diagram below:

Figures/Uncertainty/lecture12f.pdf

Assets in region II have a higher expected return and lower risk than asset A. Clearly, a
risk averse agent strictly prefers these assets to A. Conversely, assets in region IV has a
lower expected return and higher risk than asset A. A risk averse agent strictly prefers A
to any asset in region IV. Hence, an indifference curve representing a risk averse agent’s
preferences over risk and return must be upward sloping (it must go through regions I and
III). It should be apparent that risk-averse agents face a trade-off between accepting higher
risk and receiving a higher expected payoff. The slope of the indifference curve represents
the rate at which they are willing to make this trade-off.

We assume further that preferences over risk and return are convex —i.e. an agent prefers
an asset with moderate risk and return to an asset with low risk but low returns or to an
asset with high returns and high risk. If the agent faces an asset with low risk, he will be
more willing to switch to a riskier asset with higher returns, than if the agent already faces
high risk. Hence, the slope of the indifference curve is flat at first (when risk is low, more
willing to accept more risk), but becomes increasingly steep as the level of risk increases.
We have:
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Figures/Uncertainty/lecture12g.pdf

For completeness, we characterise preferences over risk and return for risk neutral and risk
loving agent. A risk neutral agent only cares about the expected return of an asset —he
is indifferent between two assets with the same expected return, but different levels of risk.
Hence, the indifference curves for a risk neutral agent are horizontal. The risk neutral agent
prefers higher indifference curves to lower ones. We have:

Figures/Uncertainty/lecture12h.pdf

Return to the figure above which divides the risk-return space into quadrants. A risk-
loving agent prefers assets with higher expected return, but also assets with higher levels
of risk! Hence, the risk loving agent strictly prefers any asset in region III to asset A, and
he prefers asset A to any asset in region I. Hence, a risk loving agent’s indifference curve
must be downward sloping (it must go through regions II and IV). Moreover, we assume his
preferences over risk and return are convex. It follows that a risk loving agent’s indifference
map looks like:

Figures/Uncertainty/lecture12i.pdf

Efficient Portfolio Frontier Having characterised preferences, we now turn to the ques-
tion of which risk-return combinations the investor can achieve. Suppose an investor can
choose to invest his wealth in two assets A and B. The return to these asset rA and rB are
uncertain (risky) prospects. The agent knows the expected returns (µA and µB) and the
risks (σA any σB) associated with each asset. We assume that asset B has both higher risk
(σA < σB) and higher expected return (µA < µB).

The investor is not limited to choosing just between these two combinations of risk and
return. Indeed, by dividing his portfolio between these two assets (in different proportions),
the agent can generate any expected return between µA and µB. To see this more clearly,
suppose a portfolio where the agent invests a fraction wA of his wealth in Asset A, and a
fraction wB in Asset B. (Clearly we must have wA +wB = 1.) The return to the portfolio is
given by rp = wArA + wBrB. What is the expected return to such a portfolio? We have:

µp = E [rp]

= E [wArA + wBrB]

= wAE [rA] + wBE [rB]

= wAµA + wBµB

which is a convex combination of the expected returns to each of the assets individually.
Note, since wA = 1− wB, this implies:

wB =
µp − µA
µB − µA
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What is the risk associated with such a portfolio? We have:

σ2
p = V ar [rp]

= V ar [wArA + wBrB]

= V ar [wArA] + V ar [wBrB] + 2Cov [wArA, wBrB]

= w2
AV ar [rA] + w2

BV ar [rB] + 2wAwBCov [rA, rB]

= w2
Aσ

2
A + w2

Bσ
2
B + 2wAwBσAB

= w2
Aσ

2
A + w2

Bσ
2
B + 2wAwBσAσBρAB

where σAB = Cov [rA, rB] and ρAB = Correl [rA, rB] = Cov[rA,rB ]√
V ar(rA)

√
V ar(rB)

.

It should be clear that the risk associated with a portfolio depends upon the correlation
between the returns to the assets in the portfolio. If the correlation is positive, then the
level of risk will be higher, whilst if the correlation is negative, then the level of risk will be
lower. (To see why, note that if correlation is positive, then if the return to asset A is below
expectation, then it is likely that the return to asset B will also be below its expected level.
Since the assets co-move, if the impact of a good/bad return on one asset is reinforced by
a similarly good/bad return to the other. On the other hand, if the correlation is negative,
then if the return to one asset is below expectation, then it is likely that the return to the
other asset will be above expectation. This means that impact of a bad return on one asset
is counteracted by a good return on the other. This reduces the overall risk.)

To make this relationship stark, we consider 3 cases: (i) perfect correlation (ρ = 1); (ii) no
correlation (ρ = 0) and (iii) perfect negative correlation (ρ = −1).

Case 1: Perfect Correlation Suppose the assets are perfectly correlated, so that ρAB =
1. Then we have:

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B + 2wAwBσAσB

= (wAσA + wBσB)2

σp = wAσA + wBσB (6.10)

which is simply a convex combination of the risks associated with each asset individually.
Substituting (6.3.4) into (6.10), we have:

σp = σA +
σB − σA
µB − µA

(µp − µA)

which gives the relationship between portfolio return and portfolio risk. This is a linear
equation passing through the points (µA, σA) and (µB, σB). We can plot the risk-return
profiles for these various portfolios:

Figures/Uncertainty/lecture12j.pdf
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The line in the above diagram represents all the possible risk-return profiles that can be
achieved by constructing a portfolio containing both assets A and B. Point C represents
the risk-return pair for a portfolio containing 25% asset B and 75% asset A. Point D
corresponds to the portfolio which is equally weighted between the two assets. Point E
represents a portfolio compromising 90% of asset B and 10% of asset A. It should be clear
that the greater the share of asset B in the portfolio, the larger is both the expected return
and the risk.

Case 2: No Correlation Suppose the assets are not correlated, so that ρAB = 0. Then
we have:

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B

σp =
√
w2
Aσ

2
A + w2

Bσ
2
B (6.11)

Substituting (6.3.4) into (6.11) gives an expression for the relationship between portfolio risk
and expected return. We plot the risk-return profiles in the diagram below. The dotted line
represents the portfolio where assets are perfectly correlated. We note that for each level of
return, the portfolio risk (with no correlation) is smaller than in the perfect correlation case.

Figures/Uncertainty/lecture12k.pdf

Case 3: Perfect Negative Correlation Suppose the assets are perfectly negatively
correlated, so that ρAB = −1. Then we have:

σ2
p = w2

Aσ
2
A + w2

Bσ
2
B − 2wAwBσAσB

= (wAσA − wBσB)2

σp = |wAσA − wBσB|

We plot the risk-return combinations in the usual way.

Figures/Uncertainty/lecture12l.pdf

The risk-return frontier is given by the solid line. We note curiously, that although both asset
A and asset B are risky prospects, there is a portfolio consisting of a specific combination of
the assets for which there is zero risk. For such a portfolio, the effect of a positive variance
to one of the assets will be exactly counteracted by a negative variance to the other asset.

The following points are worth noting:
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• A common objection to portfolios with negatively correlated assets is that positive
earnings by one asset will be counteracted by negative earnings by the other asset.
If so, how can a portfolio with negatively correlated assets make a positive return?
This line of argument is fallacious. Each asset has a positive expected return. The
correlation between the assets concerns whether the assets perform better or worse
than their expected value. In the case of two negatively correlated assets, if one does
slightly worse than its expected value (but still possibly makes a positive return), then
the other asset will do slightly better than its expected value. Hence, the expected
return to the investment will be positive, however the variance will be lower, because
deviations in the return to one asset will be balanced by contrary deviations to the
other asset.

• If assets are negatively correlated, the investor can achieve a higher expected at a lower
level of risk. It is not always the case that the agent must accept higher risk in order
to receive a higher return!

Summary In the above discussion, we characterised the efficient frontier for 3 special cases
of assets —those in which there is perfect correlation (both positive and negative) and those
for which there is no correlation. For generic assets (with some, but not perfect correlation),
the frontier must between these. For example, if the correlation between assets A and B is
ρ = 0.3, then the efficient frontier will lie between the ρ = 0 and ρ = 1 frontiers. Similarly,
if the correlation between A and B is ρ = −0.5, then the efficient frontier will lie between
the ρ = −1 and ρ = 0. We illustrate this in the following diagram (where the unbroken lines
represent the base cases of ρ = −1, ρ = 0 and ρ = 1, whilst the dashed lines represent the
frontiers for ρ = −0.5 and ρ = 0.3).

Figures/Uncertainty/lecture12m.pdf

Optimal Portfolio Choice In the first section, we characterised the investors preferences
over combinations of risk and return. In the next section, for any two assets, we characterised
the risk-return frontier for various portfolio combinations of two assets. (We can think of the
risk-return frontier as the "budget constraint" —it is the set of risk-return combinations that
the investor can achieve given the available assets). The optimal portfolio is the portfolio
on the efficient frontier which is on the highest indifference curve. As usual, the optimal
portfolio must satisfy the tangency condition. We illustrate this diagrammatically:

Figures/Uncertainty/lecture12n.pdf

The above example illustrates the optimal choice of a risk averse agent choosing a portfolio
amongst two assets which are somewhat negatively correlated. The optimal portfolio lines
2
5
of the way along the frontier (from A to B) and so the optimal portfolio consists of 40%
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asset B and 60% asset A. We note that, since the assets are negatively correlated, the agent
is able to achieve a significantly larger expected return (than the return to asset A) at the
cost of marginally higher risk.

It should be clear that risk neutral and risk loving agents will always choose to invest their
entire wealth in asset B. (Recall, risk neutral agents are indifferent to risk, and maximise
their utility by choosing the asset with the highest expected return. Recall further that risk
loving agents like risk, and might even accept a lower expected return as compensation for
higher risk.)
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Chapter 8

Mathematical Tools

8.1 Multivariate Calculus

Let x = (x1, ..., xn) be an n-ary vector, and consider the functions y = f(x). For example,
consider the bi-variate function: f(x1, x2) = x2

1 − x1 lnx2.

In single variable calculus, the derivative is constructed by taking small changes in the
input (x) and asking how quickly the output f(x) changed in response. Derivatives in the
multivariate setting are defined analogously: we take a small change in any one of the inputs
(xi) and ask how quickly the output changes, assuming the other input is held fixed at its
original level. We call this a partial derivative, which we denote ∂f

∂xi
or fi(x) where xi is

the variable that is allowed to change.

Naturally, rather than having a single derivative, we now have n partial derivatives —one
for each component of the vector x. Formally, we have:

∂f

∂xi
= lim

h→0

f(x1, ..., xi−1, xi + h, xi+1, ..., xn)− f(x1, ..., xi, ..., xn)

h

We can compute partial derivatives in much the same way we computed derivatives in the
single variable case, using the rules we noted above. When doing so, we treat all variables
other than the one that we are taking the derivative with respect to as if they were constants.

Example 31. Consider the bivariate function f(x1, x2) = x2
1 + x1 lnx2. The partial deriva-

tives are:

f1(x1, x2) =
∂f

∂x1

= 2x1 + lnx2

f2(x1, x2) =
∂f

∂x2

=
x1

x2

117
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When computing the partial derivative w.r.t. x1 we treat x2 as if it were constant. So the
function is effectively of the form: x2

1 + ax1, where a stands in for lnx2 (which we treat as a
constant). Clearly the derivative will be of the form 2x1 + a. Similarly, when computing the
partial derivative w.r.t. x2, we treat x1 as if it were constant. So the function is effectively
of the form: b+ c lnx2, where b and c stand in for x2

1 and x1 (which we treat as constants).
Clearly the derivative will be of the form c

x2
.

We describe the derivatives as partial derivatives because they only show the (partial) effect
of a change in the output —that coming from a change in a single input alone. In economics,
often-times, several inputs will change simultaneously. The total derivative accounts for all
of these changes, whereas the partial derivative takes each in isolation.

Just as we can find higher-order (second, third,...) derivatives of single-variable functions,
so can we of multi-variate functions. In single variable calculus, the second derivative is the
derivative of the derivative. For multi-variate, we know that that there are n first order
partial derivatives to consider —and each of these can be differentiated with respect of each
of n variables. I.e. we can take the (partial) derivative of ∂f

∂x1
w.r.t. x1, or w.r.t. x2,...., or

w.r.t. xn. Similarly, and we can take the (partial) derivative of ∂f
∂xn

w.r.t. x1 or w.r.t. x2,...,
or w.r.t. xn. Thus, there are n2 second order partial derivatives:

f11(x1, x2) =
∂2f

∂x2
1

=
∂

∂x1

(
∂f

∂x1

)
f22(x1, x2) =

∂2f

∂x2
2

=
∂

∂x2

(
∂f

∂x2

)
f12(x1, x2) =

∂2f

∂x2∂x1

=
∂

∂x2

(
∂f

∂x1

)
f21(x1, x2) =

∂2f

∂x1∂x2

=
∂

∂x1

(
∂f

∂x2

)
We refer to the first two as ‘own’ second-order partial derivatives, and the second two as
‘cross’ second-order partial derivatives. The reason for the nomenclature should be obvious.

[Young’s Theorem] If the function f is ‘sufficiently smooth’ (technically, if f is twice contin-
uously differentiable), then fij = fji. i.e.

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

Young’s Theorem states that the order of differentiation does not matter. If we differenti-
ate f w.r.t xi first and then xj, we get the same second-order partial derivative, as if we
differentiated w.r.t. xj first and then xi.

Example 32. Continuing the previous example, we have: f11 = 2, f12 = 1
x2

= f21, and
f22 = −x1

x22
.
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Exercise 6. For each of the following functions, find all of the first-order and second-order
partial derivatives:

1. f(x1, x2) = 2x1
lnx2

+ x1x2 + 5

2. g(x, y, z) = x2 + 2xy − y2 + 2y
z

+ z

8.2 Unconstrained Optimization

We can find local optima of multivariate functions in much the same way we do with uni-
variate functions. For a single variable function, we know that the derivative is typically
zero at the optimum. Intuitively, if the derivative was non-zero, then the function can be
increased (or decreased) further, by either taking a small change in the input. Thus, to be
at the maximum, it must be that the derivative is zero —there are no further opportunities
for improvements. In the multivariate case, the same logic applies, except we now need all
of the partial derivatives to be zero. This guarantees that the function cannot be improved
by making a small change to any of the inputs.

Definition 7. A critical point of a function f(x1, ..., xn) is a point (x1, ...., xn) at which
∂f
∂xi

= 0 for each i ∈ {1, ..., n}.

We say the function satisfies the first order conditions at its critical points. As before, the
critical points are candidate optimizers, but not every critical point is an optimizer, and not
every optimizer s a critical point.

Lemma 6. Let f(x1, x2) be a bivariate function. Suppose (x∗1, x
∗
2) is a critical point of f .

Then:

• (x∗1, x
∗
2) is a local minimum if: (i) f11 > 0 and f22 > 0, and (ii) f11f22 − f12f21 > 0,

where the second-order partial derivatives are all evaluated at (x∗1, x
∗
2).

• (x∗1, x
∗
2) is a local maximum if: (i) f11 < 0 and f22 < 0, and (ii) f11f22 − f12f21 > 0,

where the second-order partial derivatives are all evaluated at (x∗1, x
∗
2).

Example 33. A firm can produce a quantity of output q by combining k units of capital
and l units of labour. The firm’s production function is q = k0.25l0.5. The firm can hire as
much capital and labour as it desires. The per unit cost of capital is 10 and the per worker
wage is 5. Firms can sell any quantity of output produced on the market at price 20. How
much of each input should it hire? What quantity of output should it produce? What is the
firm’s optimal profit?
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The firm’s profit is π = 20q − 10k − 5l. Since the firm’s output is determined by its
production function, we have π = 20k0.25l0.5 − 10k− 5l. Thus, the firm’s profit is a function
of two variables: k and l. The firm’s problem is:

max
k,l

20k0.25l0.5 − 10k − 5l

The first order condtions are:

∂π

∂k
= 5k−0.75l0.5 − 10 = 0

∂π

∂k
= 10k0.25l−0.5 − 5 = 0

Combining these gives: 1
2
l
k

= 2, and so l = 4k. Substituting this into the first condition
gives:

5k−0.75(4k)0.5 = 10

2k−0.25 = 2

k∗ = 1

Then, since l∗ = 4k∗, we have l∗ = 4.

Next, we must check that the second-order conditions hold so that we have, indeed, found a
maximum. Below are each of the second derivatives, evaluated at the critical point:

πkk = −3.75k−1.75l0.5 = −3.75(1)−1.75(4)0.5 = −7.5

πll = −5k0.25l−1.5 = −5(1)0.25(4)−1.5 = −0.625

πkl = 2.5k−0.75l−0.5 = 2.5(1)−0.75(4)−0.5 = 1.25

πlk = 2.5k−0.75l−0.5 = 2.5(1)−0.75(4)−0.5 = 1.25

Hence, we verify that πkk < 0, πll < 0 and πkkπll − πklπlk = −7.5×−0.625− 1.25× 1.25 =
3.125 > 0. The second order conditions are satisfied.

8.3 Constrained Optimization

Fundamentally, economics is the study of choice. Agents only have genuine choices to make
when they face constraints that prevent them from getting everything they want. (Such
constraints might include budget constraints, time constraints, technological constraints,
institutional constraints etc.)

Example 34. Two canonical examples of constrained optimization problems:
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1. Utility Maximization subject to a budget constraint. There is an agent who must choose
quantities of goods x and y to purchase to maximize her utility subject to those goods
being affordable. We have:

max
x,y

u(x, y) s.t. pxx+ pyy = I

2. Profit Maximization subject to a technological constraint. There is a firm that must
choose quantities of inputs k and l to hire, and the quantity of output to produce q,
subject to the output being technologically feasible given the inputs. We have:

max
q,k,l

pq − rk − wl s.t. q = f(k, l)

8.3.1 The Method of Lagrange Multipliers

Consider a generic problem:

max
x1,..,xn

f(x1, ..., xn) s.t. g(x1, ..., xn) = 0

f(x1, ..., xn) is the objective function, whilst g(x1, ..., xn) is the constraint function. (It
should be clear that we can express each of the constraints in the above example in the form
g(·) = 0.)

Absent the constraint, we know what to do —find the critical points of f by setting all
the first-order partial derivatives to zero. But these critical points may not satisfy the
constraints (i.e. they may not be feasible). Our solution is to incorporate the constraint
into the objective function, so that it is already taken into account when we take first order
conditions.

Consider a new function:

L(x1, ..., xn, λ) = f(x1, .., xn)− λ (g(x1, ..., Xn))

where λ is a new variable called the Lagrange Multiplier. The new function L is called the
Lagrangian. It turns out that to find the constrained maximizer of the original objective
function, it suffices to find the unconstrained maximizer of the Lagrangian. To see why,
notice that the Lagrangian has the constraint incorporated into it. In fact, it is simply the
objective function, augmented with a penalty whenever the constraint is not satisfied. The
size of the penalty is given by the Lagrange multiplier.

Notice that the penalty term will be zero whenever the constraint is satisfied, since
g(x1, ..., xn) = 0. This ensures that, when the constraint is satisfied, the Lagrangian function
simply coincides with the true objective function, so that maximizing the Lagrangian and
constrained maximizing the objective function amount to the same thing. If the constraint
is not satisfied, then the correction term (λg(x1, ..., xn)) will be positive, which causes the
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Lagrangian to take a lower value than the objective. If we seek to maximize the Lagrangian
then, we will be deterred from settling on values that violate the constraint.

But how do we choose the size of the penalty, λ? We let the calculus do it for us! Notice
that ∂L

∂λ
= −g(x1, ..., xn). Hence, if we take the first order condition with respect to λ, we

effectively get the condition g(x1, ..., xn) = 0, which guarantees that the constraint will be
satisfied.

In summary, to do constrained optimization, we:

1. Form the Lagrangian function, which incorporates the constraint, in a way that penal-
izes the maximization whenever the constraint is violated.

2. Find the unconstrained optimum of the Lagrangian. To do so, we take first order
conditions with respect to the original variables x1,...,xn, as well as the penalty variable
λ (i.e. the Lagrange multiplier).

Example 35. Consider the following problem:

max
x1,x2
−x2

1 − x2
2 s.t. 2x1 + x2 = 5

Clearly, the unconstrained maximum is achieved when x̂1 = 0 = x̂2 —you can easily check
this by taking first order conditions —but this obviously does not satisfy the constraint.

The Lagrangian is:
L = −x2

1 − x2
2 − λ(2x1 + x2 − 5)

Taking first order conditions, we have:

∂L
∂x1

= −2x1 − 2λ = 0

∂L
∂x2

= −2x2 − λ = 0

∂L
∂λ

= 5− 2x1 − x2 = 0

We have a system of 3 equations in 3 unknowns. From the first two equations, we get:

λ = −x1 = −2x2

which implies that x1 = 2x2. Substituting this into the third equation give 5−2(2x2)−x2 = 0,
which implies x2 = 1. Then, since x + 1 = 2x2, it must be that x1 = 2. Finally, since
λ = −x1 = −2x2, we have λ = −2. The constrained optimum is (x∗1, x

∗
2) = (2, 1).

Notice that the penalty λ∗ = −2 is negative. Does this make sense? To get from the
constrained optimum to the unconstrained optimum, both x1 and x2 would need to decrease,
which would cause the constraint (2x1 + x2 − 5) to become negative. If λ were positive,
the penalty would be negative, and since the penalty is subtracted, this would cause the
Lagrangian to be larger than the objective. Clearly this cannot be the case. This explains
why λ < 0.
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Example 36 (Firm’s Choice cont.). Return to the Example about the firm choosing which
inputs to hire. Recall, the firm faces a production technology q = k0.25l0.5 and faces output
price p and input prices r and w. The firm must choose the quantity of output to produce
q and the quantities of each input k and l.

We can reformulate the firm’s problem as a constrained optimization problem:

maxq,k,lpq − rk − wl s.t. k0.25l0.5 = q

Before going any further, let us note crucially. There are several ‘variables’ in this problem.
The variables q, k and l are choice variables —the agent chooses these to maximize his
objective. The variables p, r and w are environmental variables —they describe market
prices which the agent takes as given; he has no ability to choose these. We will often refer
to these as parameters of the model. When solving for the optimum, you should find an
expression for each of the choice variables in terms of the parameters.

The Lagrangian is:
L = pq − rk − wl − λ

(
q − k0.25l0.5

)
The first order conditions are:

∂L
∂q

= p− λ = 0

∂L
∂k

= −r + λ
(
0.25k−0.75l0.5

)
= 0

∂L
∂l

= −w + λ
(
0.5k0.25l−0.5

)
= 0

∂L
∂λ

= k0.25l0.5 − q = 0

Using the first condition, we have λ = p. Substituting this into the second and third
equations gives: (

0.25k−0.75l0.5
)

=
r

p(
0.5k0.25l−0.5

)
=
w

p

This is a system of two equations in two variables, identical to what we had in the previous
example. It follows that:

0.25k−0.75l0.5

0.5k0.25l−0.5
=
r

w
l

2k
=
r

w

l = =
2r

w
k
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Now, substituting this back into equation (2) gives:(
0.25k−0.75

[
2r

w
k

]0.5
)

=
r

p

k−0.25 =
r

p
·
√
w

2r

k∗ =
4p4

r2w2

Additionally, since l∗ = 2r
w
k2, then l∗ = 8p

rw3 .

Finally, substitute k∗ and l∗ into the last equation.

k0.25l0.5 = q(
4p4

r2w2

)0.25(
8p4

rw3

)0.5

= q

q =
4p3

rw2

Hence the solution is q∗ = 4p3

rw2 , k∗ = 4p4

r2w2 , l∗ = 8p
rw3 and λ∗ = p.

8.3.2 The Envelope Theorem

In the last example, the decision maker’s optimal choice depended straight-forwardly on the
parameters. In general, let x = (x1, ..., xn) be the choice variables, and let α = (α1, ..., αp)
be the parameters. The agent’s generic decision problem is:

max
x

f(x;α) s.t. g(x;α) = 0

This setup allows for both the objective and constraint functions to depend on the parameters
α. In the profit maximization problem, the parameters were α = (r, w, p), which entered the
objective function, but not the constraint. In the utility maximization, the parameters were
α = (px, py, I) which entered the constraint function, but not the objective. In general, the
parameters may potentially affect either/both.

The Lagrangian is:
L(x, λ;α) = f(x;α)− λ (g(x;α))

The first order conditions are:
∂L
∂xi

=
∂f(x;α)

∂xi
− λ∂g(x;α)

∂xi
= 0 for each i

∂L
∂λ

= −g(x;α) = 0
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Let x∗(α) = (x∗1(α), ..., x∗n(α)) and λ∗(α) solve the first order conditions. Notice that these
will generally be functions of the parameters.

The value function gives the value that the objective function achieves at the optimum. We
have:

V (α) = f(x∗(α);α)

Since the optimizers x∗ are functions of the parameters, so will the value function.

Suppose there is a change in one of the parameters (e.g. suppose the wage increases). We
would like to know how this affects the agent’s value function. Suppose αj changes. This
will affect V (α) in two ways:

1. Direct Effect : To the extent that the objective function f(x;α) is responsive to αj,
when αj changes, this will directly cause f (and thus V ) to change.

2. Indirect Effect : When αj changes, each of the optimizers x∗i (α) will likely change, and
this will indirectly cause V to change.

We see this in the following equation:

∂V (α)

∂αj
=
∂f(x∗(α);α)

∂αj︸ ︷︷ ︸
Direct Effect

+
n∑
i=1

∂f(x∗(α);α)

xi

∂x∗i (α)

∂αj︸ ︷︷ ︸
Indirect Effect

Similarly, we know that the optima must satisfy the constraint, so that g(x∗(α);α) = 0.
Totally differentiating w.r.t αj gives:

∂g(x∗(α);α)

∂αj
+

n∑
i=1

∂g(x∗(α);α)

xi

∂x∗i (α)

∂αj
= 0

where again, the first term is the direct effect of a changing αj on the constraint (e.g. if the
price of a good increases, fewer bundles are affordable), and the second term is the indirect
effect of a changing α via its effect on the x∗i s.

Now, since the first order conditions are satisfied at the optimum, we know that:

∂f(x∗(α);α)

∂xi
= λ∗(α)

∂g(x∗(α);α)

∂xi

Substituting this into the expression for ∂V (α)
∂αj

gives:

∂V (α)

∂αj
=
∂f(x∗(α);α)

∂αj
+ λ∗(α)

n∑
i=1

∂g(x∗(α);α)

xi

∂x∗i (α)

∂αj

=
∂f(x∗(α);α)

∂αj
− λ∗(α)

∂g(x∗(α);α)

∂αj

=
∂L(x∗, λ∗;α)

∂αj
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where the second line makes use of the result from the constraint that:

∂g(x∗(α);α)

∂αj
= −

n∑
i=1

∂g(x∗(α);α)

xi

∂x∗i (α)

∂αj

This result is known as the Envelope Theorem. It states that when a parameter αj changes,
its effect on the the value function only depends on its direct effect on the objective function
∂f(x∗(α);α)

∂αj
and its direct effect on the constraint function ∂g(x∗(α);α)

∂αj
. The indirect effects (of

the change in αj causing the x∗’s to change, and those in turn causing V to change) all net
out to zero. As we will see during this course, the Envelope Theorem is one of the most
important and useful results in the study of economics.

One important insight that comes out of the Envelope Theorem is that it gives meaning to
the Lagrange multiplier λ∗. To see this, modify the problem slightly: suppose we can write
the constraint function as: h(x;α) = b. (There is nothing fishy going on here; previously, we
would have written g(x;α, b) = h(x;α) − b = 0.) For example, in the utility maximization
problem, the constraint is pxx+ pyy = I, and we can think of α = (px, py) and b = I. Then,
applying the Envelope Theorem:

∂V (α, b)

∂b
=
∂L(x∗(α, b), λ∗(α, b);α, b)

∂b

=
∂

∂b
[f(x∗(α, b);α)− λ∗(α, b)(g(x∗(α, b);α)− b)]

= λ∗(α, b)

Hence, the equilibrium value of the Lagrange multiplier can be interpreted as the amount
by which the value function would increase if the constrained were ‘loosened’ by one unit.
(E.g. in the utility maximization problem, it tells us how much more utility the agent could
generate if he had one extra dollar to spend.) The Lagrange multiplier, thus, captures the
opportunity cost or shadow price of the agent being subject to the constraint.



Chapter 9

Producer Theory

9.1 Technology - the Production function

In this chapter, we study decision making by firms. We identify firms by their production
technology—which describes the relationship between the inputs consumed in the production
process and the output generated. Let x = (x1, ..., xn) be a vector of n inputs, and let y be
the quantity of output produced. A Production Function describes the maximum amount
of the output which can be produced, given a set of inputs, if they are used in their most
efficient way. We have:

y = f(x)

To build a theory that can make predictions, we need to put some structure on the behavior
of production functions. We will add two assumptions. Let x ≥ x′ indicate that xi ≥ x′i for
each i = 1, ..., n.

Definition 8. The production technology is monotone if x ≥ x′ implies f(x) ≥ f(x′).

A production function is monotone if, increasing all inputs causes output to increase as well.
An implication of monotonicity is that marginal products are non-negative. We have:

MPi =
∂f(x)

∂xi
≥ 0 ∀i

Definition 9. The production technology is convex if

f(λx+ (1− λ)x′) ≥ λf(x) + (1− λ)f(x′) forallλ ∈ [0, 1]

A production function is convex if, the average of two input bundle can produce at least as
much output as the least productive of the two original bundles. It states that the production
function favors bundles that combine inputs in moderate quantities, rather than having large
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41

42.5 f(x)

Figure 9.1: Law of Diminishing Marginal Returns

amounts of some inputs and small amounts of others. An implication of convexity is that
the law of diminishing marginal returns —as we add more units of an input to the
production process, holding constant the level of all other inputs, output increases, but at a
smaller and smaller rate. Formally:

∂MPi(x)

∂xi
=
∂2f(x)

∂x2
i

< 0

Diminishing marginal returns implies that we cannot continue to increase output at a rapid
rate by simply increasing the level of one input, ignoring the others. (For example, we cannot
produce enough food to feed the world by simply adding more and more water to a single
flower pot.) We illustrate the notion of diminishing returns in Figure 9.1. Notice that when
the quantity of input xi used in the production process increases from 1 to 2, the increase in
output is significantly larger than the corresponding increase in output when the quantity
of input xi increases from 7 to 8. (The quantity of xj is held constant throughout.)

We can represent a production technology using isoquants. An isoquant connects all input
bundles that produce the same quantity of output. There are naturally many isoquants, one
for each feasible output level.

Monotonicity and Convexity imply that isoquants satisfy the following properties:

• Isoquants are ‘downward sloping’. An increase in the quantity of input i requires a
decrease in the quantity of some other good (j, say) to ensure that overall output is
unchanged. (Follows from montonicity.)

• Isoquants cannot intersect.

• ‘Higher’ isoquants (i.e. those further from the origin) represent input bundles produc-
ing larger outputs. (Again, follows by monotonicity.)
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• Isoquants are ‘convex’ to the origin. (Follows by convexity.)

Definition 10. The Marginal Rate of Technical Substitution of input j with respect to input
i, denoted MRTSij is the quantity by which the firm must reduce input j after increasing
input i by one unit, in order to keep output unchanged, holding the quantity of all other
inputs constant.

MRTSij = −MPi(x)

MPj(x)
= −

∂f(x)/∂xi
∂f(x)/∂xj

To see that the formula must be true, consider a change in the quantity of input i, and
suppose the Firm changes its utilization of input j to ensure output is unchanged, holding
quantities of all other inputs constant. We can write xj(xi) to capture that the quantity of
input j is pinned down by the quantity of input i. Along an indifference curve, we know
that: f(x) = c. Totally differentiating w.r.t xi gives:

∂f(x)

∂xi
+
∂f(x)

∂xj

dxj(xi)

dxi
= 0

dxj(xi)

dxi
= −

∂f(x)/∂xi
∂f(x)/∂xi

MRTSij =
MPi
MPj

We also typically assume that the production function exhibits decreasing returns to
scale. This means that if we increase the level of all inputs by some proportion then output
will increase, but by a proportion less than the increase in inputs. I.e. if we double (or treble)
the level of each input, output will increase, but will not double (or treble). Mathematically,
we have:

f (λx) < λf (x) for any λ > 0

We refer top this property as diseconomies of scale. (Traditionally we assume that up
to a particular point, when a firm increases its scale, it can produce goods more efficiently
by employing more specialised inputs and exploiting efficiencies that arise when producing
goods in bulk. If so, the technology exhibits increasing returns to scale or economies of scale.
However, economies of scale cannot continue to persist forever. At some point, the size of
a firm becomes so large, that production becomes efficient - perhaps due to the growth of
sinusoids. Hence - eventually - we assume that the technology will exhibit diseconomies of
scale.

Comments:

1. When considering the firm’s production decisions, we distinguish between the short-
run and the long-run. The short-run is defined as the period short enough that the
firm cannot vary all of the inputs used in the production process. (e.g. the size of a
factory assembly line cannot be changed over-night. In the short run, the size of this
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capital input is fixed.) The long-run is defined as the period long enough that the firm
can vary all of its inputs. (e.g. continuing with the previous example, given sufficient
time, the firm can increase the size of its assembly line to meet growing demand, or
downsize a plant if needed.)

2. It is important to distinguish the concepts of diminishing marginal product and dis-
economies of scale. Diminishing marginal product is a short run phenomenon. It
says that if increasing quantities of a variable input are added to a fixed input, the
marginal contribution of each additional variable input falls. Diseconomies of scale on
the other hand, is a long run phenomenon. It says that even if we scale up all inputs
in proportion, output wont increase by as much.

9.2 Cost Minimization

Our theory of the firm has two components. We must determine: (i) the quantity of output
that the firm should produces, and (ii) the quantities of inputs that the firm should utilize
in the production process. Ultimately we assume that firms are profit maximizers, and will
produce the quantity that maximizes profit.

But there are multiple input combinations that produce this optimal output. Which combi-
nation should the firm choose? When contemplating producing any quantity of output y, we
assume that firms choose the input combination that minimizes the cost of producing that
output. To be clear —we are not saying that the firm’s ultimate goal is to minimize costs;
their goal is to maximize profits. Cost minimization is simply the criterion to choose amongst
input combinations that achieve the same output. The cost minimizing input combination
is the one that produces the desired output in the most efficient way.

Suppose a firm wishes to produce y units of output. Let w = (w1, ..., wn) be a vector of input
prices. We want to find the input bundle which minimises the cost of producing quantity y
of output. (This amounts to find the the bundle on the isoquant corresponding to output
quantity y, which lies on the lowest achievable isocost.) Formally, we have: minxw · x =∑

iwixi s.t. y = f(x1, ..., xn).

The Lagrangian is:
L =

∑
i

wixi − λ(f(x1, .., xn)− y)

The first order conditions are:

∂L
∂xi

= wi − λ
∂f(x)

∂xi
= 0 ∀i

∂L
∂λ

= y − f(x1, . . . , xn) = 0
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Figure 9.2: Optimal Input Choice

Applying the first equation to different inputs, we have:

λ =
wi
MPi

=
wj
MPj

(9.1)

Two important insights:

1. The optimal input bundle must lie on the isoquant which corresponds to the quantity
y which we seek to produce.(Why? If the bundle lies on a different isoquant, then we
are either producing more output than we need to, or not producing enough to satisfy
our needs.)

2. The optimal consumption bundle will satisfy the tangency condition:

slope of IQ = slope of IC

MRTSij = −MPi
MPj

= −wi
wj

which follows from (9.1). (We can also prove this by contradiction. Suppose the optimal
bundle is a, and at this point, the isoquant and isocost curves are not tangential. Then,
at a, the curves must cross. But then, there is a point along the isoquant curve (b,
say) which achieves a lower isocost line than a does. Since input bundles a and b both
produce y units of output, and b is cheaper than a, then it cannot be optimal for a
firm to choose input combination a. We have a contradiction.)

The tangency condition says that the rate at which producers are able to substitute between
inputs and keep total output unchanged (i.e. MRTS) must be the same as the rate at which
they are able to a substitute between inputs and keep total cost unchanged (i.e. slope of IC).
If this is the case, then it is impossible for the firm to reallocate inputs in the production
process in such a way as to reduce costs. Why? Suppose in MRTSij = −3 and −wi

wj
= −2,

and the firm decides to reallocate inputs by using 1 additional unit of i. This requires that
it uses 3 fewer units of input j. But for a unit increase in xi, reducing the amount of xj by
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2 units leaves costs unchanged - so reducing the amount of xj by 3 units will cause costs to
fall. Hence, it is possible for the firm to reallocate inputs in the production process in such
a way as to reduce costs. But if so, the original input choice could not have been optimal.
Hence, if MRTS 6= slopeIC, then there is always an opportunity for the firm to reallocate
inputs in such a way as to reduce costs. It follows that, at the optimum, MRTS = slopeIC.

Example 37. Consider a firm with production function f(x) = x0.5
1 x0.25

2 . Suppose the firm
seeks to produce some output y. The firm’s problem is:

max
x1,x2

w1x1 + w2x2 s.t. x0.5
1 x0.25

2 = y

The Lagrangian is:
L = w1x1 + w2x2 + λ

(
y − x0.5

1 x0.25
2

)
First order conditions are:

∂L
∂x1

= w1 − 0.5λx−0.5
1 x0.25

2 = 0

∂L
∂x2

= w2 − 0.25λx0.5
1 x−0.75

2 = 0

∂L
∂λ

= y − x0.5
1 x0.25

2

Re-arranging the first two conditions in terms of λ gives:

λ = 2w1
x0.5

1

x0.25
2

= 4w2
x0.75

2

x0.5
1

x1 = 2
w2

w1

x2

Substituting this into the third equation (i.e. production function) gives:(
2
w2

w1

x2

)0.5

x0.25
2 = y

x̂2(y, w1, w2) =

(
w1

2w2

) 2
3

y
4
3

which implies that:

x̂1(y, w1, w2) =

(
2w2

w1

) 1
3

y
4
3

Finally, substituting back into the expression for the Lagrange multiplier, we find:

λ̂(y, w1, w2) =
(

2
4
3

)
w

1
3
1 w

2
3
2 y

1
3

Notice that the conditional factor demand functions are decreasing in the factor price, in-
creasing in the price of the other factor and increasing in income. We say inputs are normal
and substitutes in production.
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9.2.1 Cost Function

The conditional factor demand functions give the input bundles which minimise the cost
of producing a particular quantity of output y, given input prices w. The cost function
specifies this minimised cost, for each potential output quantity.

Given the conditional factor demand functions (x̂1 . . . x̂n) it is easy to calculate the minimised
cost. We have:

C (w, y) =
∑
i

wix̂i(w, y)

Example 38. Continue with the previous example. The cost function is:

c(y, w1, w2) = w1

(
2w2

w1

) 1
3

y
4
3 + w2

(
w1

2w2

) 2
3

y
4
3 = 3 · (2)−

2
3 w

2
3
1 w

1
3
2 y

4
3

The cost function is increasing in input prices and in the desired output level.

Moreover, the marginal cost is:

MC =
∂c(y, w1, w2)

∂y
=
(

2
4
3

)
w

1
3
1 w

2
3
2 y

1
3 = λ̂(y, w1, w2)

The Lagrange multiplier encodes the firm’s marginal cost! More on this below. . .

The cost function is a crucial ingredient in addressing the firm’s profit maximization decision.
After all — we cannot calculate the firm’s profits without knowing its costs. Note that the
cost function came from something more primitive —the firm’s technology. We derive the
firm’s cost function as a consequence of optimal input choice.

Given this optimal construction, can we say anything about the behavior of the firm’s
marginal cost? Consider an increase in target output y. The existing input choices will
no longer produce the desired output level; feasibility requires that they change. We can
write the feasibility condition as:

f (x̂1(y, w), . . . , x̂n(y, w)) = y

The conditional factor demands associated with output y should be such that, when com-
bined, they produce y units of output. (Obviously!) Differentiating both sides of this feasi-
bility condition by y gives: ∑

i

∂f(x̂(y, w)

∂xi
· ∂x̂i(y, w)

∂y
= 1

To interpret this, take each term under the summation sign. The second term in the pair
tells us how much the demand for input i changes when target output goes up by 1. The
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first term tells us how much output will change if 1 more unit of the input is hired. The
product of these gives the total amount output changes because demand for input i went up
by the amount that it did. Summing over all inputs i gives the total change in output. Of
course, this total change in output should be exactly 1.

Now, back to the cost function: c(y, w) =
∑

iwix̂i(y, w). Differentiating this w.r.t. y, we
have:

∂c(y, w)

∂y
=
∑
i

wi
∂x̂i(y, w)

∂y

=
∑
i

λ̂(w, y)
∂f(x̂(y, w))

∂xi
· ∂x̂i(y, w)

∂y

= λ̂(y, w)
∑
i

∂f(x̂(y, w))

∂xi
· ∂x̂i(y, w)

∂y

= λ̂(y, w)

where in the second line, we use the first order conditions from the cost minimization problem
to make a substitution, and in the 3rd line, we make use the property derived from the
feasibility condition.

What do we find? The Lagrange multiplier reflects the marginal cost of production. This
is a particular instantiation of a more general result known as the Envelope Theorem. (We
will see it’s application over and over again.) More generally, the Envelope Theorem tells
us that the Lagrange multiplier is a measure of opportunity cost. It tells us how much the
optimum would change if the constraint were tightened or loosened by one unit.

Going back to the first order conditions, we know that λ̂ = wi

MPi(x̂)
for each i. Taking these

together gives:
∂c(y, w)

∂y
=

wi
∂f(x̂)/∂xi

=
wi

MPi(x̂)
∀i

The right hand side is the cost of producing one more unit of output by increasing input i
along. (To see this, hiring 1 more unit of input i produces MPi more output. So to produce
1 more unit of output, the firm would need to hire 1/MPi more units of input i. Since each
unit costs wi, the fraction gives the total cost of purchasing this quantity.) The incremental
cost of producing one extra unit is the same no matter which input (or which combination
of inputs) we use to produce it!

9.3 Profit Maximization

Having derived the cost function, we can now analyse the firm’s profit maximisation problem.
Suppose the price of output is p. Then, the firm chooses the level of output y that maximises
its profit:

π = py − c (y, w)
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The optimal level of output y∗ must satisfy the first order condition:

p =
∂c(y, w)

∂y

(Why must this be the case? Suppose y is profit maximising, but at y, p 6= MC (y). For
concreteness, suppose p > MC. Then, if the firm produces one additional unit of output, it
will receive an additional revenue of p and incur an additional cost of MC. Since p > MC,
producing this additional unit has the net effect of increasing the firm’s profit. But if so, then
the original output y could not have been profit maximising. Similarly, suppose p < MC.
Then, the last unit of output produced generated additional revenue of p, but incurred an
additional cost of MC. Since p < MC, the last unit produced generated a net loss for
the firm. The firm could increase it’s profits by decreasing it’s output. But if so, then the
original output y could not have been profit maximising. Hence, at the optimum, we must
have p = MC.)

The firm’s supply function y∗ (p, w) gives the profit maximising level of output as a function
of the output and input prices. The factor demand functions x∗i (p, w) give the profit
maximizing inputs that the firm employs in the production process, given output and input
prices. Naturally, there must be a consistency between the factor demand functions and
conditional factor demand functions. These must coincide when the firm chooses to produce
the profit maximizing output level. Formally:

x∗(p, w) = x̂(y∗(p, w), w)

Now, using our expression for marginal cost, we can re-write the profit maximizing condition
as:

p = MC

=
wi

MPi(x̂(y∗(p, w), w))
∀i

MPi(x
∗(p, w)) =

wi
p

Profit maximization requires the firm to hire inputs up to the point where the marginal
product of each input is equal to its replacement cost (or real wage). To make sense of this,
note that wi/p is the number of units of output that the firm needs to sell in order to cover
the cost of hiring a unit of input i. Clearly, if the input produces more than its replacement
cost, the firm earns a ‘profit’ by hiring that input. Similarly, if the input does not replace
its cost, the firm makes a loss at the margin. At the optimum, the last unit of each input
hired must just its hiring cost.

We could equivalently have written this condition as: MRPi(x
∗(p, w)) = p ·MPi(x

∗(p, w)) =
wi, where MRPi = p ·MPi is the marginal revenue product of input i. The marginal
revenue product is the additional revenue generated by hiring an additional input (which
produces additional output that can be sold at price p). The intuition for this the same as
above.
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Example 39. Suppose the production function is given by y = x0.5
1 x0.25

2 . Given generic
output and factor prices (p, w1, w2), find the firm’s supply function. Verify that it is increasing
in the output price p. What is the effect of an increase in factor prices w?

From the previous example, we know that the cost function is given by C (w1, w2, y) =

3 · (2)−
2
3w

2
3
1 w

1
3
2 y

4
3 . Then, the marginal cost function is:

MC (w1, w2, y) =
∂C

∂y

= 2
4
3w

2
3
1 w

1
3
2 y

1
3

Profit maximisation requires:

p = MC (w1, w2, y)

p = 2
4
3w

2
3
1 w

1
3
2 y

1
3

y
1
3 =

p

2
4
3w

2
3
1 w

1
3
2

y∗ =
p3

16w2
1w2

Clearly, the supply function is increasing in p and decreasing in w1 and w2.

We calculate the factor demand function for the firm with production function given in the
above example: y = 2x0.5

1 x0.25
2 . Recall, the marginal product functions are given by:

MP1 = x−0.5
1 x0.25

2

MP2 =
1

2
x0.5

1 x−0.75
2

Applying condition (5.3), we have the following two equations:

x−0.5
1 x0.25

2 =
w1

p
(9.2)

1

2
x0.5

1 x−0.75
2 =

w2

p
(9.3)

Rearranging (9.2) gives:

x2 =

(
w1

p

)4

x2
1 (9.4)

Substituting this into (9.3), we have:

1

2
x0.5

1

[(
w1

p

)4

x2
1

]−0.75

=
w2

p

1

2
x−1

1

(
w1

p

)−3

=
w2

p

x∗1 =
p4

2w3
1w2
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Then, by (9.4), we have:

x∗2 =

(
w1

p

)4

x2
1

=

(
w1

p

)4 [
p4

2w3
1w2

]2

=
p4

4w2
1w

2
2

We confirm that the factor demand functions are decreasing in their own factor prices, and
increasing in the output price p (since - as we showed previously - these inputs are normal).

In the sub-section on cost minimisation, we derived the conditional factor demand functions
x̂i (w1, w2, y). How are these distinct from the factor demand functions x∗i (w1, w2, p)? The
conditional factor demand functions gave the input bundles that a firm would employ if it’s
objective was to produce some arbitrary level of output y, in the least cost way. This output
level need not be the profit-maximising level - indeed, we do not take output prices into
account when constructing the conditional factor demand functions. The conditional factor
demand functions are the producer theory analogue of the compensated (Hicksian) demand
curves. Recall the the compensated demand functions gave the optimal consumption bundles
that a consumer would choose, if his goal was to achieve some arbitrary level of utility, and
if affordability wasn’t a consideration. The conditional factor demand functions give the
optimal input bundle that a firm would choose, if its goal was to achieve some arbitrary
level of output, and if profitability wasn’t a consideration. To this extent, conditional factor
demand functions - like the compensated demand functions - are a theoretical construct.
What we actually observe are the factor demand functions.

9.4 The Profit Function

Definition 11. The profit function gives the firm’s profit when it chooses the quantity of
output and inputs optimally. We have:

π(p, w) = py∗(p, w)−
∑
i

wix
∗
i (p, w) = py∗(p, w)− c(y∗(p, w), w)

The profit function has several properties that contribute useful predictions about the firm’s
behavior.

Lemma 7. (Hotelling’s Lemma) The firm’s supply function and factor demand functions
can be recovered from the profit function as follows:

• y∗(p, w) = ∂π(p,w)
∂p

.
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• x∗i (p, w) = −∂π(p,w)
∂wi

for each i.

Proof. The proof makes use of the Envelope Theorem in much the same way as we used
it when applied to the cost function. Recall, the profit function is π(p, w) = py∗(p, w) −
c(y∗(p, w), w). Differentiate this w.r.t. p, noting that p enters both directly into the firm’s
revenue, and indirectly through each instance of y∗. We have:

∂π(p, w)

∂p
= y∗(p, w) +

(
p− ∂c(y∗, w)

∂y

)
︸ ︷︷ ︸

=0

·∂y
∗(p, w)

∂p
= y∗(p, w)

Similarly, differentiating w.r.t. wi gives:

∂π(p, w)

∂wi
= −x∗i (p, w) +

(
p− ∂c(y∗, w)

∂y

)
︸ ︷︷ ︸

=0

·∂y
∗(p, w)

∂wi
= −x∗i (p, w)

We will use this result in two important ways. First, Hotelling’s Lemma makes a connection
between the firm’s profit and the producer’s surplus. Recall, the producer’s surplus is the
area under the firm’s supply curve that follows from a price change. Suppose the firm’s profit
changes from p0 to p1. By the fundamental theorem of calculus, the change in the firm’s
profit is:

π(p1, w)− π(p0, w) =

∫ p1

p0

∂π(p, w)

∂p
dp =

∫ p1

p0

y∗(p, w)dp

which is precisely the producer surplus.

Similarly, the change in the firm’s profit following a change in the price of input i (from wi0
to wi1 is the area under the associated factor demand function. We have:

π(p, w1)− π(p, w0) =

∫ wi1

wi0

∂π(p, w)

∂p
dp = −

∫ wi1

wi0

x∗i (p, w)dwi

The second important result that follows from Hotelling’s Lemma is about the direction of
comparative statics. But, before we can present that result, an aside. We say a function is
convex if it is “valley-shaped”. We know that a convex function has non-negative straight
second order partial derivatives.

Lemma 8. The Profit function is convex. I.e.

• ∂2π(p,w)
∂p2

≥ 0

• ∂2π(p,w)

∂w2
i
≥ 0 for each i
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p

π(p0, w)

p0

py∗(p0, u)−
∑

iwix
∗
i (p

0, w)π(p1, w)

π(p2, w)

p2 p1

π(p, w)

Figure 9.3: The profit function is convex

Rather than prove this result formally, I instead provide a heuristic argument. Consider
Figure 9.3. We plot the output price on the horizontal axis and the firm’s profit on the
vertical. (We could have just as easily plotted an input price.) Throughout, assume input
prices are fixed at some level w. Suppose at price p0 the firm’s true profit is π(p0, w), and
that the optimal output and inputs are y∗(p0, w) and x∗(p0, w). Now consider changes in the
output price. It is feasible for the firm to not change its production choice. Then, since the
expression for profit is linear, the firm’s new profit will be a linear function of the output
price. This is represented by the red line in the diagram.

The red line represents a lower bound on the firm’s profits. If it does nothing following a price
change, it can still achieve this level of profit. Of course, the firm would probably benefit
from re-allocating its input and output choices after a price change. So its true profit after
reallocation will likely be above the red line; for example, the blue line. But this requires
the blue line to be curved the way that it is represented in the diagram. It is valley-shaped.
The profit function is convex.

Using this result, we can now do comparative statics. We have the following pair of results:

• The supply function is upward sloping. Firms produce more when prices are higher.

∂y∗(p, w)

∂p
=

∂

∂p

(
∂π(p, w)

∂p

)
=
∂2π(p, w)

∂p2
≥ 0

• The factor demand functions are downward sloping. Firms hire fewer of an input when
its price increases.

∂x∗i (p, w)

∂wi
=

∂

∂wi

(
−∂π(p, w)

∂wi

)
= −∂

2π(p, w)

∂w2
i

≤ 0
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Both of these results might have seemed intuitive, but it is nice to be able to show that they
follow from the theory. And, since many of you probably struggled to follow some of the
steps to get to this point, perhaps the results weren’t really that intuitive....



Chapter 10

Consumer Theory

10.1 Utility Maximization

Suppose an agent can choose to purchase different quantities of n goods. Let x = (x1, ..., xn)
denote a bundle of goods, where xi is the quantity of the ith good. Let X denote the
consumption set —the set of conceivable bundles the agent can consume. We typically take
the consumption to be the non-negative orthant, X = Rn

+.

10.1.1 Preferences & Utility

The agent has preferences over the various bundles in the consumption set. (She can make
statements like ‘I prefer bundle x to bundle y’ or ‘I am indifferent between bundles x and
z’.) We represent the agent’s preferences using a utility function u(x).

Definition 12. A function u : X → R represents an agent’s preferences:

• Whenever the agent strictly prefers bundle x to bundle y, the function satisfies: u(x) >
u(y).

• Whenever the agent is indifferent between two bundles x and y, the function satisfies
u(x) = u(y)

A utility function is simply a convenient way of representing an agent’s preferences over
bundles. The numbers that we use in the representation themselves have no innate meaning,
except in so far as they convey the agent’s rankings of different bundles.

An example may help illustrate the point:

141
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Example 40. Suppose n = 1, so that there is only one type of good that the agent can
consume. Suppose further that the agent dislikes the good, and that finds it increasingly
bad to be given more of the good. The following utility functions all represent the agent’s
utility:

• u1(x) = −x

• u2(x) = 5− x2

• u3(x) = 1
1+x

• u4(x) = − lnx

All of these utility functions have the property that more is worse.

As the above exercise makes clear, there is nothing special about the numbers we assign,
as long as they respect the appropriate ordering. Utility values do not have to be positive.
If u(x) = 2u(y) we cannot conclude that x is twice as preferred as y. The utility function
does not capture strength of preference. Indeed, there is no unique (or even natural) scale to
represent utility. And there is no hope of trying to measure it (e.g. using a ‘hedonometer’).
The only information it conveys is the ranking of bundles. Utility is an ordinal concept.
Given this discussion, we have the following result:

Lemma 9. Suppose u represents an agent’s preferences and let g(·) be a strictly increasing
function. Then v(x) = g(u(x)) also represents the agent’s preferences.

Notation: We write x ≥ y to mean that bundle x contains at least as much of each good
than bundle y does, at at least more of some good. I.e. xi ≥ yi for each i ∈ {1, ..., n}, with
strict inequality for at least on i.

Definition 13. We say that an agent’s preferences are:

• Monotone, if whenever x ≥ y, u(x) > u(y).

• Convex, if u(λx+ (1− λ)y) > min{u(x), u(y)}, for any λ ∈ (0, 1)

Monotonicity captures the idea that ‘more is better’. An immediate consequence of mono-
tonicity is that ui = ∂u

∂xi
> 0 for each i.

Convexity captures the idea that moderation is preferred to extremes. The bundle λx +
(1− λ)y is a weighted average of bundles x and y. Convexity says that the average bundle
cannot be worse than the least preferred of the two extreme bundles. (In the special case
that the agent is indifferent between x and y, convexity says that the average bundle must
be strictly preferred to either x or y.) The mathematical term for a function having the
convexity property is ‘quasi-concavity ’.
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We can represent consumer preferences diagramatically using indifference sets. (When
n = 2, we refer to indifference sets as ‘indifference curves’; for n > 2, the geometry of the set
is a hyper-surface; not a curve.) An indifference set contains all consumption bundles over
which the consumer is indifferent —i.e. from which he derives the same utility. (Formally, an
indifference set is a level set of the utility function.) Naturally, there are many indifference
sets, each corresponding to a different level of utility. Taking all the indifference sets together
gives an indifference map.

Indifference sets/curves have several properties that follow straight-forwardly from the prop-
erties of the utility function:

• Indifference curves are ‘downward-sloping’. An increase in the quantity of good i
requires a decrease in the quantity of some other good (j, say) to ensure that overall
utility is unchanged. (Follows from mononoticity.)

• ‘Higher’ indifference sets (i.e. those further from the origin) represent more desirable
bundles. (Again by monotonicity.)

• Indifference sets cannot intersect.

• Indifference sets are ‘convex’ to the origin. (Follows by convexity.)

IC1

IC3

Y

X

IC2

Definition 14. The Marginal Rate of Substitution of good j with respect to good i, denoted
MRSij is the number of units of good j that the agent must forgo in order to remain
indifferent after consuming one additional unity of good i, holding the quantity of all other
goods constant.

MRSij = −MUi(x)

MUj(x)
= −

∂u(x)
∂xi
∂u(x)
∂xj

To see that the formula must be true, consider a change in the quantity of good i, and
suppose the agent changes his consumption of good j to ensure utility is unchanged, holding
quantities of all other goods constant. We can write xj(xi) to capture that the quantity of
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good j is pinned down by the quantity of good i. Along an indifference curve, we know that:
u(x) = c. Totally differentiating w.r.t xi gives:

∂u(x)

∂xi
+
∂u(x)

∂xj

dxj(xi)

dxi
= 0

dxj(xi)

dxi
= −

∂u(x)/∂xi
∂u(x)/∂xi

MRSij = −MUi
MUj

10.1.2 Budget Set

Consider a consumer with income y and suppose the prices of goods are given by the n-vector
p = (p1, ...., pn). The budget set is the set of all consumption bundles that the consumer
can afford given his income, and given the prices of goods. The budget set is given by:

B(p, y) =

{
x ∈ X |

n∑
i=1

pixi ≤ y

}

The frontier of the budget set is known as the budget constraint. All consumption bundles
along the budget line are just affordable - i.e. if the consumer purchases a bundle along this
line, then he will exhaust his income. A point on the interior of the budget set represents a
bundle where the consumer is not spending all of his income. Any point along the budget
constraint must satisfy:

p · x =
n∑
i=1

pixi = y

10.1.3 Optimization

The agent chooses the bundle x∗ to maximize her utility subject to her budget constraint.
We have:

max
x

u(x) s.t. p · x = y

Caution: In this problem the agent optimizes by choosing quantities of different goods
x1, ..., xn, taking prices and income as given. It is not in the agent’s power to choose prices,
or (for the purpose of this model) to choose her income. Thus x = (x1, ..., xn) are the choice
variables, and (p, y) = (p1, ..., pn, y) are the parameters.

The Lagrangian is:
L = u(x)− λ(p · x− y)
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which, I re-write for clarity as:

L = u(x1, ..., xn)− λ(p1x1 + ....+ pnxn − y)

We need to find the vector (x∗, λ∗) that maximizes the Lagrangian. The first order conditions
are:

∂L
∂xi

=
∂u(x)

∂xi
− λpi = 0 ∀i = 1, .., n

∂L
∂λ

= y − p · x = 0

This is a system of n+1 equations in n+1 variables (x1,...,xn & λ). We can solve this system
simultaneously. Let x∗(p, y) = (x∗1(p, y), ..., x∗n(p, y)) and λ∗(p, y) be the optimizers. We refer
to the optimal consumption bundle as Marshallian Demand (after economist Lord Alfred
Marshall).

Example 41. Suppose the consumer’s utility function is given by u (x1, x2) = − 1
x1
− 1

x2
(believe it or not, this satisfies the conditions for a utility function!). We have:

max
x1,x2

u (x1, x2) = − 1

x1

− 1

x2

s.t. p1x1 + p2x2 = y

We use the method of Lagrange Multipliers. We have:

L = − 1

x1

− 1

x2

− λ (p1x1 + p2x2 − y)

The first order conditions are:
∂L
∂x1

=
1

x2
1

− λp1 = 0

∂L
∂x2

=
1

x2
2

− λp2 = 0

∂L
∂λ

= y − p1x1 − p2x2 = 0

Combining the first two conditions, we have:

λ =
1

x2
1p1

=
1

x2
2p2

→ x2 =

√
p1

p2

x1

Substituting this into the third gives:

p1x1 + p2

√
p1

p2

x1 = y

x∗1 (p1, p2, y) =
y

√
p1

(√
p1 +

√
p2

)
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and then from the optimality condition:

x∗2 (p1, p2, y) =
y

√
p2

(√
p1 +

√
p2

)
and:

λ∗(p, y) =
(
√
p1 +

√
p2)2

y2

Definition 15. The Indirect Utility Function V (p, y) gives the agent’s utility under
different prices and incomes, assuming that the agent chooses her consumption bundle opti-
mally. We have:

V (p, y) = u(x∗(p, y))

The direct utility function u(x) provides the agent’s ranking over bundles —these are the
things she actually cares about. The indirect utility function V (p, y) instead provides the
agent’s ranking over budget sets. For different budget sets, different consumption bundles
will be feasible, and this will affect how much utility the agent can purchase for herself.
The agent doesn’t instrinsically care about her budget set, but she does care instrumentally,
in-so-far as the budget set affects which consumption bundles are affordable.

The indirect utility function is also relevant to policy-making. Although the agent doesn’t
control prices and incomes, and takes these as given, policy makers are able to control
prices and incomes through taxes and transfer policies. But, of course, policy-makers can’t
actually make consumption choices for the agent. The indirect utility function describes for
the policy-maker the agent’s preferences over different policy-outcomes, understanding that
these policies translate into utility through the consumption choices that the agent makes.

Recall: V (p, y) = u(x∗(p, y))− λ∗(p, y)(p · x∗(p, y)− y). By the envelope theorem, we have:

∂V (p, y)

∂pi
= −λ∗(p, y)x∗i (p, y) < 0

∂V (p, y)

∂y
= λ∗(p, y) > 0

Straight-forwardly, the agent’s utility is decreasing in prices and increasing in income. Impor-
tantly, the envelope theorem gives meaning to the Lagrange multiplier λ. At the optimum,
the Lagrange multiplier measures in utility units the value of loosening the budget constraint
by $1 —i.e. how much more utility the agent would have if she had one additional dollar to
spend. In effect, λ is the shadow cost of the budget constraint.

With this understanding of the Lagrange multiplier in mind, return to the first order cond-
tions. For each i = 1, ..., n, we have:

∂u(x)

∂xi
= pi

∂V (p, y)

∂y
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The left-hand side of the FOC is the marginal benefit of increasing consumption of good i
by one unit. The right-hand side is the marginal (opportunity) cost. [To see this, note that
purchasing one more unit of good i has cost pi. Making this choice, in effect, tightens the
budget constraint by pi. But we know that each dollar tightening of the budget constraint
reduces utility by ∂V

∂y
.] The opportunity cost of purchasing one more unit of good i is the

amount of utility that the agent would have otherwise been able to purchase if she had pi
more dollars to spend (optimally) on other goods. In particular, the opportunity cost is not
the price of the good, but the utility forgone.

10.2 Expenditure Minimization

Although we take utility maximization and Marshallian demand to be reasonably descriptive
of the agent’s actual decision-making, it turns out that there is little we can say about the
behavior of Marshallian Demand and Indirect Utility. Two issues are especially problematic:

• The theory makes no prediction about the slope of the Marshallian demand curve. It
is possible that ∂x∗i (p,y)

∂pi
> 0 —i.e. that the ‘Law of Demand’ is violated. [Convince

yourself that this is true graphically by drawing indifference curves appropriately.]

• The theory does not require that ∂x∗i
∂pj

and ∂x∗j
∂pi

have the same sign. We usually classify
goods as substitutes or complements according to the sign of their cross-price effects.
But if the cross-price effects don’t have the same sign, then such a classification becomes
impossible.

To make more useful theoretical predictions, we need a different approach. Consider the
following hypothetical problem: The agent has some baseline utility level u0 that she seeks
to achieve. What is the minimum amount of income that the agent needs to achieve that
utility, given prices p, if she chooses her consuption bundle optimally. Notice that the
agent’s income is not specified. She doesn’t face a budget constraint. Rather she faces a
utility constraint, and we ask how much income she would need to achieve it. The agent’s
problem is:

min
x

p · x s.t. u(x) = u0

Let µ denote the Lagrange multiplier (to distinguish it from the multiplier in the utility
maximization problem). The Lagrangian is:

L = p · x− µ(u(x)− u0)

which, I re-write for clarity as:

L = p1x1 + ....+ pnxn − µ(u(x1, ..., xn)− u0)
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We need to find the vector (xh, µh) that maximizes the Lagrangian. The first order conditions
are:

∂L
∂xi

= pi − µ
∂u(x)

∂xi
= 0 ∀i = 1, .., n

∂L
∂µ

= u0 − u(x) = 0

This is a system of n+1 equations in n+1 variables (x1,...,xn & λ). We can solve this system
simultaneously. Let xh(p, u0) =

(
xh1(p, u0), ..., xhn(p, u0)

)
and µh(p, u0) be the optimizers. We

refer to the expenditure minimizing bundle as Hicksian Demand (after economist John
Hicks) or Compensated Demand.

Example 42. Take the utility function from the previous example: u (x1, x2) = − 1
x1
− 1

x2
.

We have:

min
x1,x2

p1x1 + p2x2

s.t. − 1

x1

− 1

x2

= u0

We use the method of Lagrange Multipliers. We have:

L = p1x1 + p2x2 − µ
(
− 1

x1

− 1

x2

− u0

)
The first order conditions are:

∂L
∂x1

= p1 − µ
1

x2
1

= 0

∂L
∂x2

= p2 − µ
1

x2
2

= 0

∂L
∂λ

= u0 +
1

x1

+
1

x2

= 0

Combining the first two conditions, we have:

µ = x2
1p1 = x2

2p2

→ x2 =

√
p1

p2

x1

Substituting this into the third gives:

− 1

x1

− 1√
p1
p2
x1

= u0

− 1

x1

−
√
p2√
p1

1

x1

= u0

xh1(p1, p2, u0) = −
√
p1 +

√
p2√

p1u0
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and then from the optimality condition:

xh2(p1, p2, u0) = −
√
p1 +

√
p2√

p2u0

and:

µh(p1, p2, u0) =

(√
p1 +

√
p2

)2

u2
0

Consider an agent who faces prices p and income y, and let the associated Marshallian
demand be x∗(p, y). Now, suppose the price of good i increases, and the new price vector is
p′. The new Marshallian demand is x∗(p′, y). Since ∂V

∂pi
< 0, we know that the agent’s utility

will decrease as a result of the price increase.

Suppose we wish to bring the agent back to her original utility level. We would need to com-
pensate her for the higher price she faces by giving her more income. The Hicksian demand
gives the consumption bundle that the agent would choose after this compensation. (Note
—although the agent achieves the same utility as before, he typically will not choose the orig-
inal bundle.) This explains why Hicksian demand is also referred to as Compensated demand
—it is the bundle chosen after the agent receives sufficient income compensation to achieve
the original level of utility. As we shall see, Hicksian demand and income compensation are
related to the income and substitution effects.

Definition 16. The expenditure function e(p, u0) gives the minimum amount of income
needed for the agent to be able to achieve a desired utility level u0 given prices p. We have:

e(p, u0) = p · xh(p, u0) = p1x
h
1(p, u0) + ....+ pnx

h
n(p, u0)

Lemma 10. The expenditure function is concave. This implies that, for each i

∂2e(p, u0)

∂p2
i

≤ 0

Recall: e(p, u0) = p · xh(p, u0) − uh(p, u0)(u(xh(p, u0)) − u0). By the envelope theorem, we
have:

Lemma 11 (Shephard’s Lemma). ∂e(p,u0)
∂pi

= xhi (p, y) ≥ 0

If the agent was purchasing xhi units of good i, then a unit increase in the price of i will strain
the agent’s budget by xhi dollars. Absent income compensation, the agent will re-optimize
and choose a different bundle that achieves a lower utility. To return him to the original
level of utility, he will require xhi dollars.

There are two important results that follow from Shephard’s Lemma:
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1. Law of Demand
∂xhi (p, u0)

∂pi
≤ 0

2. Slutsky Symmetry
∂xhi (p, u0)

∂pj
=
∂xhj (p, u0)

∂pi

Proof. To show (1), notice that:

∂xhi (p, u0)

∂pi
=

∂

∂pi

∂e(p, u0)

∂pi
=
∂2e(p, u0)

∂p2
i

≤ 0

where the inequality follows from the concavity of e(p, u0). To show (2), notice that:

∂xhi (p, u0)

∂pj
=
∂2e(p, u0)

∂pj∂pi
=
∂2e(p, u0)

∂pi∂pj
=
∂xhj (p, u0)

∂pi

, where the middle equality follows from Young’s Theorem.

Our theory now provides two strong predictions about the nature of consumer choice. First,
the law of demand says that Hicksian demand is downward sloping; when price increases,
quantity demanded will fall. Second, cross-price effects are symmetric. An increase in the
price of good j will affect the Hicksian demand for good i by exactly the same amount as an
increase in the price of good i will affect the Hicksian demand for good j. An immediate im-
plication is that the cross price effects have the same sign, so we can (without contradiction)
classify goods as complements or substitutes. Given its nice properties, empiricists typically
estimate Hicksian price effects (elasticities) rather than Marshallian ones.

But Hicksian demand is a hypothetical notion. We don’t believe consumers actually behave
this way. By contrast, we believe that Marshallian demand is descriptive of agent behavior,
but our theory has no strong predictions about Marshallian demand. To be useful, we need
a link between Marshallian demand and Hicksian demand that enables us to connect the
actual (observable) choices of agents to the hypothetical (unobservable) ones that generate
clear predictions.

10.3 Slutsky Equation

We begin by stating some straight-forward relationships between the utility maximization
and expenditure minimization problems. Consider the indirect utility and expenditure func-
tions.

• V (p, e(p, u0)) = u0
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• e(p, V (p, y)) = y

Consider the first item. The left-hand side is the maximum utility that the agent can achieve
at prices p with an amount of income which is the lowest income that achieves utility u0.
Clearly, this must be u0. Similarly, take the second item. The left-hand side is smallest
income needed (at prices p) to achieve the highest utility that can be achieved with income
y at prices p. Again, this must be y.

We can state similar consistency properties for Marshallian and Hicksian demand:

• x∗(p, e(p, u0)) = xh(p, u0)

• xh(p, V (p, y)) = x∗(p, y)

Now, starting from the first bullet point: xhi (p, u0) = x∗i (p, e(p, u0)). Differentiating w.r.t. pj
gives:

∂xhi (p, u0)

∂pj
=
∂x∗i (p, e(p, u0))

∂pj
+
∂x∗i (p, e(p, u0))

∂y
· ∂e(p, u0)

∂pj

∂xhi (p, u0)

∂pj
=
∂x∗i (p, e(p, u0))

∂pj
+ xhj (p, u0)

∂x∗i (p, e(p, u0))

∂y

∂xhi (p, V (p, y))

∂pj
=
∂x∗i (p, y)

∂pj
+ xhj (p, V (p, y))

∂x∗i (p, y)

∂y

∂xhi (p, V (p, y))

∂pj
=
∂x∗i (p, y)

∂pj
+ x∗j(p, y)

∂x∗i (p, y)

∂y

where the penultimate line makes use of the assumption that u0 = V (p, y), so that e(p, u0) =
e(p, V (p, y)) = y. This is the famous Slutsky Equation. The left-hand side is the Hicksian
price effect —it is unobserved, but we have strong predictions about it. The right-hand side
is the sum of two term: a Marshallian price effect and a Marshallian income effect. Both of
these are observable, although the theory provides no predictions about their behavior. The
Slutsky equation provides a link between the unobservable and observable terms.

We often present the Slutsky equation in the following way:

∂x∗i (p, y)

∂pj︸ ︷︷ ︸
Total Effect

=
∂xhi (p, V (p, y))

∂pj︸ ︷︷ ︸
Substitution Effect

−x∗j(p, y)
∂x∗i (p, y)

∂y︸ ︷︷ ︸
Income Effect

The left-hand side is the ‘total price effect’—it is how much Marshallian demand actually
changes in response to a price change. This is what we actually observe. On the right-
hand side, we decompose this total change into two distinct effects. The first effect is the
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‘substitution effect’. It asks how quantity demanded would change if after the change in
prices, the agent was compensated with a corresponding change in income, to ensure that
any change in demand was not caused by a change in the purchasing power of the agent’s
income (i.e. affordability). This substitution effect is simply the change in the Hicksian
demand.

The second effect is the ‘income effect’. It asks how much quantity demanded changed
because the purchasing power of the agent’s income fell. By Shephard’s lemma, we know
that to maintain her purchasing power after a unit increase in pj, the agent would require an
additional xj dollars of income. Since she doesn’t actually receive this, it is as if her income
falls by xj (at least in purchasing power terms). For each dollar increase in income, we know
that demand will increase by ∂x∗i

∂y
. Thus, since y effectively falls by x∗j , demand will fall by

xj
∂x∗i
∂y

.

If j = i, so that we are considering the own-price effect, we know that the substitution effect
must be negative (since ∂xhi

∂pi
< 0). However, the income effect may take either sign depending

on the income elasticity. If i is a normal good, so that ηi > 0, then the income effect will be
negative as well; the total effect will also be negative. By contrast, if i is an inferior good
so that ηi < 0, then the income effect will be positive. The income and substitution effects
move in opposite directions, and thus the overall direction is ambiguous. If the magnitude of
the income is large enough, it may overwhelm the substitution effect, such that an increase
in price generates an increase in quantity.

X

IC1

y1

y0

x0

yh

A

C

B

x1 xh

BC0
BChBC1

Substn EffectIE

Suppose instead that j 6= i. We know by Slutsky symmetry that ∂xhi
∂pj

=
∂xhj
∂pi

. Moreover,
the sign of these cross-price effects may either be positive (if the goods are substitutes) or
negative (if they are complements). For concreteness, suppose they are substitutes. By the
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Slutsky equation, the Marshallian cross-price effects are:

∂x∗i
∂pj

=
∂xhi
∂pj
− x∗j

∂x∗i
∂y

∂x∗j
∂pi

=
∂xhj
∂pi
− x∗i

∂x∗j
∂y

The sign of the Marshallian cross price effects depends on the size and sign of the income
effect. For a normal good, the income effect moves in the opposite direction to the substi-
tution effect. (The increase in pj makes the agent poorer in real terms, which causes him to
buy fewer normal goods.) The sign of the Marshallian cross-price effect will be ambiguous.
Moreover, since the income effects can be different for different goods, it could be that the
Marshallian cross price effect ∂x∗i

∂pj
> 0 but ∂x∗j

∂pi
< 0. Although we classify the goods as sub-

stitutes, an increase in the price of one may cause a decrease in the price of the other. But
it is important to see that this is a result of the income effect overwhelming the substitution
effect.

10.4 Elasticities

We are interested in quantifying the size of changes in demand following changes in prices
or income.

Definition 17. The (price) elasticity of good i with respect to a change in the price of good
j is:

εij =
∂xi
∂pj
· pj
xi

The income elasticity of good i is:

ηi =
∂xi
∂y
· y
xi

You may be more familiar with elasticities defined as the percentage change in quantity
divided by the percentage change in price or income, as appropriate. To see that our formal
definition captures this, note that:

%∆xi
%∆pj

=
∆xi
xi
÷ ∆pj

pj
=

∆xi
∆pj
· pj
xi
≈ ∂xi
∂pj
· pj
xi

= εij

Example 43. Return to our previous example, with u(x1, x2) = − 1
x1
− 1

x2
. We showed that

the Marshallian demand for good 1 was given by:

x∗1(p1, p2, y) =
y

√
p1(
√
p1 +

√
p2)
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Then, the Marshallian elasticities are:

ε11 = −
y
(

1 +
√
p2

2
√
p1

)
p1(
√
p1 +

√
p2)2
· p1

y√
p1(
√
p1+
√
p2

= −
√
p1 − 1

2

√
p2√

p1(
√
p1 +

√
p2)

ε12 = −
y
√
p1

2
√
p2

p1(
√
p1 +

√
p2)2
· p1

y√
p1(
√
p1+
√
p2

= − 1

2
√
p2(
√
p1 +

√
p2)

η1 =
1

√
p1(
√
p1 +

√
p2)
· y

y√
p1(
√
p1+
√
p2)

= 1

In the following subsections, we explore several properties of elasticities that follow from the
theory.

10.4.1 Slutsky Equation in Elasticity Form

Let si =
pix
∗
i (p,y)

y
denote the (Marshallian) budget share of good i. It is the fraction of

income that the agent spends on good i.

Return to the Slutsky equation. We seek to transform the price and income effects into
elasticities:

∂x∗i
∂pj

=
∂xhi
∂pj
− x∗j

∂x∗i
∂y

∂x∗i
∂pj
· pj
x∗i

=
∂xhi
∂pj
· pj
x∗i
−
pjx
∗
j

y

∂x∗i
∂y
· y
x∗i

εij = εhij − sjηi

Notice that the income effect depends on the budget share of good j. The intuition is that
for a 1% increase in the price of good j, the consequent loss in the purchasing power of
income isn’t 1%, but rather depends on the fraction of income devoted to purchasing good
j. A 1% increase in pj generates an sj% decrease in the purchasing power of income, which
translates into a sjηi decrease in demand via the income effect.

10.4.2 Demand Homogeneity

Definition 18. A function f(x1, ..., xn) is homogeneous of degree r if, for any λ > 0,
f(λx1, ..., λxn) = λrf(x1, .., xn).
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Homogeneous functions have the property that if all inputs are scaled up in the same pro-
portion, then output will also respond in a related way. For example, homogeneity of degree
1 implies that if all inputs are doubled (tripled, etc), output will exactly double (triple, etc).

[Euler’s Theorem] Suppose f(x) is homogeneous of degree r. Then:

x1
∂f(x)

∂x1

+ ...+ xn
∂f(x)

∂xn
= rf(x)

Proposition 2. Marshallian demand is homogeneous of degree 0 in (p, y). I.e. x∗(λp, λy) =
x∗(p, y) for all λ > 0.

Corollary 1. The indirect utility function is homogeneous of degree 0 in (p, y). I.e.
V (λp, λy) = V (p, y) for all λ > 0.

If all prices and income are scaled up in proportion, the consumer’s choice will not change.
Intuitively, such a change in (p, y) leaves the budget set unchanged —anything, and only
those things, that were previously affordable, will be affordable after the change. Thus,
whichever bundle maximized utility under the old prices will also maximize utility under the
scaled-up prices.

An implication of demand homogeneity is that an agent’s choice does not depend on actual
prices and income, but rather on relative prices (i.e. opportunity cost) and real income
(purchasing power). Since the actual price levels do not matter, we are free to scale these
up and down as we see fit, and this will not affect the consumer’s decision. Often, for
convenience, we set the price of some ‘base’ good equal to one, and then rescale all other
prices and income relative to this good. This good is known as the numeraire.

Demand homogeneity also has implications for how price and income elasticities interact.
Take any good i. Since x∗i (p, y) is homogeneous of degree 0, Euler’s Theorem implies:

n∑
j=1

pj
∂x∗i (p, y)

∂pj
+ y

∂x∗i (p, y)

∂y
= 0

n∑
j=1

∂x∗i (p, y)

∂pj

pj
x∗i (p, y)

+
∂x∗i (p, y)

∂y

y

x∗i (p, y)
= 0

n∑
i=1

εij + ηi = 0

If we scale up pj by 1%, the effect on the demand for good i is given (in percentage terms)
by εij. If all prices and income are scaled up by 1%, then the overall effect on demand will
be the sum of all these elasticities. But we know the net effect must be zero.

Proposition 3. Hicksian demand is homogeneous of degree 0 in (p). I.e. xh(λp, u0) =
xh(p, u0) for all λ > 0, holding u0 fixed.
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Corollary 2. The expenditure function is homogeneous of degree 1 in p. I.e. e(λp, u0) =
λe(p, u0) for all λ > 0.

A similar intuition holds for the Hicksian demand case. If all prices are scaled-up in propor-
tion, then relative prices are unchanged, and so the cost minimizing bundle that achieves the
desired utility level will be unchanged. Of course, now the cost of achieving this bundle will
be higher by the amount of the scale factor. Hence, the expenditure function is homogeneous
of degree 1.

An immediate of Euler’s Theorem is:
n∑
i=1

εhij = 0

Note —we could have also gotten to this result by using the Marshallian version and substi-
tuting using the Slutsky equation.

10.4.3 Engel & Cournot Aggregation

Since Marshallian demand satisfies the budget constraint, any changes in prices or income
that affect the budget constraint in a regular way will also have a regular effect on Marshallian
demand elasticities.

Take the budget constraint, and suppose there is a change in income. Differentiate w.r.t. y:

n∑
i=1

pix
∗
i (p, y) = y

n∑
i=1

pi
∂x∗i (p, y)

∂y
= 1

n∑
i=1

pix
∗
i (p, y)

y

∂x∗i (p, y)

∂y
· y

x∗i (p, y)
= 1

n∑
i=1

siηi = 1

This result is known as Engel Aggregation. It says that the budget-share weighted income
elasticity must be one. Intuitively, if income goes up by 1%, then spending must also increase
by 1%. But prices are held constant, and so the spending increase must be a consequence of
increased demand. Engel Aggregation says that, on average, demand must increase by 1%
—but, of course, it may increase by more for some goods, and by less (or even decrease) for
other goods.
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Now, consider the effect of a change in the price of some good, pj say. Applying the same
procedure:

n∑
i=1

pix
∗
i (p, y) = y

n∑
i=1

pi
∂x∗i (p, y)

∂pj
+ x∗j(p, y) = 0

n∑
i=1

pix
∗
i (p, y)

y

∂x∗i (p, y)

∂pj
· pj
x∗i (p, y)

= −
pjx
∗
j(p, y)

y

n∑
i=1

siεij = −sj

This result is known as Cournot Aggregation. It says that the budget-share weighted
price elasticity (w.r.t pj) is negative and equal in magnitude to the budget share of good j.
Intuitively, if the price of good j goes up by 1%, and the agent was spending a fraction sj of
her budget on good j, then her budget tightens by sj%. Cournot Aggregation says that, on
average, demand must decrease by this amount (sj%) —but, of course, it may decrease by
more for some goods, and by less (or even increase) for other goods.

Expressing the Cournot Aggregation formula in terms of Hicksian elasticities is also instruc-
tive. Substituting the Slutsky equation gives:

n∑
i=1

si
(
εhij − sjηi

)
= −sj

n∑
i=1

siε
h
ij − sj

n∑
i=1

siηi = −sj

n∑
i=1

siε
h
ij − sj = −sj

n∑
i=1

siε
h
ij = 0

where the third line makes use of Engel Aggregation. The Hicksian version says that the
budget-share weighted compensated price elasticity (w.r.t pj) must be zero. Even though pj
has risen 1%, the agent must still purchase a bundle that achieves the original utility level.
On average, quantity demanded cannot change, since utility does not change. Of course,
the compensated demand for some goods will fall, and the compensated demand for other
goods will rise. (Indeed, since εjj < 0, it follows that the average cross-price elasticity must
be positive. Goods are, on average, Hicksian substitutes.)
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Chapter 11

Welfare & Consumer’s Surplus

11.1 Measures of Welfare

In this chapter, we seek to quantify the welfare implications of a change in prices and income.
A direct measure would be to simply ask how much the agent’s utility changed. But, as we
previously noted, the notion of utility is purely ordinal, and is not endowed with a standard
scale or unit of measurement. It’s not at all clear what a utility increase of 20 means, other
than that utility increased.

Instead, we try to get at a numerical measure of welfare by asking questions like: ‘How much
would the agent have been willing to pay’ to cause the change to come to pass? Or ‘how
much must we pay the consumer to compensate for the change?’ Such an approach has the
benefit of measuring welfare in dollars.

11.1.1 Money Metric Utility

Return to the expenditure function e(p, u0). Notice two things. First —it takes utility as
an input; the higher the desired utility, the higher will be the neccessary expenditure. We
saw this formally when we noted that ∂e(p,u0)

∂u0
= µh > 0. Thus, the expenditure function is

itself a measure of utility. Higher utility is associated with higher expenditure. Second, the
expenditure function is measured in dollars —it has the desired unit of measurement.

Take an arbitrary price vector q.

Definition 19. The money metric utility function m(u; q) = e(q, u) gives a measure of
utility level u, as the amount of money needed to achieve that utility given reference prices
q.

159
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For example, suppose prices and incomes change from (p1, y1) to (p2, y2). We know that an
agent choosing optimally will initially achieve utility u1 = V (p1, y1), and u2 = V (p2, y2) after
the change. A dollar measure of this change in utility would be:

m(u2; q)−m(u1; q) = e(q;V (p2, y2))− e(q;V (p1, y1))

for some (arbitrary) reference price vector q. Notice that our measure depends on the
reference prices. The measure will be different for different q’s. (This is to be expected;
we cannot escape the original critique that utility has no objective scale for measurement.)
The value of a dollar depends on the vector of prices that the agent faces. Notice also that,
although the actual prices changed between the two scenarios, the reference price remained
the same. It has to —otherwise we are not making a like-to-like comparison.

Although this approach works for any reference price level, there are some natural reference
prices that we might focus on. Amongst them: what was the price level before the change
took place? This would seem to be a natural reference point. Alternatively, what is the price
level that the agent was anticipating, given the change?

11.1.2 Equivalence Variation

Definition 20. The Equivalence Variation (EV) is defined by:

EV = e(p1;V (p2, y2))− e(p1;V (p1, y1))

The equivalence variation is the change in the money metric, using the original price level
as the baseline reference. The equivalence variation asks ‘how much money the agent would
need (without the change) to achieve the same utility as she would have if the change in prices
and income took place?’. An income change of EV is ‘equivalent to’ the anticipated change
from (p1, y1) to (p2, y2). If the change hurts the agent, EV will be negative. We can think of
EV as the maximum amount the agent would be willing to pay to avoid having the change
take place. (For example, in a different context, the equivalence variation would be how
much the agent would be willing to pay a blackmailer to avoid having harmful information
revealed.)

In the following diagram, we plot consumption of a given good on the horizontal axis, and
consumption of the numeraire good on the vertical axis. Since the price of the numeraire
good is 1, buying m more units of the good is equivalent to buying m more dollars of the
good. We can thus think of the vertical axis as being measured in dollars.

The diagram shows the EV associated with an increase in the price of the good along the
horizontal axis. The agent is originally at point A. If the price increase occurs, she will choose
bundle B. Instead, if there is no change in prices, but her income is reduced sufficiently to
bring her utility to the new level, she will choose C. The EV is the necessary amount of
income to be taken away. Since a price increase makes the agent worse off, the EV is negative.
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X

A
B

IC1

AOG

IC0
C

m1

m0

EV

Note that we can re-write EV as follows:

EV = e(p1, u2)− e(p1, u1)

= e(p1, u2)− e(p2, u2) + e(p2, u2)− e(p1, u1)

= −
[
e(p2, u2)− e(p1, u2)

]
+ (y2 − y1)

where we use the fact that e(pi, ui) = e(pi, V (pi, yi)) = yi.

Our formula for EV has been decomposed into two components: one relating to pure price
changes and the other relating to pure income changes. Notice that the EV of a pure income
change is just the income change itself. This should be obvious. with prices unchanged,
what income change is equivalent to a given anticipated income change? Whatever was
anticipated!

Now, consider a pure price effect, and for simplicity, suppose only the price of good j changes.
(It is easy to extend to multiple price changes.) Recall, that ∂e(p,u)

∂pj
= xhj (p, u). We also know

by the Fundamental Theorem of Calculus that for any (differentiable) function F :

F (b)− F (a) =

∫ b

a

dF (x)

dx
dx

Hence:

EV = −
[
e(p2, u2)− e(p1, u2)

]
= −

∫ p2j

p1j

∂e(p, u2)

∂pj
dpj

= −
∫ p2j

p1j

xhj (p, u2)dpj

which is the area between the Hicksian demand curve and the price axis. [More on this to
follow.]
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11.1.3 Compensating Variation

Definition 21. The Compensating Variation (CV) is defined by:

CV = e(p2;V (p2, y2))− e(p2;V (p1, y1))

The compensating variation is the change in the money metric, using the new price level
as the baseline reference. The compensating variation asks ‘how much money the agent
would need after the change to achieve her original level of utility?’. If the change hurts the
agent, CV will be negative. The sign of CV is constructed to have the same direction as the
change in utility. In a different context, the compensating variation would be the amount of
damages awarded by a court in compensation for an irreversible act that harms the plaintiff.

We see the compensating variation in the following diagram.

X

A

C

B

IC1

AOG

CV

m0

m1

IC0

If we increase income from m0 to m1, then at the new price, the consumer can afford bundle
C which lies on the original indifference curve IC0. Notice that at point C, IC0 is tangential
to the new budget constraint. (This should be obvious, since the consumer will choose the
new consumption bundle optimally, given his new level of income and the higher prices.)
You should have noticed that the move from bundle A to bundle C, corresponds to the
substitution effect. Since the price of good X is now higher, the consumer can achieve
the same utility by consuming less of good X, and more of the composite bundle. The
compensating variation is the additional income we had to give the consumer (m1 −m0).

Note that we can re-write CV as follows:

CV = e(p2, u2)− e(p2, u1)

= e(p2, u2)− e(p1, u1) + e(p1, u1)− e(p2, u1)

= −
[
e(p2, u1)− e(p1, u1)

]
+ (y2 − y1)
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Similar to EV, our formula for CV has been decomposed into two components: one relating
to pure price changes and the other relating to pure income changes. As before, notice that
the CV of a pure income change is just the income change itself. This should be obvious. with
prices unchanged, what income change compensates the agent for a given income change?
Whatever was the actual income change!

Now, consider a pure price effect, and again for simplicity, suppose only the price of good j
changes.

CV = −
[
(p2, u1)− e(p1, u1)

]
= −

∫ p2j

p1j

∂e(p, u1)

∂pj
dpj

= −
∫ p2j

p1j

xhj (p, u1)dpj

which is the area between the Hicksian demand curve and the price axis. In fact, we had an
analogous expression for EV, except that expression depended on Hicksian demand at the
new utility level, whilst CV depended on the Hicksian demand at the old utility level.

11.2 Consumer’s Surplus

11.2.1 Consumer’s Surplus

The result that CV and EV can be represented as the area between the price axis and the
Hicksian demand curve should have alerted you to another common measure of welfare: the
consumer’s surplus.

Definition 22. Suppose the price of good j changes from p1
j to p2

j , holding all other prices
constant. The consumer’s surplus is defined by:

CS = −
∫ p2j

p1j

x∗(p, y)dpj

The consumer’s surplus is the area between the Marshallian demand curve and the price
axis. This, again, is analogous to CV and EV, except now using Marshallian rather than
Hicksian demand.

Is the consumer’s surplus a valid measure of the agent’s welfare? To answer this question,
return to the Utility Maximization problem and the envelope theorem. Recall:

V (p, y) = u(x∗(p, y))− λ∗(p, y) [p · x∗(p, y)− y]
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By the envelope theorem:

∂V (p, y)

∂pj
= −λ∗(p, y)x∗j(p, y)

∂V (p, y)

∂y
= λ∗(p, y)

Combining these gives the following result:

Proposition 4 (Roy’s Identity).

x∗j(p, y) = −
∂V (p,y
∂pj

∂V (p,y)
∂y

Roy’s Identity is analogous to Shephard’s Lemma, but applied to Marshallian, rather than
Hicksian, demand.

Now, using the same logic as above, after a change in the price of good j, the change in the
agent’s utility is:

V (p2, y)− V (p1, y) =

∫ p2j

p1j

∂V (p, y)

∂pj
dpj = −

∫ p2j

p1j

∂V (p, y)

∂y
x∗j(p, y)dpj

where the second inequality follows by Roy’s Identity.

Now, if ∂V (p,y)
∂y

is constant —and this is a big if —then we have:

V (p2, y)− V (p1, y) = −∂V (p, y)

∂y

∫ p2j

p1j

x∗j(p, y)dpj =
∂V (p, y)

∂y
· CS

Hence, assuming the caveat holds, the change in the agent’s utility is proportional to the
consumer surplus. Why proportional? Notice that the change in utility is measured in
‘utils’, the consumer surplus is measured in dollars. The proportionality constant does the
job of converting dollars into utils. Indeed, the proportionality constant is precisely ∂V

∂y
—the

utility value of one extra dollar. Since this is assumed constant, it is, in fact, the utility value
of every dollar. Thus, assuming our caveat holds, the consumer surplus provides a dollar
measure of the change in the agent’s welfare.

But, note the importance of the caveat. If ∂V
∂y

is non-constant, then CS is not a exact measure
of the agent’s welfare (although, in some cases, it may be a decent approximation).
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11.2.2 Relationship to CV & EV

How are the compensating and equivalence variations and consumer surplus related to one
another?

Consider the following diagram in which (as in the previous examples) the price of the hori-
zontal good increases. The diagram draws both the compensating and equivalence variations,
as well as the associated Marshallian and Hicksian demand functions.

The Marshallian demand corresponds to the shift from A to B, as the price increases from
p0 to p1. In so doing, the agent’s utility decreases from u0 to u1. The equivalence variation
requires that income be taken away from the agent sufficient to cause his new utility to be
u1. In this scenario, the agent will choose bundle C, and so the Hicksian demand at u1

corresponds to the shift from C to B. The compensating variation requires that income
be given to the agent sufficient to return him to utility u0. In this scenario, the agent will
choose bundle D, and so the Hicksian demand at u0 corresponds to the shift from A to D.
Notice that, as depicted in the diagram, both goods are normal goods.

We can now illustrate the compensating and equivalence variations and the consumer surplus
using the demand curves in the lower panel:
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In the above diagrams, we noticed that CV > EV . Indeed, this was the case because the
Hicksian demand associated with utility u0 was higher at every price than the Hicksian
demand associated with utility u1. This property, in turn, followed from the fact that the
good in question was a normal good. Recall, u0 > u1, and so the income associated with u0

is higher than the income at u1. But with higher income, an agent will consume more of a
normal good (at every price level). The opposite would be true if the good were inferior.

We can also see this relationship by noting that the Hicksian demand curves, as drawn, are
both steeper than the Marshallian demand curve. This follows immediately from the Slutsky
equation. [To see this, note that:

∂x∗i (p, y)

∂pi
=
∂xhi (p, V (p, y))

∂pi
− xi

∂x∗i (p, y)

∂y
<
∂xhi (p, V (p, y))

∂pi
< 0

Marshallian demand is more responsive to prices (in the sense of decreasing by a larger
amount than Hicksian demand. Since we plot price on the vertical and quantity on the
horizontal axis, this implies that Hicksian demand is steeper.] By the consistency properties,
we also know that Marshallian and Hicksian demands must coincide at particular points;
x∗i (p

0, y) = xhi (p
0, u0) and x∗i (p1, y) = xhi (p

1, u1). This immediately tells us that c is to the
left of a and d is to the right of b, and so xhi (p, u0) must be to the right of xhi (p, u1).

Note, again that the opposite would be true if the good was inferior, or if the price decreased
rather than increased. In fact, we have the following relationship:

Price Increase Price Decrease
Normal Good CV > EV EV > CV
Inferior Good EV > CV CV > EV

Finally, we note that consumer surplus is bounded by the compensating and equivalence
variations. (It turns out this result is only true for a single price change, and that with
multiple price changes, CS may be very different from either CV or EV.) Thus, we can think
of CS as an easily calculable approximation of CV and EV, even though it is not theoretically
a correct measure of welfare.
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11.2.3 Which Measure Should We Use?

We have two different measures of welfare - CV and EV . Which should we use? The answer
depends in part on the context we wish to analyse. Consider the following example:

The government is concerned that the price of fresh fruit and vegetables is too high and that
this is affecting the eating habits of low/middle income earners. The government proposes
to subsidise the cost of fresh fruits and vegetables, and to pay for the subsidy by levying a
lump-sum income tax. Then, the appropriate measure of welfare would be the compensating
variation. The compensating variation is the highest income tax that would make the subsidy
worthwhile to the consumer. If the lump-sum income tax is less than CV , the consumers are
unambiguously better off. If the income tax is larger than CV , then consumers are worse
off.

I illustrate these scenarios in the diagram below:

B
D

A
B

C

Tax

Tax

CV

D
C

CV

X

AOG AOG

X

A

In the above diagram, the thick lines represent the actual budget constraints. The steep line
is the budget constraint before the price decrease. The flatter line is the budget constraint
after the change in price and income. (In the left hand panel, the magnitude of the income
tax is small, relative to the right hand panel.) The thin line is the budget constraint if
there was a price decrease (only) and no decrease in income. The dotted line is the budget
constraint after the price change, and if just enough income is taken away from the consumer,
so that they return to the original level of utility. In both diagrams, point A is the original
consumption bundle; point B is the bundle that would’ve been chosen if there was only a
price decrease, but not corresponding decrease in income; point C is the bundle that would
be chosen at the new prices, if just enough income was taken away from the consumer to
leave them as well off as they were prior to the price change; and point D is the actual new
consumption bundle. Note that points A,B and C are identical in both panels - only point
D differs. Clearly, if tax > CV then the consumer is worse off, and consumes a bundle on
a lower indifference curve. Conversely, if tax < CV , then the consumer is better off, and
consumes a bundle on a higher indifference curve.
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Suppose, on the other hand, the government decides to not decreases prices, but instead
determines to supplement consumers’ incomes, so that they can better afford fresh foods.
Then, the appropriate measure of welfare would be the equivalence variation. The equiva-
lence variation measures how much income the consumer would need to receive to make him
as well off as he would’ve been had the subsidy been implemented. If the magnitude of the
income supplement is larger than the EV , then clearly consumers are better off. Conversely,
if the income supplement is smaller than EV , the consumer would’ve been better off with
the subsidy.

11.3 Taxation/Subsidies and Excess Burden

We know that the government can affect consumer welfare by intervening in the market by
providing price subsidies funded by lump-sum income taxes (or conversely by taxing goods
and compensating consumers with income supplements). A natural question is this: can
the government in such a way that consumers are better off AND there is no net cost to
the government? If so, then there is a strong argument for government intervention in the
market.

We define the excess burden or deadweight loss as the net cost to the government of
implementing some policy, such that consumer welfare is unchanged. It is the difference
between the compensating (or equivalent) variation associated with some policy and the
cost to the government of that policy.

11.3.1 Example: School Vouchers

Consider the following example. The government wishes to increase participation in educa-
tion. It can do this by subsidising the cost of education (and hence reduce the price from
p0 to p1), with the subsidy being funded through a lump-sum income tax. Suppose the
government levies the largest possible tax that does not make consumers worse off (relative
to their utility prior to the implementation of the price subsidy and income tax) —this is the
compensating variation. Consumers originally choose bundle A, and after the price and in-
come changes, choose bundle B. The amount of revenue that the government raises through
the lump-sum income tax is given by CV = I0 − I1. Note that the consumer’s utility is
unchanged.
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In the above diagram, the dashed line is parallel to the old budget line, but contains the
new consumption bundle B. The cost of the subsidy to the government is given by I2 − I1.
(This is the difference in intercepts of two budget lines that contain point B - one reflecting
the old prices and one reflecting the new prices.) To see this formally, note that the formula
for the new budget constraint is:

p1E1 + y1 = I1

and the formula for the dotted line is:

p0E1 + y1 = I2

where (E1, y1) represents the amount of education and all other goods after the policy change,
and p0 and p1 represent the original and final prices of education. (Recall the price of all-
other-goods is normalised to 1). Subtracting these two equations gives:

(p0 − p1)× E1 = I2 − I1

The left hand side of the expression is exactly the cost of the government subsidy. (The
government provides the supplier with (p0 − p1) for each unit produced, and the suppliers
sell EB units.) Hence, the cost of the subsidy can be represented by the distance between I2

and I1.

Note that the cost of the subsidy is more than the amount of revenue that the government
can generate using income taxes. The excess burden of costs over revenues is given by I2−I0.
This illustrates a more general principle, that government policies that distort relative prices
are less efficient than lump-sum transfers.

We could think of this problem slightly differently. Suppose the government, after imple-
menting the subsidy, decided to raise taxes sufficiently to pay for the cost of the subsidy.
Then, it must raise taxes by more than the compensating variation (since we have just shown
that, if it raises taxes just by the level of CV , this will be insufficient to cover the entire cost
of the subsidy). But doing so makes consumers worse-off than they were prior to the subsidy.
Hence, it is not possible for the government to affect a policy through subsidies, which both
maintains the welfare of consumers and keeps the government’s budget in balance.
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11.3.2 Excess Burden & Deadweight Loss

Consider an agent who originally faces price-income vector (p, y), and let t = (t1, ..., tn) be a
menu of commodity taxes. The post-tax price to the consumer is p+ t, so that the price of
good i is pt + ti. We allow for the possibility that ti < 0, so that good i receives a subsidy.

The government’s net revenue from such a policy is R =
∑n

i=1 tix
∗
i (p+ t, y), and the agent’s

utility is u = V (p+ t, y). The equivalence variation is:

EV = −
n∑
I=1

∫ pi+ti

pi

xhi (q)dqi

where q = (q1, ..., qn) and qj = pj + tj for all j 6= i. The excess burden or deadweight
loss is the sum of the government’s revenue and the equivalence variation. (The former is
the societal gain whilst the latter is the agent’s loss from the policy.) We have:

DWL =
n∑
i=1

[∫ pi+ti

pi

xhi (p+ t, u)dqi −
∫ pi+ti

pi

xhi (q, u)dqi

]
=

n∑
i=1

∫ pi+ti

pi

(
xhi (p+ t, u)− xhi (q, u)

)
dqi

≤ 0

where the first line makes use of the fact that xhi (p+t, u) = x∗i (p+t, y). To see why this expres-
sion is non-positive, recall that ∂xhi

∂qi
≤ 0. Suppose ti > 0 so that there is a genuine tax on good

i. Then for qi ∈ (pi, pi+ti), xhi (p+t, u) ≤ xhi (q, u), and so
∫ pi+ti
pi

(
xhi (p+ t, u)− xhi (q, u)

)
dqi ≤

0. Suppose, instead, that ti < 0, so that there is a subsidy on good i. Then for
qi ∈ (pi + ti, pi), xhi (p + t, u) ≥ xhi (q, u). Then:

∫ pi
pi+ti

(
xhi (p+ t, u)− xhi (q, u)

)
dqi ≥ 0, where

we have reversed the integration bounds to make the integral positively oriented. Then∫ pi+ti
pi

(
xhi (p+ t, u)− xhi (q, u)

)
dqi ≤ 0. Hence the DWL is the sum of non-positive integrals,

which must be non-positive.

If we focus on a single price increase, the deadweight loss is analogous to triangular area we
are used to drawing, except it is defined over Hicksian demand, not Marshallian. <Draw
Diagram>

This makes the general point that we saw in the school voucher example. If the government
levies a tax on a good, then the revenue it raises will be smaller than the equivalence variation
(which is the cost of compensating the consumer for the higher prices she faces). The reason
is that, by the substitution effect, the higher price causes the agent to substitute away
from the good, so the government earns revenue on a smaller tax base. Similarly, if the
government levies a subsidy, then the cost to the government of the subsidy will be larger
than the equivalent variation (which is the amount the agent would accept in lieu of the
subsidy). The latter point makes the case starkly. If the point of the subsidy was to make
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the agent better off, the government could achieve this goal more cheaply by simply giving
a cash transfer than by distorting prices. In either case, the net societal benefit is negative.

Technical Note: Given our expression for DWL, the marginal DWL from increasing tj is:

∂DWL

∂tj
=

∂

∂tj

n∑
i=1

∫ pi+ti

pi

(
xhi (p+ t, u)− xhi (q, u)

)
dqi

=
n∑
i=1

∫ pi+ti

pi

∂xhi (p+ t, u)

∂pj
dqi

=
n∑
i=1

ti
∂xhi (p+ t, u)

∂pj

=
n∑
i=1

ti
∂xhj (p+ t, u)

∂pi

where the final line follows by Slutsky symmetry. A small increase in the tax on good i
causes overall DWL to change by an amount that depends on the size of existing taxes on
each good and the Hicksian price responsiveness of each good to the price of good i. We will
see the relevance of this shortly.

11.4 Optimal (Ramsey) Taxation

Consider an agent who has preferences over n goods (x1, ..., xn) and leisure L. The agent
has T units of discretionary time, which she can spend either working or in leisure. (Let
z = T − L denote hours worked.) The prices of goods are p1, ..., pn and the agent earns a
wage w. Leisure is costless. The agent’s problem is:

max
x1,..,xn,L

u(x1, ..., xn, L) s.t. p1x1 + ...+ pnxn = w(T − L)

We can re-write this as:

max
x1,..,xn,L

u(x1, ..., xn, L) s.t. p1x1 + ...+ pnxn + wL = wT

which makes clear that w is the (shadow) price of leisure and wT is the agent’s (exogenous)
full income.

There is a government that has an exogenous revenue requirement R.

11.4.1 First Best

Suppose the agent’s leisure choice is observable and (thus) taxable. The government can
levy proportional taxes τi on goods and τL on labor income, so that commodity prices are
(1 + τi)pi and the price of leisure is (1 + τL)w.
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Now, suppose the government sets a common tax rate of τ on all goods an leisure. Then the
agent’s problem becomes:

maxu(x, L) s.t. (1 + τ)p · x+ (1 + τ)wL = wT

or equivalently:

maxu(x, L) s.t. p · x+ wL =
1

1 + τ
wT

A uniform tax on all goods and leisure is equivalent to a lump-sum tax on the agent’s
exogenous full income (where a fraction τ

1+τ
is confiscated). Since this does not distort

prices, the Hicksian demands are unaffected, and so we know there is no deadweight loss or
excess burden. [Of course, the government will find it difficult to actually levy the lump-sum
tax, so the uniform tax on commodities and leisure does the job in its place.] The government
should set a uniform proportional tax rate of τ = R

R+wT
.

11.4.2 Second Best

What if leisure is unobservable to the government (since it is un-transacted) and so it cannot
be taxed? The government could tax labor instead. Does this amount to the same thing?

Suppose the government sets a uniform tax rate τ on goods and labor. The agent’s problem
is:

maxu(x, L) s.t. (1 + τ)p · x = (1 + τ)wz

Notice that the labor tax is actually a subsidy, since it increases the agent’s income. Notice
also that all the (1 + τ)’s cancel. A uniform tax collects no revenue. The revenue from
commodity taxation is exactly offset by the subsidy to labor. The lesson is that if leisure
cannot be taxed, the tax system has to distort prices if it has any hope of collecting revenue.

Return to our previous setup, where there are per-unit taxes ti on goods and labor. The
agent’s budget constraint is:

n∑
i=1

(pi + ti)xi = (w + tL)z

By demand homogeneity, we know that we can normalize the price of some good, and re-scale
all other prices accordingly. By convention, we do this normalization by setting tL = 0. (But
note —this does not mean we’re ruling out labor taxation. Just that any system with labor
taxation is equivalent to the normalized system without, after an appropriate re-scaling.)
Also, for convenience, we denote x0 = −z and p0 = w so that the budget constraint is:

q · x = q0x0 +
n∑
i=1

qixi = −wz +
n∑
i=1

qixi = 0

where qi = pi + ti and q0 = w (since t0 = 0). The agent’s unearned income y = 0.
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The agent’s problem is:

max
x0,..,xn

u(x1, ..., xn, T + x0) s.t.q0x0 + ....+ qnxn = 0 = y

The government’s problem is:

maxV (q, y) s.t.
n∑
i=1

(qi − pi)x∗i (q, y) = R

Notice that the revenue constraint does not include x0, since labor is untaxed by assumption.
Taking producer prices pi as given, choosing taxes {t1, ..., tn} is equivalent to choosing post-
tax prices {q1, ..., qn}. The Lagrangian is:

L = V (q, y) + µ

[
n∑
i=1

(qi − pi)x∗i (q, y)−R

]

where µ > 0 is the marginal welfare loss associated with increasing R by 1 unit.

The FOC for qi is:
∂V (q, y)

∂qi
+ µ

[
x∗i (q, y) +

n∑
j=1

tj
∂x∗j(q, y)

∂qi

]
= 0

The first term is the direct welfare effect on the consumer. The bracketed term consists
of two parts. The first is the pre-substitution revenue effect; a unit increase in ti increases
revenue by 1 for each unit of good i consumed, and so revenue increases by xi. The second
term includes all substitution effects stemming from the rise in the price of good i.

Now, using Roy’s Identity, substitute ∂V (p,y)
∂qi

= −λx∗i (q, y) where λ = ∂V (q,y)
∂y

is the agent’s
(private) marginal utility of money. Furthermore, use the Slutsky equation to substitute
∂x∗j
∂qi

=
∂xhj
∂qi
− x∗i

∂x∗j
∂y

. All told, we have:

−λx∗i + µ

[
x∗i +

n∑
j=1

tj

(
∂xhj
∂qi
− x∗i

∂x∗j
∂y

)]
= 0

Let

α = λ+ µ

n∑
j=1

tj
∂x∗j
∂y

be the social marginal utility of money. (The first term is the agent’s private marginal
utility of money. The term inside the summation is how much extra revenue the government
would get if the agent had one extra dollar to spend. Thus, multiplying this by µ gives the
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additional utility benefit to the agent of having her tax burden reduced by this amount.)
Notice that this is independent of i. Then, re-arranging the above gives:

1

x∗i

n∑
j=1

tj
∂xhj
∂qi

= −µ− α
µ

This is the classic Ramsey optimal taxation formula. Let us make sense of it. The numerator
on the LHS is simply the marginal deadweight loss from raising the tax on good i by 1 unit.
The denominator on the LHS is the (mechanical) additional revenue that the government
receives by increasing the tax on good i by 1 unit (pre-substitution). The ratio is then the
marginal deadweight loss per dollar revenue raised when taxing good i.

Next, notice that the RHS is a constant. Since there was nothing particular about the good
i that we chose, this gives us the following result: The marginal DWL per dollar of revenue
raised must be the same for all taxable goods. This should be intuitive. At the margin, if
the marginal excess-burden (per unit revenue) was larger for good i than good j, then the
government could reduce taxes on good i and increase taxes on good j in a way that kept
revenue constant, and decreased overall DWL.

We can use Slutsky symmetry to re-write the Ramsey formula in the following way:

1

x∗i

n∑
j=1

tj
∂xhi
∂qj

= −µ− α
µ

This makes most intuitive sense when taxes are small. If so, then given a set of taxes
t1, .., tn, the total change in the agent’s (compensated) demand of good i is approximately
∆xhi ≈

∑n
j=1 tj

∂xhi
∂qj

. Thus, the LHS is roughly the proportional change in the (compensated)
demand for good i. Again, since the RHS is constant, optimal taxation requires that the
demand for all goods change in proportion to one another. (Note —we call ∆xhi

xi
the index of

discouragement. It is how much (relatively) taxation should depress demand for each good.)

We can re-write the Ramsey rule using elasticities rather than Hicksian price effects. We
have:

1

x∗i

n∑
j=1

tj
∂xhi
∂qj

= −µ− α
µ

n∑
j=1

tj
qj
· ∂x

h
i

∂qj
· qj
x∗i

= −µ− α
µ

n∑
j=1

tj
qj
· εhij = −µ− α

µ
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where tj
qj

=
tj

pj+tj
is the percentage of the post-tax price that is paid in taxes.

Recall, this equation holds for each good i = 1, ..., n, and so in fact, we have a system of n
(linear) equations in n variables. We can write this in matrix form:ε

h
11 . . . εh1n
... . . . ...
εhn1 . . . εhnn




t1
q1
...
tn
qn

 = −µ− α
µ

 1
...
1


The Ramsey rule is very general. I now consider some simple classic results. First, suppose
that compensated cross-price effects are zero between all taxable goods; i.e. εhij = 0 for all
i 6= j and i, j = 1, ..., n. Then we have:

ti
qi

= −µ− α
µ
· 1

εhii

This is the famous inverse elasticity formula. When taxable goods are Hicksian independent
(so that there are no Hicksian cross price effects; i.e. an increase in the tax on good i does
not cause DWL to change because of changes in the demand for good j)... the tax rate on
each good should be inversely proportional to its (Hicksian) own-price elasticity.

But we know that, by demand Homogeneity,
∑n

j=0 ε
h
ij = 0. Thus, if by assumption εhij = 0

whenever i 6= j and j 6= 0, then εhi0 = −εhii. [Recall —we only assumed that taxable goods
were Hicksian independent.] Recall, the price of good 0 is the wage (i.e. the shadow price of
leisure). Moreover, since εii < 0 it must be that εi0 > 0 —so that good i is a substitute for
leisure.

The inverse elasticity formula becomes:

ti
qi

=
µ− α
µ
· 1

εhi0

Thus, the tax rate on each good should be inversely proportional to its substitutability with
leisure. Goods that are more complementary to leisure should have higher taxes.

In thinking about this insight, it is worth returning to the problem that motivated our
second best analysis. If leisure were taxable, then optimal commodity taxation would be
tantamount to lump-sum taxation and there would be no DWL. The reason why the optimal
taxation problem becomes challenging is that leisure is not taxable, and this implies that
to raise revenue, the government must levy price distorting taxes. We must then solve for
the DWL minimizing tax profile. The Ramsey formula tells us that this optimal tax profile
is constructed so as to indirectly tax leisure as best as possible by targeting goods that a
complementary to leisure.
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Chapter 12

General Equilibrium & Welfare

In the previous chapters, we have provided a descriptive theory of how goods and resources
will be allocated within a market framework, given a vector of prices. In this chapter, we
ask two big questions:

1. How should goods and resources be allocated?

2. Can the market achieve these desired allocations?

12.1 Setup

Consider the following environment: There are I agents, i = 1, ..., I. There are n goods
j = 1, ..., n and m inputs k = 1, ...,m. For simplicity we assume that each good is produced
by a single (unique) firm, so that there are n firms in total. (We can easily generalize
this assumption.) Let x = (x1, ..., xn) denote a generic bundle of consumption goods, and
z = (z1, ..., zm) denote a generic bundle of inputs.

Agents have preferences over consumption bundles. Let ui(x) be a utility function that rep-
resents agent i’s preferences over bundles. Similarly, each firm has a production technology
represented by a production function yj = fj(z), where yj is the quantity of output produced
by firm j, and z is the associated input bundle.

Each agent begins with an endowment of inputs ei = (ei1, ...., e
i
m). Notice that we use

subscripts to denote inputs and superscripts to denote the agent who receives them. Let
ek =

∑
i e
i
k denote the aggregate endowment of input k. There is no initial endowment of

goods. Consumption of final goods and services requires the agents to ‘sell’ resources to firms,
who then engage in production, and ‘re-sell’ final goods and services back to consumers.

Definition 23. An allocation specifies:

177
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• A vector of inputs to be utilitized by each firm: {zj}nj=1 = {(zj1, . . . , z
j
k)}nj=1.

• The quantity of goods to be produced by each firm: y1, · · · , yj.

• A vector of goods consumed by each agent: {xi}Ii=1 = {(xi1, . . . , xin)}Ii=1.

An allocation specifies which firms get which resources, how much output is produced, and
how that output is distributed amongst the agents in the economy.

Definition 24. An allocation is feasible if:

• All inputs are allocated: For each input k,
∑

j z
j
k = ek.

• All outputs are allocated: For each good j,
∑

i x
i
j = yj.

• Outputs are technologically feasible: For each good/firm j: yj = fj(z
j).

Our study of general equilibrium will be in two parts. We first begin by asking what types
of allocations are ‘desirable’ or ‘efficient’. To do so, we ask how a hypothetical benevolent
social planner would choose to allocate inputs and outputs, if she could freely take from some
and give to others. Allocations chosen by a benevolent social planner establish a benchmark
against which to assess the performance of actual institutions, such as markets. In the second
part of our analysis, we study the actual allocation that would arise in a competitive market,
and compare it to the efficient benchmark.

12.2 Pareto Optimality

In this subsection, we step away from the market —you won’t see any mention of prices
—and answer the first question: which allocations are desirable?

Let a and b be two different allocations.

Definition 25. Allocation aPareto dominates allocation b, if every agent is at least as well
off under allocation a, and some agents are strictly better off. (Formally, ui(xi(a), yi(a)) ≥
ui(xi(b), yi(b)) for each i ∈ {1, . . . , I}, with strict inequality for at least one i.)

We say a is Pareto superior to b and that b is Pareto inferior to a. If an allocation is
Pareto dominated, then it is possible to reallocate goods between agents in such a way as to
make no agent worse off, and some agents better off.)

Definition 26. An allocation is Pareto optimal (or Pareto efficient) if there is no allo-
cation that Pareto dominates it.
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An allocation is Pareto optimal if it is impossible to reallocate goods in such a way that
some agents are better off, without making other agents worse off.

Example 44. Suppose there are two goods: apples and bananas. Agent 1 enjoys bananas
but has a strong preference for apples —she will willingly exchange any quantity of bananas
for more apples. Agent 2 has the opposite preference —she enjoys apples, but has a strong
preference for bananas. Suppose there are 10 apples and 20 bananas to allocate between the
two agents.

• The allocation (x1
A, x

1
B) = (5, 5) and (x2

A, x
2
B) = (5, 10) is not Pareto optimal. E.g. it

is Pareto dominated by the allocation (x1
A, x

1
B) = (5, 10) and (x2

A, x
2
B) = (5, 10). The

original allocation was inefficient because it failed to allocated all possible goods.

• The allocation (x1
A, x

1
B) = (0, 20) and (x2

A, x
2
B) = (10, 0) is not Pareto optimal. It is

Pareto dominated by (x1
A, x

1
B) = (10, 0) and (x2

A, x
2
B) = (0, 20).

• The allocation (x1
A, x

1
B) = (10, 5) and (x2

A, x
2
B) = (0, 15) is Pareto optimal.

• In fact, any allocation of the form: (x1
A, x

1
B) = (10, c) and (x2

A, x
2
B) = (0, 20 − c) or

(x1
A, x

1
B) = (d, 0) and (x2

A, x
2
B) = (10− d, 20) is Pareto optimal.

Comments

• A Pareto optimal allocation does not necessarily Pareto dominate all other allocations.
(e.g. In the above example, consider the allocations (x1

A, x
1
B) = (8, 0) and (x2

A, x
2
B) =

(1, 20), versus (x1
A, x

1
B) = (9, 2) and (x2

A, x
2
B) = (1, 18). We know that the first is Pareto

optimal and the second is not. Yet, the first does not Pareto dominate the second.

• There may be many Pareto optimal allocations.

• Pareto optimality is an efficiency notion - it asks whether we have exploited every
opportunity to reallocate goods in a way that is mutually beneficial to agents. However,
it is not an equity notion. (It makes no comment about the distribution of goods
between agents - as long as it is not possible to reallocated the goods in such a way
that at least some agents are better off and no-one is worse off.) To this extent, we can
think of the Pareto criterion as a minimal requirement of any notion of optimal social
allocation. (Surely we wouldn’t ever NOT want the Pareto condition to be satisfied.)
In addition, we may wish to impose further criteria to attend to equity and/or other
concerns.

How can we know if an allocation is Pareto optimal? Let’s consider the social planner’s (or
Pareto Planner’s) problem. Let γ1, . . . , γI > 0 be a set of ‘Pareto weights’, and suppose the
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Pareto planner chooses the allocation to maximize:

max
x1,...,xI ,z1,...,zn

∑
i

γiui(x
i)

s.t.
∑
i

xij = fj(z
j) ∀j = 1, . . . , n∑

j

zjk = ek ∀k = 1, . . . ,m

I.e. the Pareto planner seeks to allocate resources and outputs in a feasible way that maxi-
mizes a weighted sum of the agent’s utilities.

Lemma 12. Suppose an allocation ({xi}, {zj}) solves the Planner’s problem for some set of
Pareto weights γ1, . . . , γI . Then the allocation is Pareto optimal.

To find the set of Pareto optima it suffices to solve the Planner’s problem for various Pareto
weights. Whatever solutions come out (as we vary the Pareto weights) will be Pareto optima.
The intuition is straightforward. At a Pareto optimum, it is impossible to make some agents
better off without making others worse off. But that condition must obviously be met if
the planner is maximizing a weighted sum of agents’ utilities. (Note —you may object that
taking weighted sums of utilities is too simplistic, and that there are better ways of getting at
social welfare. But we’re not taking a stance on what the social welfare function should look
like. We’re simply arguing that if the planner were to maximize weighted sums of utilities,
he would span out the set of Pareto optima.)

Let us write the Lagrangian for the Pareto planner’s problem. Note that there are now n+m
constraints. Let λxj denote the Lagrange multiplier associated with the constraint that the
total quantity of good j allocated must equal the amount supplied by firm j. Similarly, let
λzk denote the Lagrange multiplier associated with the constraint that the total quantity of
input k allocated must equal its aggregate endowment. Recall, these Lagrange multipliers
can be interpretted as social opportunity costs.

L =
∑
i

γiui(x
i)−

∑
j

λxj

(∑
i

xij − fj(zj)

)
−
∑
k

λzk

(∑
j

zjk − ek

)

The first order conditions are:
∂L
∂xij

= γi
∂ui(x

i)

∂xj
− λxj = 0 ∀i, j (12.1)

∂L
∂zjk

= λxj
∂fj(z

j)

∂zk
− λzk = 0 ∀j, k (12.2)

From the first order conditions, we can show that Pareto optimality requires that 3 types of
conditions be met:
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1. The input mix for each firm must be optimal. (We cannot reallocate inputs between
firms in such a way that each firm can produce (weakly) more.)

2. The output mix must be optimal for agents. (I.e. We cannot make all agents (weakly)
better off by producing a different mix of goods (given finite inputs).

3. The allocation of outputs between the agents must be optimal. (I.e. given the outputs
produced, we cannot make all agents (weakly) better off by re-allocating goods between
them.)

12.2.1 Efficient Input Allocation

Start with the first type of condition: efficient input allocation. To see what is required
here, take the second FOC. Since this must hold for any two inputs k and k′, we have:
λxjMP j

k (zj) = λzk and λxjMP j
k′(z

j) = λzk′ . Combining these (substituting out for λxj ) gives:

MP j
k (zj)

MP j
k′(z

j)
=
λzk
λzk′

Notice two things. First, the left hand side is the ratio of marginal products, which we
know is the marginal rate of technical substitution for firm j. Second, the right hand side is
independent of which firm we are analyzing. Hence, the MRTS must equal the same constant
for all firms, and so the MRTS’s must be equal for all firms. We have:

MRTSjk,k′(z
j) = −MP j

k (zj)

MP j
k′(z

j)
= −MP j′

k (zj
′
)

MP j′

k′ (z
j′)

= MRTSj
′

k,k′(z
j′)

But recall, the marginal rate of technical substitution is the amount of input k′ that the firm
can forgo in order to keep output unchanged if it hires one more unit of k. Pareto optimality
requires that all firms be willing to trade-off inputs at the same rate.

We can represent this diagrammatically using the Edgeworth box in Production. (See
Figure 12.1, below.) The dimensions of the Edgeworth box represent the total supply of
two inputs k and k′. The horizontal distances represent the quantities of k allocated to each
firm, and the vertical distances represent the quantities of k′. The input allocation for firm
j is measured from the bottom-left vertex Oj, whilst the allocation for firm j′ is measured
from the top-right vertex Oj′ .

We can draw the isoquants for each firm within the Edgeworth box. Isoquants retain their
usual properties — they are downward sloping, convex and non-intersecting. As usual, the
isoquants which are further away from a firm’s origin, represent input bundles producing a
larger quantity of output.

Lemma 13. An allocation of inputs is Pareto optimal if the isoquants of each firm going
through that allocation are tangent to one another.
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Oj

Oj′

ek

ek′

A
IQj′

0

IQj
0

IQj′

1

IQj
1

B

Figure 12.1: Edgeworth Box in Production

We prove this by contradiction. Consider an allocation where the isoquants are not tangent
(such as A). Suppose we did a reallocation where we took 1 unit of input k from firm j′ and
gave it to firm j. Firm j could then forgo an amount of input k′ equal to its MRTS, and
keep output unchanged. Since j has steeper isoquant at A than j′, it is clear that firm j
can afford to give up more of input k′ than firm j′ needs to be given to compensate her for
having the one unit of k taken away. So after fully compensating firm j′, there are still some
units of input k′ remaining. These can either be allocated to firm j or to j′ or it can be split
between both firms. Either way, we have reallocated inputs in such a way as to (weakly)
increase the quantities provided by both firms. Clearly, allowing the inefficient production
plan could not be optimal.

It turns out that there are (infinitely) many Pareto optimal allocations of inputs. We refer
to the set of Pareto optimal allocations as the Contract Curve in Production. At every
point along the contract curve, there are isoquants for each firm that are tangent to each
other. Note that the allocations Oj (where firm j receives nothing and firm j′ receives all
inputs) and Oj′ (where firm j′ receives nothing, and j receives all inputs) must lie on the
contract curve. (These allocations must be Pareto optimal, since it is impossible to increase
the output of one firm without decreasing the output of the other). As we move along the
production contract curve from Oj to Oj′ , we move from optimal input allocations which
favor production by firm j′, to those which favour production by firm j.

Definition 27. The Production Possibility Set represents the set of output bundles
that can be produced given different feasible allocations of inputs between the firms. The
Production Possibility Frontier represents the set of efficient output bundles that are
possible.

Along the production possibility frontier, if the quantity of some good increases, then the
quantity of some other good must decrease. As we move along the contract curve in produc-
tion, we span out the production possibility frontier.
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Oj

Oj′

ek

ek′

Figure 12.2: Contract Curve in Production

Suppose we wish to increase firm j’s output by 1 unit and we do so by increasing the amount
of k allocated to firm j. From the above discussion, we know that we must increase firm
j’s allocation of k by 1

MP j
k

. Taking this amount of k away from firm j′ causes its output to

decrease by MP j′
k

MP j
k

. If instead, we made the transformation by reallocating some other input

k′, firm 2’s output would decrease by MP j′
k′

MP j

k′
. But, along the contract curve in production,

these ratios are equal. Hence, it doesn’t matter which inputs we change to increase firm 1’s
output —in equilibrium, firm 2’s output will decrease by the same amount.

Definition 28. The marginal rate of transformation is the quantity of good j′ that
must be forgone to increase the quantity of good j by 1 unit, assuming efficient input mix.

MRTj,j′ = −MP j′

k

MP j
k

for any input k.

The marginal rate of transformation is the slope of the production possibility frontier. See
Figure 12.3.

12.2.2 Efficient Output Allocation

Now, consider any point along the Production Possibility Frontier (i.e. Contract Curve in
Production) and suppose the Pareto Planner allocates inputs in the way that produces that
output mix. How should the Planner then allocate the resulting output amongst the various
agents?

To see what is required here, take the first FOC from the Planner’s problem. Since this
condition must hold for any two outputs j and j′, we have: γiMU i

j(x
i) = λxj and γiMU i

j′(x
i) =
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Oj

Oj′
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ek′
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yj′
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b
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MRT

Figure 12.3: Production Possibility Frontier

λxj′ . Combining these (substituting out for γi) gives:

MU i
j(x

i)

MU i
j′(x

i)
=
λxj
λxj′

Notice two things. First, the left hand side is the ratio of marginal utilities, which we know
is the marginal rate of substitution for agent i. Second, the right hand side is independent of
which agent we are analyzing. Hence, the MRS must equal the same constant for all agents,
and so the MRS’s must be equal for all agents. We have:

MRSij,j′(x
i) = −

MU i
j(x

i)

MU i
j′(x

i)
= −

MU i′
j (xi

′
)

MU i′
j′(x

i′)
= MRSi

′

j,j′(x
i′)

But recall, the marginal rate of substitution is the amount of good j′ that the agent can
forgo in order to keep utility unchanged if she consumes one more unit of good j. Pareto
optimality requires that all agents be willing to trade-off outputs at the same rate.

As before, we can represent the set of all such possible allocations using an Edgeworth
Box in Consumption. The dimensions of the box are x × x′ - which represent the total
supply of goods x and x′ (given the point on the contract curve that was selected). Horizontal
distances in the Edgeworth box represent the consumption of good x, whilst vertical distances
represent the consumption of good x′. The consumption of agent i is measured from the
bottom-left vertex Oi, whilst the consumption of agent i′ is measured from the top-right
vertex Oi′ . See Figure 12.4.

We can represent each agent’s preferences over allocations using indifference curves. Indiffer-
ence curves retain their usual properties (downward sloping, convex and non-intersecting).
As usual, indifference curves which are further away from an agent’s origin, represent more
preferred bundles. The analogy between the Edgeworth Box in Consumption and Production
should be evident. The results are similarly analogous.
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Figure 12.4: Edgeworth Box in Consumption

Lemma 14. An allocation of goods is Pareto optimal if the indifference curves of each agent
going through the allocation are tangent to one another.

To understand this result, recall that the slope of an indifference curve (i.e. MRS) represents
the rate at which agents are willing to forgo good j′ in order to get an additional unit of good
j such that they remain just as well off. Suppose MRSij,j′ 6= MRSi

′

j,j′ . For concreteness, let
MRSi = 3 and MRSi

′
= 2. Then, agent i is willing to forgo 3 units of good j′ to get an

additional unit of good j, whilst agent i′ is only willing to forgo 2 units of good j′. Now,
suppose we reallocate goods such that agent i receives one more unit of good j, and agent i′
receives one fewer unit of j. i is willing to give up 3 units of j′ in return for the additional
unit of j. However, i′ only requires an additional 2 units of j′ to compensate him for the
loss of good j. Hence, we can take 3 units of j′ away from i, and give 2 of these units to i′ -
and leave both agents just as well off as before. But we still have one unit of j′ remaining.
We can either give this entirely to agent i, or entirely to agent i′ - or share it between i and
i′ (in some proportion). Either way, it is always possible to make at least one agent better
off without making any agent worse off. Such a reallocation will be possible whenever the
MRS’s are not the same.

It turns out that there are (infinitely) many Pareto optimal allocations of goods. We refer
to the set of Pareto optimal allocations as the Contract Curve. At every point along the
contract curve, there are indifference curves for each agent which are tangent to each other.
We represent this in the following diagram. (The blue lines represent the indifference map
of agent i whilst the red lines represent the indifference map of agent i′. The thick line is the
contract curve). Note that the allocations Oi (where agent i receives nothing and agent i′
receives everything) and Oi′ (where agent i′ receives nothing, and i receives everything) must
lie on the contract curve. (These allocations must be Pareto optimal, since it is impossible
to make one agent better off without making another worse off). As we move along the
contract curve from Oi to Oi′ , we move from optimal allocations which favour agent i′ to
those which favour agent i. See Figure 12.5.
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Oi

Oi′

yj

yj′

Figure 12.5: Contract Curve in Consumption

12.2.3 Efficient Output Mix

Suppose the planner allocates inputs to firms efficiently, so that it is impossible to reallocate
them in a way that (weakly) increasing production by all firms. Given the output produced,
suppose the planner also allocates these amongst agents efficiently, so that it is impossible to
reallocated them in a way that makes all agents (weakly) better off. Are we done? There is
an additional margin along which we might be able to improve things. It could be that the
mix of outputs produced by firms does not match the output mix preferred by consumers.
E.g. it could be that the agents have a strong preference for one good, but that inputs are
allocated s.t. other goods are produced in high quantity instead.

To see what is required here, return to the first order conditions from the planner’s problem.
By the first order condition for inputs, for any two firms j and j′, we have: λxjMP j

k (zj) = λzk
and λxj′MP j

k (zj
′
) = λzk. Combining these (substituting out for λzk) gives:

λxj
λxj′
· MP j

k (zj)

MP j′

k (zj′)
= 1

Next, by the first order conditions for outputs, for any two goods j and j′, we have:
γiMU i

j(x
i) = λxj and γiMU i

j′(x
i) = λxj′ . Combining these (substituting out for γi) gives:

MU i
j(x

i)

MU i
j′(x

i)
=
λxj
λxj′

Notice that the same ratio of Lagrange multipliers is present in both equations. Solving out
for this gives:

MRS = −
MU i

j(x
i)

MU i
j′(x

i)
= −MP j′

k (zj
′
)

MP j
k (zj)

= MRT

Pareto optimality requires that the marginal rate of transformation (i.e. the slope of the
Pareto Frontier) coincide with the marginal rate of substitution for each agent. (Efficient
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Figure 12.6: Efficient Output Mix

output allocation requires that all MRS’s coincide, so it suffices that MRS=MRT for some
agent.) Agents must be willing to trade off goods at the same rate that the market is able to
transform one into the other, given the production processes of the different firms producing
different goods. See Figure 12.6.

Intuitively, if this wasn’t the case, there would exist a re-allocation of inputs that produces a
different mix of outputs that is more preferred by the agents. For example, consider a point
along the contract curve in consumption where MRSij,j′ = −3 and a point on the Pareto
frontier where MRTj,j′ = −2. Then the agents would each be willing to give up 3 units of
j′ for one additional unit of j. But the PPF requires that they only forgo 2 units. So, we
could allocate slightly more inputs to firm j, so that it produces one more unit of output;
and do so by taking away inputs from firm j′, causing its output to decrease by 2. We then
give this additional unit of j to some consumer, who would willingly trade it for 3 units of
j′. Of course, firm j′ is producing 2 fewer units of j′, which means there is still one unit of j′
available. This can be allocated to any of the agents or shared amongst them. In any case,
it is clear that we can make some agents better off without making any worse off.

In summary, an allocation is Pareto efficient if it satisfies:

1. Efficient Input Allocation

• It is impossible to reallocate inputs in such a way as to increase output of some
goods without decreasing output of others.

MRTSjk,k′ = MRTSj
′

k,k′ ∀k, k
′ ∀j, j′
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2. Efficient Output Allocation

• Taking the outputs (from efficient input allocation) as given, it is impossible to
reallocate outputs in such a way as to increase utility of some agents without
decreasing utility of others.

MRSij,j′ = MRSi
′

j,j′ ∀j, j′ ∀i, i′

3. Efficient Output Mix

• It is impossible to efficiently re-allocate inputs to change the output mix, so
that the resulting efficient output allocation improves the utility of some without
reduces the utility of others.

MRSij,j′ = MRTj,j′ ∀j, j′ ∀i

12.3 Competitive Equilibrium

In the previous section, we found the set of efficient allocations by asking how a hypothetical
benevolent social planner would allocate inputs and outputs. One of the things that you will
notice about our characterization of Pareto optima is that prices are nowhere to be seen.
This is to be expected. Prices are a mechanism to help allocate resources when decisions
are in a de-centralized manner. [I get to choose what I want, subject to my budget; and you
get to choose what you want given your budget. But our choices are naturally directed by
prices.] The Pareto planner had no need for such price signals — she was free to allocate
goods however she saw fit, and was (assumed to be) perfectly informed, so she knew who
wanted what and how much.

But, of course, the benevolent social planner doesn’t exist. In this section, we ask whether
we can achieve the same outcomes as the Pareto planner would choose, using the price mech-
anism (where each agent is free to make choices in their best interest). Such a ‘decentralized’
institution has the benefit of not needing a good, powerful and all knowing planner to make
allocative choices. Naturally, prices will now feature prominently in our analysis.

Definition 29. A competitive equilibrium consists of (i) an allocation ({xi}, {yj}, {zj}),
and (ii) input and output prices w and p s.t.:

1. Each household i chooses xi to maximize its utility subject to its budget constraint,
taking prices as given:

max
xi

ui(x
i) s.t.p · xi = w · ei

2. Each firm j chooses (yj, zj) to maximize its profit subject to its technology, taking
prices as given:

max
yj ,zj

pjyj − w · zj s.t.yj = f j(zj)



12.3. COMPETITIVE EQUILIBRIUM 189

3. Prices are s.t. markets clear:∑
i

xij = yj = f j(zj) ∀j = 1, ..., n∑
j

zjk = ek =
∑
i

eik ∀k = 1, ...,m

In a competitive equilibrium, each household chooses the bundle to purchase to maximize
its individual utility, taking its budget as given. (The household’s income is derived from
selling its endowment of inputs on competitive factor markets.) Similarly, each firm chooses
the quantity of output to produce, and hires a bundle of inputs, in order to maximize its
profits, taking its production technology as given. In both cases, households and firms take
prices as given, and do not try to manipulate prices through their choices. Prices themselves
are set by the ‘invisible hand’ of the market to ensure that markets clear (i.e. the demand
equals supply).

We illustrate the basic idea of a competitive equilibrium in Figure 12.7, below. For simplicity,
we consider an endowment economy, where agents i and i′ are endowed with quantities of
goods j and j′. Let the endowment be e. The agents are free to trade those goods at prices
determined by the market. The purple line passing through e has slope equal to the relative
prices, and represents the set of all bundles that can be achieved through some trade at
market prices. Since each household maximizes utility subject to its budget constraint, it
will work towards a trade that puts it on the highest possible indifference curve achievable
along the purple line.

In the left panel, the prices are inconsistent with market clearance. The quantity of good j
demanded exceeds its supply, whilst the quantity of good j′ demand is less than its supply.
There is an excess demand for j and over-supply of j′. Intuitively, the price of good j must
be too low relative to j′. In the right panel, the market is equilibrium, and demand for each
good is equal to its supply. (Moreover, the budget line is steeper, indicating that relative
prices make good j less attractive.)

The right panel reveals an important insight. If households are each utility maximizing and
if markets clear, it must be that the agents’ indifference curves are tangent to the budget
line at the same point. But this means the agents’ indifference curves must be tangent to
one another, which is the condition for Pareto optimality!

In fact, this result is true more generally. In a competitive equilibrium, we have the following:

1. Since each household i is utility maximizing, it must be that MRSij,j′ = − pj
pj′

, for

each i and each pair of goods j, j′. But this implies that MRSij,j′ = MRSi
′

j,j′ for all
households and all goods. The competitive equilibrium allocation of goods lies along
the contract curve in consumption.
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Figure 12.7: Optimal choices in an exchange economy given different prices. In the left
panel, the relative prices are inconsistent with equilibrium. There is an excess demand for
good j and an excess supply of good i. The right panel is consistent with equilibrium.

2. Since each firm j is profit maximizing, it must be that MRTSjk,k′ = −wk

w′k
, for each j

and each pair of inputs k.k′. But this implies that MRTSjk,k′ = MRTSj
′

k,k′ for all firms
and all inputs. The competitive equilibrium allocation of inputs lies along the contract
curve in prodction.

3. Since each firm j is profit maximizing, it must be the pjMP j
k = wk for each j and each

input k. Hence pj
pj′
· MP j

k

MP j′
k

= 1 and so:

MRSij,j′ = − pj
pj′

= −MP j′

k

MP j
k

= MRTj,j′

which implies that the output mix is efficient.

Taken together, we have the following famous result: (First Fundamental Theorem of Welfare
Economics) Every competitive equilibrium allocation is Pareto optimal.

The first welfare theorem is a formal statement of the insight from Adam Smith that com-
petitive markets, left to their own devices, will allocate inputs and goods in a way that
maximizes the utilities market participants. It is important to recognize the caveats sitting
behind this result:

1. Households and firms are price takers: their actions do not affect the prices of outputs
and inputs. [This assumption is often reasonable in a market with many buyers and
many sellers, each of whom is such a small part of the market, that any change in their
behavior would have a negligible effect on the overall market price.]

2. There is no price discrimination. The logic above required that all agents were willing
to trading-off goods/inputs at the market rate, and so were trading off goods at the
same rate as one another. Of course, if different agents faced different prices, this logic
would not hold.
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3. There are no externalities. Agents’ utilities depend on the bundle they consume, and
not on the consumption of others.

We can also see this result by inspecting the optimization problems underlying the Pareto
planner’s choice and the competitive equilibrium. Writing these problems side-by-side, we
have:

Pareto Optimality

Planner’s Problem:

max
{xi}.{zj}

∑
i

γiui(x
i)

s.t.
∑
i

xij = fj(z
k) ∀j∑

j

zjk = ek ∀k

Competitive Equilibrium

1) Each household maximizes:

max
xi

ui(x
i) s.t. p · xi = w · ei

2) Each firm maximizes:

max
zj

pjfj(z
j)− w · zj

3) Markets clear:∑
i

xij = yj = f j(zj) ∀j∑
j

zjk = ek =
∑
i

eik ∀k

Notice that the market clearance condition is present in both problems. If we now write the
first order conditions side-by-side, we get:

Pareto Optimality

Planner’s Problem FOCs:

∂L
∂xij

= γi
∂ui(x

i)

∂xj
− λxj = 0 ∀i, j

∂L
∂zjk

= λxj
∂fj(z

j)

∂zk
− λzk = 0 ∀j, k

Competitive Equilibrium

Competitive Equilibrium FOCs:

∂Li

∂xij
=
∂ui(x

i)

∂xj
− µipj = 0 ∀i, j

∂Lj

∂zjk
= pj

∂fj(z
j)

∂zk
− wk = 0 ∀j, k

where µi is the Lagrange multiplier associated with household i’s utility maximization prob-
lem. Notice that the first order conditions from both problems are very similar to one
another. In fact, if we set pj = λxj for each j, wk = λzk for each k, and γi = 1

µi
, then the two

first order conditions exactly coincide. But if so, their solutions must coincide as well. So
the competitive allocation will be Pareto optimal.

What does it mean to set pj = λxj for all j? We are requiring the prices of goods in the
market to reflect the social opportunity cost (to the Pareto planner) of allocating a unit of
good j, and thus having one fewer unit to allocate to other agents. Prices in a competitive
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market reflect social opportunity costs. And since, agents will only purchase a good if they
value it by more than the price, then everyone who ends up with a good must value it by
more than its social opportunity cost. There are no mis-allocations which, by remedying,
we could make everyone better off.

Similarly, by setting wk = λzk, we are requiring the prices of all inputs to reflect the social
opportunity cost of allocating a unit of that input, and thus having one fewer unit to allocate
to other firms. Again, prices reflect opportunity costs!

The first welfare theorem made a positive (i.e. predictive) comment about competitive
equilibria — that they would coincide with some Pareto optimal allocation. We know,
however, that there are many Pareto optima, and some are ‘fairer’ than others. What if the
Pareto optimum implied by the competitive market is far from the Pareto optimum we wish
we could implement? Does this justify government intervention in the market?

[Second Fundamental Theorem of Welfare] If agents’ preferences and firms’ technology sat-
isfies certain regularity conditions, then any Pareto optimal allocation can be supported as
a competitive equilibrium with transfers.

The second welfare theorem states that if we transfer wealth between individuals (or if we
reallocate the original endowment between individuals), then we can force the competitive
equilibrium to coincide with any of the Pareto optimal allocations we desire. The second
welfare theorem opens the door for government involvement in the market. Whilst the com-
petitive market is Pareto efficient —it may not generate our most favoured Pareto outcome.
With a little tinkering - the Government can force the market to choose outcomes that are
socially more desirable. (Note - the second welfare theorem does not prescribe that the
government should be involved in affecting the prices of goods - this is the role of the mar-
ket. However - by providing income transfers between individuals, the government can cause
different prices to arise in the competitive equilibrium - and as such for a different Pareto
allocation to be achieved.)



Chapter 13

Monopoly

In the analysis up to now, we have assumed that agents are price takers, i.e., the prices
of goods are unaffected by their choices about how much to produce or consume. In this
chapter, we consider decision-making under conditions of price-making power —where the
decision-maker understands that their choices will affect the prices they pay/receive.

We being with the case of a monopoly; where the demand for the firm’s good and market-
wide demand are one and the same. If the firm wishes to increase output, to entice consumers
to purchase the new output, it must reduce the price it charges (on all goods).

Let p(q) denote the firm/market (inverse) demand function. We assume that p′(q) < 0, so
that demand is downward sloping. Additionally, we make the assumption that the firm’s
revenue function r(q) = p(q)q is concave (i.e. hill shaped). This requires:

r′′(q) = 2p′(q) + qp′′(q) < 0

Now, the first term is negative by the assumption of downward sloping demand, so this
condition holds provided the second term is not too positive (i.e. the demand function is
not too convex).

The monopolist has a cost function c(q) that satisfies the standard assumptions: c′(q) > 0
(marginal cost is positive) and c′′(q) ≥ 0 (increasing marginal cost). The firm’s profit is:

π = max
q
p(q) · q − c(q)

or alternatively
π = max

p
p · q(p)− c(q(p))

where q(p) is the demand function. Although the second formulation may seem more natural
—firms choose prices —since the cost function is defined in terms of quantity, the firm
formulation is often easier to work with.

193
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The first order condition is:
p(q) + qp′(q) = c′(q)

Briefly, let us verify that the second order condition is satisfied, so that the FOC select a
maximum. We have:

π′′ = 2p′(q)− qp′′(q)︸ ︷︷ ︸
r′′(q)

−c′′(q)

which is the sum of two terms. The first term is negative (by the assumption that r is
concave). The second term is also non-positive since c′ > 0.

Return to the first order condition. Notice the difference between this expression and the
profit-maximizing condition for a price-taking firm (p = c′(q)). For a price-taking firm, its
revenue is r(q) = pq and so the marginal revenue is simply the price (r′(q) = p). (This
should be intuitive; each additional unit of output generates $p of revenue.)

By contrast, for the price-making monopolist, the revenue is r(q) = p(q)q. The marginal
revenue, r′(q) = p(q) + qp′(q), is the sum of two terms. The first term is the new revenue
that the firm earns by selling one additional unit of output; this is simply the price of the
marginal unit. (We call this as the extensive margin). The second term is the revenue lost
on the previous units sold because the firm had to lower its price to sell the marginal unit.
To sell one more unit, the demand curve requires that the price fall by p′(q). Each of the q
units previous sold now earn this many fewer dollars of revenue. (We call this the intensive
margin.)

Notice that marginal revenue on the intensive margin is negative. Thus r′(q) = p(q) −
qp′(q) < p(q). When the firm increases output, the additional revenue earned is less the
price commanded by the marginal unit. The marginal revenue curve lies below the demand
curve.

Now, since profit maximization requires that the firm equate marginal revenue and marginal
cost, this implies that, at the optimum p(q∗) > c′(q∗). Recall —one of the conditions for
Pareto optimality is that p = MC. Thus, the price-making power of a monopoly causes the
resulting allocation to be inefficient. The rough intuition is as follows: efficiency requires
that all opportunities for mutually beneficial gains from trade be exhausted. But if p > c′(q),
then the cost of producing the next unit of the good will be lower than the benefit to the
marginal agent of consuming it. The monopoly output is below the socially efficient level.

The profit maximization condition reveals further insights if expressed in elasticity form.
Recall, the elasticity of demand is ε = ∂q

∂p
· p
q
and so 1

ε
= ∂p

∂q
· q
p
. First, note that:

MR = p(q) + qp′(q) = p(q)[1 + p′(q) · q

p(q)
= p(q)

[
1 +

1

ε

]

The firm’s marginal revenue is intimately connected with the elasticity of demand. This
should be intuitive. Suppose q increases by 1%. What is the effect on revenue? If prices
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were unchanged, the higher quantity would result in larger revenue. Put, by the demand
curve, to sustain higher output, prices must fall, and this will cause revenue to fall. The
overall effect is ambiguous, and depends on the relative sizes of the change in price and
change in quantity —which is measured by the elasticity of demand.

In fact, we can say more. Marginal revenue is positive if 1+ 1
ε
> 0, which requires that ε < −1

(where we assume, by the law of demand that ε < 0). Hence, marginal revenue is positive
if demand is elastic and negative otherwise. This, again is intuitive. If demand is elastic,
then quantity changes by more (along the demand curve) than price, and so the quantity
effect described in the previous paragraph will dominate. The opposite is true if demand is
inelastic. We can re-state this result a different way: Suppose the monopolist increases its
price (which causes quantity demanded to decrease). Will this cause revenue to increase or
decrease? Revenue will increase as long as quantity falls by less (in percentage terms) than
price increases —i.e. demand is inelastic. Thus, when demand is inelastic, increasing price
increases revenue. By contrast, if demand is elastic, increasing price decreases revenue.

Return to the profit-maximization condition:

p(q) + p(q) · p′(q) · q

p(q)
= c′(q)

p(q)

[
1 +

1

ε

]
= c′(q)

p(q) =
ε

ε+ 1
c′(q)

Several insights follow from this expression. First, a price-making firm sets its price by
applying a mark-up over its marginal cost. This is seemingly descriptive of how many firms
(especially smaller businesses) actually operate. It doesn’t matter that the business owner
may have no concept of calculus or first order conditions; profit maximization is equivalent
to applying a simple rule of thumb: for each good, set prices by applying a markup to the
item’s cost. Moreover, the size of the markup is related to the elasticity of demand. The
more elastic is demand, the lower will be the markup. [In fact, in the limit as ε → ∞, so
that the firm effectively becomes a price-taker, the markup shrinks to zero, so that the firm
prices at marginal cost!]

Second, if the firm is profit maximizing, it must choose a quantity at which demand is elastic.
(We can easily check that if demand were inelastic, then 1 + 1

ε
< 0, which implies the firm

should set a negative price, which obviously cannot be.) This seems somewhat counter-
intuitive. We often associate monopolies with inelastic demand. And yet —if the firm did
produce in the inelastic region of the demand curve, we know that by increasing price and
decreasing quantity, it will increase revenue and decrease costs (since it is producing less),
and this clearly increases profits. Thus, whenever demand is inelastic, the firm should exploit
this by raising prices. If the firm has stopped raising prices, it must be that it has entered
the elastic region of the demand curve. [Now, raising prices further causes revenue and costs
to both decrease. It will stop raising prices if the former decreases by more than the latter.]
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Re-arranging the profit-maximization condition gives:

p(q)− c′(q)
p(q)︸ ︷︷ ︸

Lerner Index

= −1

ε

The LHS defines the Lerner Index, which is the fraction of the output price that the firm
earns as profit (at the margin). This is a measure of the firm’s market power. The larger
is the Lerner Index, the greater the ability of the firm to raise prices over marginal cost
(in percentage terms). The expression reveals that market power is inversely related to the
elasticity of demand. As demand becomes more elastic, the Lerner index (and thus markups)
falls, such that in the limit as ε→∞ the p(q)→ c′(q). (As demand becomes perfectly elastic,
the monopolists behavior converges to that of a perfectly competitive firm.)

Example 45. A monopolist faces an (inverse) demand curve p(q) = α− βq. For simplicity,
suppose the firm has a constant marginal cost production technology c(q) = cq + f . [As
should be evident, what’s new in the study of monopoly is the shape of the demand curve.
So, to focus attention on the role of demand, we often make the cost side super simple, to
ensure that any insights we observe are not coming from funky cost behavior.] The firm’s
problem is:

max
q

(α− βq)q − (cq + f)

. The first order condition is

(α− βq)− βq − c = 0

qm =
α− c

2β

And pm = α+c
2
.

Instead, suppose we found the optimum by applying the inverse elasticity rule. The elasticity
of demand is ε = − 1

β
· p
q
. We have:

p− c
p

=
βq

p

p− c = βq

(α− βq)− c = βq

qm =
α− c

2β

which coincides with our expression above.

13.1 Two-Part Tariff

Why does the monopolist raise prices over marginal cost? Although pricing at marginal cost
is efficient in that it maximizes the volume of utility improving transactions, the firm itself
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makes a low profit, whilst the consumers earn a large consumer surplus. The firm would like
to appropriate some of this consumer surplus. It can do so by raising the price. This has
two opposing effects. On the one hand, raising the price means the firm appropriates more
of the surplus of those consumers who continue to purchase the product. On the other hand,
with a higher price, there are fewer trades and so the firm loses profit on the margin. The
monopolist prices to optimize this trade-off.

In the preceding analysis we assumed that the only instrument that the monopolist has to
extract profit/surplus is the price of the good. Now, suppose it has two instruments: it can
choose a price as well as a fixed up-front fee (e.g. a membership fee). Can the monopolist
do better with a two-part tariff?

Start with a simple case. Suppose all consumers are identical with individual demand func-
tion q(p). At price p, each consumer earns a consumer surplus of CS(p) =

∫∞
p
q(π)dπ (since

the consumer surplus is the area under the demand curve, given the quantity purchased).
Hence, if the firm charges a price p, it can afford to charge a fixed fee of up to CS(p). (Any fee
larger than this will cause the net benefit to the consumer of purchasing the good to be neg-
ative.) Naturally, the firm will charge the largest fixed fee that doesn’t deter consumption.
The firm’s problem is:

max
p
pq(p)− c(q(p)) + CS(p) = max

p
pq(p)− c(q(p)) +

∫ ∞
p

q(π)dπ

The first order condition is:

q(p) + [p− c′(q(p))]q′(p)− q(p) = 0

[p− c′(q(p))]q′(p) = 0

p = c′(q(p))

We return to marginal-cost pricing! What is the intuition? The reason for raising the price
above marginal cost was to extract a larger fraction of the consumer surplus. But, now,
the firm needn’t use the price to do this, since it also has the up-front fee at its disposal.
Since the fee is chosen to expropriate the entire consumer surplus, the firm should set the
price that maximizes consumer surplus (without making a loss). Clearly this requires setting
p = c′(q(p)).

Does this solve the problem? Not entirely. What if consumers are not homogeneous in
their preferences? For simplicity, suppose there are two types of consumers. Low type
preferences have individual demand functions qL(p), whilst high type preferences has demand
function qH(p), with qH(p) > qL(p). Suppose there are nL and nH low and high type agents,
respectively, and let n = nL + nH denote the total number of agents. Average individual
market demand is q(p) = 1

n
[nLqL(p) + nHqH(p)] and total market demand is nq(p). For any

price, let CSi =
∫∞
p
qi(π)dπ be the consumer surplus for a type i ∈ {L,H} agent.

Suppose the firm sets price p. Then for any up-front fee F ≤ CSL(p), both types of agents
will buy the good. If the up-front fee is F ∈ (CSL(p), CSH(p], then only the high type
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agent will purchase the good, and noone will purchase if the fee is F > CSH(p). I focus on
situations where nL is large enough that the firm will want to sell to both types and not
price low types out of the market. Naturally, the fixed fee should be set at F = CSL(p).
The firm’s problem is:

max
p

nL[CSL(p) + pqH(p) + CL(p)] + nH [CSL(p) + (p− c)qH(p)]− c(nLqL(p) + nHqH(p))

= max
p

n

[∫ ∞
p

qL(s)ds+ pq(p)

]
− c(nq(p))

The first order condition is:

−nqL(p) + nq(p) + (p− c′(nq(p)))nq′(p) = 0

p− c′(nq(p))q′(p) = −[q(p)− qL(p)]

p− c′(nq(p))
p

· q′(p) p

q(p)
= −q(p)− qL(p)

q(p)

p−MC

p
= −1

ε
·
[
1− qL(p)

q(p)

]

where ε is the average individual elasticity of demand. Note that
[
1− qL(p)

q(p)

]
∈ (0, 1) since

− < qL(p) < q(p). This expression is a modified version of the inverse elasticity rule. The
left hand side is the Lerner index (i.e. the percentage markup). The right hand side is the
inverse of the elasticity scaled by a factor less than 1. Thus, the mark-up will be lower than
in the case where the firm’s only instrument is the price. The firm still prices above marginal
cost, but not as much.

What is the intuition? If consumers have homogeneous preferences, there is no need to raise
prices above marginal cost; the monopolist instead uses the fee to extract all the consumer
surplus. With heterogeneous agents, it can at most extract all of the consumer surplus
from the lower-willingness-to-pay consumer, thus leaving some of the high-willingness-to-
pay consumer’s surplus on the table. The only way to extract this is, again, to raise prices
above marginal cost, inviting a similar trade-off as before. The only difference is that much of
the surplus is already extracted through the fee, so the benefit of raising prices is lower. Thus,
the monopolist prices according to a scaled/dampened inverse elasticity rule. Moreover, the
scale/dampening factor depends on the amount of fees that the monopolist forgoes (at the
margin), relative to what it receives; which is a function of the ratio of the demand of the
low-type to the average demand.

Example 46. There are nL low type and nH high type consumers, with n = nL+nH . A type
i ∈ {L,H} agent has demand function qi(p) = αi

p2
where αH > αL. Denote α = nHαH+nLαL

nH+nL
.

As before, the elasticity of demand (for both types) is ε = −2. Market demand is:

q(p) = nLqL(p) + nHqH(p) =
nLαL + nHαH

p2
=
nα

p2



13.2. PRICE DISCRIMINATION 199

The firm has a constant marginal cost production technology. If the monopolist simply
maximizes w.r.t. a price, we know that it applies a mark-up inversely proportional to the
elasticity. We have:

pm =
ε

ε+ 1
c = 2c

The monopoly output is:

qm = q(pm) =
nα

4c2

The firm’s profit is:

πm = (pm − c)qm =
nα

4c

Next, suppose the monopolist chooses the optimal two-part tariff. If the price is p, the type
i consumer’s surplus is CSi(p) =

∫∞
p
qi(s)ds = αi

p
. The firm maximizes:

max
p

{
n
αL
p

+
nα

p2
(p− c)

}
The first order condition is:

−nαL
p2

+
nα

p2
− 2

nα

p3
(p− c) = 0

1− αL
α
− 2

p− c
p

= 0

p
(

1− αL
α

)
− 2(p− c) = 0

And so:
p2PT =

(
1

1 + αL

α

)
· 2c

where the term in parenthesis is the dampening factor. Notice that the dampening factor
depends on the ratio of αL to average α. As αL → α (i.e. αL → αH and so the consumers
become homogeneous), then the dampening factor converges to 1

2
and so p = MC. As

αL → 0, then the monopolist cannot extract any consumer surplus from the low type, so the
fixed fee is useless. p = 2c. There is no dampening.

13.2 Price Discrimination

In all of the above analysis, we have assumed that the monopolist must charge the same
price and same fee to all agents. What if the monopolist was able to charge different prices
to different agents? We call this price discrimination. We generally recognizes three types
of price-discrimination: first, second and third.

First degree price discrimination (or perfect price discrimination) occurs when the firm can
observe the preferences of each individual agent, and is able to extract the entire consumer
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surplus from each agent, by charging the appropriate fee. To successfully first-degree price-
discriminate, the firm must have significant information about each potential consumer. In
most cases, this is simply too informationally demanding. (But some examples remain:
think of situations where consumers are forced to turn over information about their willing-
ness/ability to pay in order to access a good. E.g. Colleges can give different amounts of
financial aid to different students, and this is feasible because the college can require students
to furnish significant information about their finances. Similarly, insurers can demand that
potential customers furnish their medical and family histories, and charge different premiums
accordingly.)

Second degree and third degree price discrimination take these informational constraints
more seriously. Under second degree price discrimination, the seller doesn’t know the will-
ingness to pay of the buyer, but is able to structure contracts in a way that causes potential
buyers to truthfully reveal their willingness to pay. We will study this further in the game
theory section.

Third degree price discrimination occurs when the seller is able to put potential consumers
into different categories (associated with willingness to pay) on the basis of observable char-
acteristics. E.g. if men and women are believed to have different willingnesses to pay (on
average), the seller may sell to men and women at different prices, gender being a (mostly)
easily verifiable on inspection. Similarly, sellers may discriminate on the basis of age, student
or disability status, citizenship or nationality, location, or time/day etc.

For simplicity, suppose agents can be classified into two clearly identifiable groups, i ∈ {1, 2}.
Let pi(q) denote the (inverse) demand function for the good in group i. The firm is free to
sell its good at different prices to consumers according to their group membership. The
firm’s problem is:

max
q1,q2

p1(q1)q1 + p2(q2)q2 − C(q1 + q2)

The first order conditions are:

p1(q1) + q1p
′
1(q1) = c′(q1 + q2)

p2(q2) + q2p
′
1(q2) = c′(q1 + q2)

Notice that each condition has the form of the monopolist’s standard profit maximization
condition. To maximize overall profits, the firm should maximize profits in each sub-market.

Let us re-write the FOC in elasticity form. We have:

p1

[
1 +

1

ε1

]
= c′

p2

[
1 +

1

ε2

]
= c′

Using the same intuition as above, the price in each sub-market should be a mark-up over
marginal cost. It should be immediately apparent that the price will be higher in the sub-
market that has less elastic demand. Less price-sensitive groups are charged the high price,
whilst more price-sensitive groups receive a discount.
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Price discrimination of this sort necessarily raises the monopolist’s profit. Why? The firm is
free to charge the same price in each sub-market. Since it doesn’t, and it is profit-maximizing,
it must be that its profits from price-discriminating are strictly larger than under a uniform
price.

What about consumer welfare? Consumers in the high willingness to pay group are obvi-
ously made worse-off —they purchase fewer units at a higher price, and thus earn a smaller
consumer surplus. By contrast, consumers in the low willingness to pay group are made
better off —they purchase more units at a lower price, and thus earn a larger consumer sur-
plus. The overall effect is ambiguous. Importantly, price discrimination often causes total
quantity to increase, so market wide gains from trade will be larger. However, the firm is
also appropriating a larger portion of this surplus.
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Chapter 14

Normal Form Games

Game Theory is the study of decision making in an environment where outcomes are deter-
mined collectively by the choices of many agents. Contrary to environments we have studied
so far, a decision maker cannot choose in isolation — she must be cognizant of the choices
of other agents in making her own choice. We say such an environment is strategic.

Definition 30. A normal form game consists of:

• A set of players, i ∈ I

• A set of actions Ai for each i ∈ I

• Preferences over the set of action profiles, for each i ∈ I

Example 47. There are two players, i ∈ {1, 2}. Player 1 must choose an action from A1 =
{T,M,B}, and player 2 must choose an action from A2 = {L,C,R}. Agents’ preferences
are shown in the following matrix, with agent 1’s payoff indicated first in each pair:

L C R
T 9, 5 8, 6 1, 7
M 1, 3 2, 5 3, 6
B 2, 7 3, 6 2, 8

14.1 Pure Strategies

Definition 31. A pure strategy for player i specifies an action ai ∈ Ai for player i ∈ I. A
strategy profile a = (a1, .., an) a collection of strategies.

We often write a = (ai, a−i) to indicate the action chosen by player i, and the profile of
actions chosen by all players other than i, a−i.

203
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Definition 32. A strategy for player i is a dominant strategy, if the player’s payoff from
choosing that strategy is at least as high as from choosing any other strategy, no matter the
strategies chosen by the other players. I.e. ai ∈ Ai is a dominant strategy for player i if

ui(ai, a−i) ≥ ui(a
′
i, a−i) ∀a′i ∈ Ai and ∀a−i ∈ A−i

If player i has a dominant strategy, it is she should play it. She doesn’t have to anticipate
how the other players will play, because this strategy is best no matter what the other players
do.

Example 48. Consider the example above. Player 1 does not have a dominant strategy. T
is best for player 1 if player 2 chooses either L or C. But if player 2 chooses R, player 1
would rather chooses M . By contrast, Player 2 does have a dominant strategy; R is best for
any choice of action by player 1. We should expect player 2 to choose R. Anticipating this,
we should expect player 1 to choose M .

Notice that predicting player 1’s strategy is harder than predicting player 2’s. Player 2
doesn’t need to worry about what player 1 is doing. By contrast, player 1’s optimal strategy
depends on her reasoning about what player 2 will do. Player 1’s optimal strategy is more
cognitively demanding than player 2’s.

Definition 33. A strategy for player i is strictly dominated if there is some other strategy
that achieves a strictly higher payoff, no matter what the other playhers do.

Players should not choose actions that are strictly dominated.

Example 49. Consider the following modified game:

L C R
T 9, 5 8, 6 1, 7
M 1, 3 2, 5 0, 2
B 2, 7 1, 6 4, 8

Neither player has a dominant strategy. (T is best for player 1 if player 2 chooses L or C,
but not R. R is best for player 2 if player 1 chooses T or B, but notM .) Note, however, that
M is strictly dominated by T for player 1. No matter what player 2 does, player 1 would do
better to choose T than choose M . We can reason that player 1 will never choose M .

Is this sufficient to solve the game? Yes. Eliminating M as a possible strategy for player
1, R now becomes dominant for player 2 (amongst the remaining strategies). So player 2
should choose R. Then player 1 should choose B, anticipating that player 2’s choice.
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Notice, again, that finding reasoning to the equilibrium becomes more difficult. Player 2
needed to understand that player 1 would not choose M , in order to settle on playing R.
Player 1 additionally needed to understand that player 2 would choose R (understanding that
player 2 would reason that player 1 would not choose M because it is strictly dominated).

Can we solve all games by selecting dominant strategies and eliminating strictly dominated
strategies?

Example 50. Consider the following, different modified game:

L C R
T 9, 5 3, 6 1, 7
M 1, 5 4, 3 2, 2
B 2, 7 3, 6 3, 8

Neither player has a dominant strategy. Moreover, no strategies are themselves strictly
dominated. Our elimination procedures will not suffice. To find equilibrium strategies, each
must anticipate the actions chosen by the others, and choose the best action accordingly.
Moreover, this anticipation of others’ strategies proceeds on the understanding that the other
players themselves are reasoning in the same way (by anticipating and best responding).t
work.

Elimination procedures are convenient because they use straightforward notions of sub-to
rule out all but one action for each player. If elimination doesn’t work, the players’ strategic
thinking becomes more c

Definition 34. A strategy profile a = (a1, ..., an) is a Nash Equilibrium if each player’s
action is optimal, given the profile of actions chosen by his opponents. I.e. for each player i

ui(ai, a−i) ≥ ui(a
′
i, a−i) ∀a′i ∈ Ai

Notice that a Nash Equilibrium strategy is less demanding than a dominant strategy. A
dominant strategy is best no matter what actions the opponents choose. A Nash Equilibrium
strategy is merely best given what the opponents are rationally expected to do (although it
might not be best for other choices that opponents are not anticipated to make). In a Nash
Equilibrium, each agent is optimizing given what his opponents are doing, understanding
that they themselves are optimizing given what he (and everyone else) is doing.

Example 51. In the previous example, (B,R) is pair of Nash Equilibrium strategies. Given
that player 1 chooses, B, player 2 does best by choosing R, and given that player 2 is choosing
R, player 1 does best by choosing B. By contrast, (M,C) is not a Nash equilibrium. Given
that player 2 is choosing C, player 1 does best in choosing M . But since player 1 is choosing
M , player 2 would rather play L instead.
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We motivate Nash equilibrium in a variety of ways. First, we can think of the game-theorist
recommending a profile of strategies for all the players to take. A strategy profile is a
Nash equilibrium, if each player would want to follow the game-theorist’s recommendation
assuming all other players do so. Second, and equivalently, we can think of each player
forming beliefs about the choices that the other players will make. A strategy profile is
a Nash equilibrium if each player’s beliefs are confirmed by the actions they take. Nash
equilibrium is essentially a no regret condition. After observing the actions of the other
players, no agent will want to change his action.

This second interpretation leads one to ask: ‘how do the agents form beliefs about their
opponents’ behavior?’. (The same question manifests from the first interpretation, given
that, in reality, the game-theorist is rarely present to whisper strategies into players’ ears.)
Players are assumed to form beliefs rationally. For example, in the above example, the
players all understand that it cannot be that player 1 will choose M and player 2 will choose
C. If player 2 is conjectured to choose C, it is understood that player 1 will want to choose
M and so player 2 will want to switch and choose L instead. It is understood that the
conjecture that player 2 chooses C is inconsistent. Rationality requires players to only hold
conjectures that are not susceptible.

How do we find Nash Equilibria?

Definition 35. The best response function bi(a−i) selects the action(s) that are optimal for
player i for every profile of actions chosen by her opponents. We have:

bi(a−i) = arg max
ai∈Ai

ui(ai, a−i)

The best response function is a menu that specifies which action player i should take for
every possible profile of actions chosen by her opponents. A profile of actions is a Nash
equilibrium if each player’s action is a best response to actions chosen by the other players.
Nash equilibrium requires mutual best response.

Example 52. Return to the example above. The best response functions are:

b1(a2) =


T if a2 = L

M if a2 = C

B if a2 = R

b2(a1) =


R if a1 = T

L if a1 = M

R if a1 = B

We can represent the best response functions by underlining the relevant entry in the payoff
matrix:



14.2. CANONICAL GAMES 207

L C R
T 9, 5 3, 6 1, 7
M 1, 5 4, 3 2, 2
B 2, 7 3, 6 3, 8

Since Nash equilibrium requires mutual best response, we search for an action profile where
each player is playing a best response. By inspection, the only Nash equilibrium is (B,R).

14.2 Canonical Games

The details of a game (i.e. what strategies are available, and what the payoffs are) will
vary from context to context. However, it turns out that, in most contexts, the underling
strategic incentives are analogous to those the appear in 5 canonical games. The canonical
games themselves are stark, but in studying them, we learn about the nature of strategic
interaction in more nuanced scenarios.

Before presenting the games, it is worth noting that the exact numbers specified in the
payoff matrices are irrelevant except insofar as they determine which actions are more or
less preferred. As usual with utilities, the numerical value is not informative about strength
of preference —just the ranking of outcomes. Thus, two different payoff matrices that imply
the same ranking over outcomes for each player capture the same strategic scenario.

14.2.1 The Prisoners’ Dilemma

Two individuals are caught by the police in the commission of a minor crime. The police
suspect them of also having committed a more serious crime, but do not have any firm
evidence. The police offer to each agent the following deal: confess to the serious crime
and turn state’s witness against your friend; if you do, the prosecutor will recommend a
more lenient sentence. If neither agent confesses, they will each get 1 year in jail for the
minor crime. If one confesses and the other doesn’t, the confessing agent is released without
penalty (as reward for testifying against his friend), whilst the other gets 9 years in jail. If
both confess, then neither testimony is necessary to convinct the other. But having admitted
the crime, each gets a reduced sentence of 6 years in jail. The payoffs are:

Silent Confess
Silent −1,−1 −9, 0

Confess 0,−9 −6,−6

It should be clear that confessing is a dominant strategy for each player. (If your opponent
confesses, you definitely want to confess and only get 6 years in jail, than not and get 9 years.
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If your opponent stays silent, you’d rather confess and get off for free than stay silent and
get a year in jail.) The Nash equilibrium is (C,C), and both agents go to jail for 6 years.
Notice that, had both stayed silent, they would have only received one year in jail each. The
equilibrium outcome is Pareto inefficient.

The Prisoners’ Dilemma is famous because it showcases the (slightly counter-intuitive) result
that, in the presence of strategic interaction, individually optimal decision making does not
necessarily result in socially optimal outcomes. The first welfare theorem fails! There is
scope for the government or regulation to direct the decision making of agents so as to make
all agents better off.

The Prisoners’ Dilemma dynamic is present in a number of strategic scenarios including:
oligopolistic competition, public goods provision, (over)-utilization of public resources (‘the
tragedy of the commons’), arms races (in the military, as well as advertising/lobbying),
team-work and free-riding, amongst many others. We will study several of these situations
in future lectures.

14.2.2 Coordination Games

There are three versions of the coordination game; all similar, but each having a slightly
different flavor. Let us consider each in turn:

Battle of the Sexes: There are two agents who must independently choose which leisure
activity to enjoy one evening. Player 1 prefers going to the opera over a sporting event,
whilst player 2 has the opposite preference. However, both players would rather enjoy an
event together than separately. We can represent this strategic situation as:

O S
O 2, 1 0, 0
S 0, 0 1, 2

There are two Nash equilibria in the Battle of the Sexes. It is a Nash equilibrium for both
agents to choose Opera and similarly an equilibrium for both agents to choose Sport. The
agents wish to be coordinated with one another. The Battle of the Sexes captures the
strategic dynamic in a variety of settings where agents wish to ensure that they are ‘part of
the crowd’. Examples include: adoption of a technology (e.g. QWERTY keyboard), driving
on the right-side of the road, bank runs and revolutions (I want to leave my money in the
bank if enough others do, but withdraw my money if others are withdrawing their money as
well).

Chicken: There are two agents who are engaged in a test of mettle. Each gets into a car and
drives towards the other at high speed. The first to swerve is revealed to be a ‘chicken’ and
forever suffers the indignity of having lost his nerve. The player enjoys perpetual bragging
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rights. If both players do not swerve, then both die in head-on high speed collision. If both
players swerve at the same time, then the whole exercise proves to be a dud. We represent
this situation as:

Sweve Not
Swerve 0, 0 −1, 1

Not 1,−1 −2,−2

There are two Nash equilibria in the game of Chicken; (Swerve,Not) and (Not, Swerve).
The agents want to be coordinated, however, unlike the Battle of the Sexes, the nature of the
coordination is asymmetric. Each agent wants to swerve if and only if his opponent does not.
Chicken captures the strategic dynamic in settings where agents want to be anti-coordinated.
Examples include, public goods provision, reporting a crime (I want to report only if noone
else does), voting, investing in R& D, etc.

Stag Hunt: There are two agents who are going hunting. Each can decide whether to hunt
for stag or hare. Killing the stage requires the two agents to work together and triangulate;
if they try alone, they will not succeed. By contrast, each agent can kill a hare by himself.
Getting the stag is more valuable than a hare, which is in turn more valuable than not
getting anything. We can represent this situation by:

S H
S 3, 3 0, 1
H 1, 0 1, 1

There are again two Nash equilibria in Stag Hut: (S, S) or (H,H). Like Battle of the Sexes,
the equilibria are symmetric. What distinguishes Stag-Hunt from Battle of the Sexes is
that the equilibria are Pareto-ranked in the former, but not the latter. In BoS, correctly
coordinating on either outcome was socially optimal. Here, the socially efficient choice is
for both agents to choose S, and this is an equilibrium, but it is also an equilibrium to
coordinate on the socially inefficient choice (H,H). Stag Hunt reminds us that equilibrium
need not coordinate us on the socially efficient choice.

All 3 games are coordination games with multiple equilibria. In the presence of multiple
equilibria, the concept of Nash Equilibrium provides us with no guidance as to which one
will prevail, or which is more likely. ’Refining’ equilibria is it’s own subfield of game theory,
and one we will not turn our attention to. For our purposes, what is important to remember
is that the concept of Nash equilibrium doesn’t tell us how or why the players form beliefs
about which equilibria they will coordinate around. Just that, the beliefs they form are
consistent with mutual best response.
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14.2.3 Matching Pennies

The final canonical game to consider is (anti)-Matching Pennies. There are two agents who
must simultaneously each choose either H or T . Player 1 wins if the players match. Player
2 wins if they do not. The payoff matrix is:

H T
H 1,−1 −1, 1
T −1, 1 1,−1

By inspection, there is no (pure) strategy profile that is a Nash Equilibrium. If the action
profile results in player 1 winning, player 2 will wish she had chosen differently. Similarly, if
player 2 wins, player 1 will wish she had chosen differently. There is no action profile that is
optimal from the perspective of both players. Matching Pennies represents strategic situa-
tions that involve where at least one agent has an incentive to deceive the other. Examples
include bluffing and bluff-calling (in poker, but also in negotiations more generally).

14.3 Mixed Strategies

Matching pennies is strategically similar to a familiar game —rock, paper, scissors. From
playing this game, you should have an intuition that optimal play involves randomizing.
Predictable play (i.e. choosing pure strategies) will very quickly result in a string of losses.
When players randomize, rather than choosing an action to play, they determine to choose
each action with some probability; their strategy is a lottery over the available actions.

Let Ai be the set of actions available to agent i. A mixed strategy is an assignment of
probabilities αi, such that αi(ai) is the probability that agent i plays actions ai ∈ Ai.
Naturally, we need αi(ai) ≥ 0 for each ai ∈ Ai, and

∑
ai∈Ai

αi(ai) = 1.

When players choose mixed strategies, they induce lotteries over final outcomes. Thus, the
agents assess strategies according to the associated expected utility. Let a = (a1, ..., an) be
an action profile, and let α = (α1, ..., αn) be a profile of mixed strategies. The expected
utility for agent i is:

Ui(α) =
∑

(a1,...,an)

(
n∏
j=1

αj(aj)

)
ui(a1, ..., an)

Definition 36. A profile of mixed strategies α = (α1, ..., αn) is a (mixed strategy) Nash
equilibrium if, for each i, Ui(αi, α−i) ≥ Ui(α

′
i, α−i) for every αi ∈ ∆(Ai).

A strategy profile is a (mixed strategy) Nash equilibrium if no agent can do better by choosing
a different mixed strategy, given the mixed strategies chosen by all other players. As usual,
if a mixed strategy profile is a Nash equilibrium, then the agents’ strategies are mutual best
responses.
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Example 53. Consider the following variant of Matching Pennies, where the action labels
and numerical payoffs have been changed, but the strategic incentives are unchanged.

L R
U 1,−1 −1, 2
D −1, 1 1,−1

Suppose (p∗, q∗) is an equilibrium in which agent 1 chooses U with probability p and agent
2 chooses L with probability Q. The agents’ expected utilities are:

E [u1|p, q] = pq − p (1− q)− (1− p) q + (1− p) (1− q)
= 2p (2q − 1)− 2q + 1

E [u2|p, q] = −pq + 2p (1− q) + (1− p) q − (1− p) (1− q)
= q (2− 5p) + 3p− 1

Clearly, E [u1] is increasing in p when 2q − 1 > 0 (i.e. q > 1
2
), it is decreasing in p when

q < 1
2
, and it is constant in p when q = 1

2
. Similarly, E [u2] is increasing in q for p < 2

5
, it

is decreasing in q for p > 2
5
and constant in q for p = 2

5
. The best response correspondences

are:

p∗ (q) =


1 q > 1

2

[0, 1] q = 1
2

0 q < 1
2

and

q∗ (p) =


0 p > 2

5

[0, 1] p = 2
5

1 p < 2
5

By inspection, there is a unique pair of strategies (p∗, q∗) =
(

2
5
, 1

2

)
which are mutual best

responses. (To verify this, note that there cannot be an equilibrium with p > 2
5
. If so, then

q∗ = 0 and if so p∗ = 0 < 2
5
. We similarly rule out equilibria with p < 2

5
, q > 1

2
and q < 1

2
.)

This constitutes the unique mixed strategy Nash Equilibrium.

The agents’ payoffs are asymmetric and this causes the equilibrium mixing probabilities
to be asymmetric. (You can easily verify that with the original specification of payoffs,
p∗ = q∗ = 1

2
.) Notice that the asymmetry breaks towards player 2 benefiting more from

choosing R than L. Nevertheless, player 2 mixes evenly between L and R. By contrast,. the
payoffs to player 1 are purely symmetric, but player 1 chooses U with lower probability than
D. Why? As the best response correspondences demonstrate, an agent only mixes if she is
indifferent between her actions; if so, she has no direct interest in the rate at which she mixes.
Any mixing probability will do. However, the mixing probability that she chooses will affect
her opponent. Hence — each agent chooses her mixing probability, not for her own benefit,
but to affect her opponent. In particular, in a totally mixed-strategy equilibrium, each player
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mixes at the rate which causes her opponent to be indifferent between his actions. (This
explains why player 1 puts lower weight on U — since he needs to keep player 2 indifferent
between choosing L and R, and player 2 strongly prefers R when player 1 is choosing L.)

Comments

• The best response to a mixed strategy is often a pure strategy!

• The agents are maximizing payoffs in an ex ante (rather than ex post) sense. For any
given realization of outcomes following the randomization, some players may wish that
a different outcome had prevailed. Nevertheless, before the outcome is realized, no
player would want to change the probabilities with which they choose their actions.

Why focus on mixed strategies? As we argued, there are some games which have no pure
strategy equilibria, but may have mixed strategies. In fact, to guarantee the existence of a
Nash Equilibrium, it suffices to expand the strategy space to mixed strategies. (Of course, a
pure strategy is a special case of a mixed strategy, where the induced lottery over outcomes
is degenerate.)

[Nash’s Existence Theorem] Every normal form game has an equilibrium (possibly in mixed
strategies).



Chapter 15

Oligopoly

In previous chapters, we have studied decision-making under conditions of perfect competi-
tion and monopoly. In both cases, each individual firm could make its decision by simply
maximizing its profit, taking demand as given. (For monopolists, this was because it was the
only firm. In perfect competition, it is because the actions of any given firm do not affect
the broader market conditions.) The study of oligopoly differs importantly in that with a
few large firms, the decisions of each will impact the market conditions faced by the rest.
Thus, each firm must makes its choice, anticipating the decisions made by the other firms.

There are two canonical approaches to modelling oligopoly: the quantity (Cournot) approach,
and the price (Bertrand) approach. We begin by studying Cournot Oligopoly, then turn to
Bertrand Oligopoly, and then return to see the connection between the two.

15.1 Cournot Oligopoly

There are n firms, i = 1, ..., n, that produce a homogeneous good. Firm i can produce
a quantity of output qi at cost ci(qi). Let q = (q1, ..., qn) denote the profile of quantities
produced. We use (qi, q−i) to denote the quantity produced by firm i, and the vector of
quantities produced by the fremaining firms. Additionally, we let Q =

∑n
i=1 qi denote the

aggregate quantity supplied, and let Q−i =
∑

j 6=i qj denote the quantity excluding firm i.

Let p(Q) denote the (inverse) demand for the good in question. We assume that p′(Q) < 0,
so that demand is downward sloping. Additionally, as with the monopoly model, we make
the assumption that the market wide revenue function r(Q) = p(Q)Q is concave, so that the
first order conditions on r find maximum revenue, rather than a minimum. This requires:

r′(Q) = p′(Q) +Qp′′(Q) < 0

Given the total market supply Q, a price p(Q) emerges that causes the market to be in
equilibrium; i.e. for demand to equal supply. Note, importantly, that firms do not choose

213
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their own prices; instead they contribute to the total market supply and then accept the
market price that arises in equilibrium. This may be a more or less realistic assumption
depending on the context. For example, in the global market for oil, it would seem reasonable.
There is an active and transparent spot market for oil whose price quickly adjusts to changes
in market demand and supply.

We consider a Nash equilibrium q∗ = (q∗1, ..., q
∗
n) of the Cournot game. In equilibrium, each

firm chooses its quantity qi taking as given the quantites that will be produced by all other
firms, and the implications for the market price.

Consider the best response function for firm i. Given a conjecture q−i of other firms’ quan-
tities, firm i’s problem is:

max
qi

p

(
qi +

∑
j 6=i

qj

)
qi − ci(qi) = max

qi
p(qi +Q−i)qi − ci(qi)

The first thing to note is that, since the behavior of other firms only affects firm i’s profit
through the price level, and this depends on total market supply, firm i’s best response only
depends on the sum of the other players’ outputs —it is irrelevant how much each other firm
contributed to this total.

The first order condition is:
p(Q) + p′(Q)qi = c′i(qi)

which is analogous to the monopoly first order condition, except that the market price is
not soley determined by firm i. In fact, we can define the residual demand for firm i, as the
relationship between market price and firm i’s quantity, taking the other firms’ quantities
as fixed. We have pi(qi;Q−i) = p(qi + Qi). Then, we can think of firm i as basically profit-
maximizing as a monopolist, given her residual demand (taking the other firms’ choices as
given.) It is easily verified that the second order conditions are satisfied.

A Nash Equilibrium is a vector q∗ = (q∗1, ..., q
∗
n) (which implies a market supply Q∗), satisfy-

ing:
p(Q∗) + p′(Q∗)q∗i = c′i(q

∗
i ) ∀i

Example 54. Suppose P = 100−Q and let ci(qi) = ciqi, so that each firm faces a constant
marginal cost (which possibly differs across firms). For notational convenience, let c =
1
n

∑
i ci be the average marginal cost. Firm i’s best response function is the solution to:

max
qi

πi = (100− qi −Q−i)qi − ciqi = (100−Q−i − ci)qi − q2
i

By the first order condition:

(100−Q−i − ci)− 2qi = 0

q∗i (Q−i) =
1

2
(100−Q−i − ci)
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Notice that dq∗i
dQ−i

= −1
2
∈ (−1, 0). We will say more about this below. Now, in equilibrium,

we have:

q∗i =
1

2
(100−Q∗−i − ci)

1

2
q∗i =

1

2
(100−Q∗ − ci)

q∗i = (100−Q∗ − ci)

Summing over all firms gives:

Q∗ =
∑
i

q∗i = (100n− nQ∗ −
∑
i

ci)

(n+ 1)Q∗ = n(100− c)

Q∗ =
n

n+ 1
(100− c)

which gives the overall equilibrium market demand. Then,

p∗ = 100−Q∗ =
1

n+ 1
100 +

n

n+ 1
c =

1

n+ 1
(100 +

∑
i

ci)

which is the equilibrium market price. Notice that the equilibrium price is a weighted sum of
the highest price that the firm can charge (100) and the average marginal cost (c), which is
lower. Moreover, the weight on the marginal cost term is increasing in the number of firms.

In equilibrium, each firm produces:

q∗i =
100

n+ 1
+

n

n+ 1
c− ci

and earns a profit:

π∗i = q∗i (p
∗ − ci) =

(
100 + nc

n+ 1
− ci

)2

What do we notice. The equilibrium price P ∗ is decreasing in n, and the equilibrium market
supply is increasing. Indeed, as n → ∞, P ∗ → c, so that we return to (average) marginal
cost pricing as the number of firms becomes large. We see that the market power to raise
prices above marginal cost dissipates as more firms enter the market. By contrast, individual
firm output q∗i is decreasing in n. So as n increases, each firm produces less, but since there
are more firms, more is produced in total.

Return to the first order condition in the general case.

p(q∗i (Q−i) +Q−i) + p′(q∗i (Q−i) +Q−i)q
∗
i (Q−i) = c′i(q

∗
i (Q−i))
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Totally differentiating w.r.t Q−i gives:

[p′(Q) + q∗i p
′′(Q)]

(
1 +

∂q∗i
∂Q−i

)
+ [p′(Q)− c′(q∗i )]

∂q∗i
∂Q−i

= 0

∂q∗i
∂Q−i

= − p′(Q) + q∗i p
′′(Q)

(p′(Q) + q∗i P
′′(Q)) + (p′(Q)− c′(q∗i ))

(To see that ∂q∗i
∂Q−i

∈ (−1, 0), notice that numerator is negative (by the assumption that
the revenue function is concave), and the denominator is negative, by the second order
conditions. In fact, the denominator is more negative, because it is the sum of two negative
terms, one of which is the same as the numerator. Hence, the denominator is larger in size
than the numerator.)

What does this mean? Suppose other firms collectively increase output by 1 unit, causing
the market price to fall. Then firm i will reduce its own output, creating an off-setting effect
that pushes the price back up. However, firm i decreases its output by less than 1, so the it
only partially offsets the price effect. (In the example, the firm would reduce its output by
0.5 for every unit increase by its opponents. Intuitively, the firm is willing to sacrifice some
quantity to prop up the price, but not too much. We can think of this as an instance of ’Le
Chatelier’s Principle’ —the inherent optimizing behavior of the system partially counteracts
the imposed changed.

Notice, also, that when the other firm(s) increase their output, the net effect on firm i’s
profits is negative. Straightforwardly, firm i is seller a lower quantity at a lower price. Thus,
when some firms increase their output, they impose an externality on other firms. The total
costs of each firm’s choice are not entirely experienced by the firm itself. Other firms share
some of the burden.

15.1.1 Market Power

As a matter of public policy, we are often interested in understanding the connection between
market structure and market power. For example, these considerations go to the heart of
anti-trust policy, and forms the basis of regulatory oversight over mergers ad acquisition.
The field of Law and Economics was born out of the realization by the legal community for
the need for economic analysis in the analysis of such questions.

How should we measure market concentration? A naive answer might be to simply count the
number of firms in the market. But, consider a market with one large firm that serves 90%
of the market, and 10 small firms each serving %1. Such a market is effectively a monopoly;
it stretches credulity to count the large and small firms equally.

A common measure is the Herfindahl-Hirschmann Index (HHI). Let si = qi
Q

be the market
share of firm i. The HHI is constructed as:

HHI =
∑
i

s2
i



15.1. COURNOT OLIGOPOLY 217

HHI gives larger importance to big firms relative to small ones. HHI ranges from 0 to 1.
In the case of monopoly (most concentrated), HHI = 1. A market with n equally sized
firms has HHI = 1

n
. (Convince yourself that this is true.) If there are many (roughly)

equally sized firms, HHI → 0 as n→∞. We can think of HHI = 0 as the case of perfect
competition.

Recall, if there are n equally sized firms, then HHI = 1
n
. Equivalently, n = 1

HHI
. In fact,

even if the firms are not equally sized, we can think of inverse-HHI as a measure of the
‘effective number of firms’ in the market. (The effective number of firms need not be an
integer.)

Example 55. Suppose there are four firms with market shares s1 = 0.7, s2 = 0.1, s3 = 0.1
and s4 = 0.1. Then the market concentration is HHI = 0.72 + 0.12 + 0.12 + 0.12 = 0.52. By
contrast, if there were four equally sized firms were equally sized, then HHI = 0.252+0.252+
0.252 + 0.252 = 0.25. Although both markets have four firms, there is a celar sense in which
the first market is more concentrated, in the sense that it is dominated by a single firm. (Of
course, the dominant firm still faces some competition, so the market is not as concentrated
as a monopoly.) The effective number of firms in the first market is neff = 1

0.52
= 1.92. So,

although there are four firms, the market is as concentrated as a market with two (roughly)
equally sized firms.

The Department of Justice’s Horizontal Merger Guidelines (2010) provide the following clas-
sification. A market is:

• Competitive if HHI < 0.01 (i.e. there are more than 100 effective firms).

• Unconcentrated if HHI < 0.15 (i.e. if there are more than 6.67 effective firms).

• Moderately concentrated if HHI ∈ (0.15, 0.25) (i.e. if there are between 4 and 6.67
effective firms).

• Highly concentrated if HHI > 0.25 (i.e. if there are fewer than 4 effective firms).

The DOJs categorization of market concentration has implications for its role in overseeing
mergers. (See DOJ Horizontal Merger Guidelines 2010.)

• A merger that results in an increase in HHI of less than 0.01 is unlikely to have adverse
competitive effects, and typically does not require further analysis.

• Mergers resulting in unconcentrated markets are unlikely to have adverse competitive
effects, and typically do not require further analysis.

• Mergers resulting in moderately concentrated markets that involve an HHI increase of
more than 0.01 potentially raises significant competitive concerns and often warrant
scrutiny.
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• Mergers resulting in highly concentrated markets that involve an HHI increase of be-
tween 0.01 and 0.02 potentially raises significant competitive concerns and often war-
rant scrutiny. Those that increase HHI by more than 0.02 are presumed to likely
increase market power. (The presumption may be rebutted with further evidence.)

HHI has many advantages as a measure of market concentration, including that it is easily
calculated, based on relatively easily measured factors (market shares). But does it capture
anything deep about market power? Or is it simply an arbitrary measure?

Return to the Cournot first order condition. We have:

p(Q∗) + p′(Q)qi = c′i(qi)

p(Q) + p′(Q)Q · qi
Q

= c′i(qi)

p(Q)

[
1 +

1

ε(Q)
· qi
Q

]
= c′i(qi)

or
Li =

p(Q∗)− c′(q∗i )
p(Q∗)

=
1

ε
· qi∗
Q∗

=
1

ε
· si

The equilibrium price in the Cournot model follows a modified inverse elasticity formula.
Each firm’s Lerner Index —i.e. its markup over marginal cost —is the function of two
terms: the inverse of the elasticity of demand, and the firm’s market share. To make sense of
this, recall that if the firm were a monopolist, it would receive a markup exactly equal to the
inverse elasticity. When there are many firms, by contrast, its markup is dampened by its
market share. For all firms, the markup will be lower than in the monopoly case; however,
larger firms will earn a larger markup than smaller firms. This should be intuitive, since
all firms receive the same price, the firms with lower marginal costs will have incentives to
produce more output, and thus their market share should be higher.

The fact that the Lerner Index is proportional to market shares is noteworthy. It means that
when thinking about market power, we should focus more on larger firms than smaller ones.
But HHI does just that! Infact, suppose we calculate the average Lerner Index amongst
firms in a given market, weighting firms by their market share. Then we have:

L =
∑
i

siLi =
1

ε

∑
i

s2
i =

1

ε
·HHI

The average Lerner Index (i.e. markup over marginal cost) in the market is directly pro-
portional to HHI. This suggests that HHI really is a measure of market concentration that
is meaningfully related to market power. We can re-write the above formula to make the
relationship even more stark. Letting Lm denote the Lerner Index under monopoly, and
recalling that Lm = 1

ε
, we then have:

HHI =
L

Lm
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We know that markups and price-making power will be greatest under conditions of
monopoly. HHI provides the exact link between market concentration and the average firm’s
market power, relative to a hypothetical monopolist. If HHI = 0.8, then the average firm
in the market can markup prices to 80% of the level a monopolist would. As HHI → 0,
market power disappears, and firms price at marginal cost.

15.1.2 Collusion

A natural question is to compare outcomes under Cournot Oligopoly to those that would
arise if the firms colluded, and choose quantities to maximize their joint profit. Intuitively, it
must be that the firms can do at least as well by colluding, since at worst they can ‘collude’
by simply agreeing to produce what they would have otherwise produced in the Cournot
equilibrium. (And, there is a strongly likelihood that they can each earn even larger profits,
if collusion is successful.) We seek to understand why.

Suppose the firm’s formed a cartel, and jointly made output choices for the group. The cartel
will naturally want to maximize joint profits. (How it distributes these profits between the
firms depends on their bargaining strengths, but evidently, each firm will get at least as
much profit as they would have under the non-collusive arrangement.) The cartel’s problem
is:

max
q1,...,qn

p

(∑
i

qi

)∑
i

qi −
∑
i

ci(qi)

Taking first order condition w.r.t. qi (for any firm i) gives:

p(Q) + p′(Q)Q = c′i(qi)

Let us interpret this formula. The left hand side is the market wide marginal revenue; it is
how much total revenue amongst all firms changes if output by any firm increases by 1 unit.
The right hand side is the marginal cost to firm i. The cartel allocates production to each
firm so that, for each firm, the marginal revenue of its last unit of output to the entire cartel
is equal to the marginal cost of production in that firm. Thus each firm’s contribution to
joint profits is optimal.

Contrast this to what happens in the non-collusive Cournot equilibrium. Each firm chooses
the quantity for which its (private) marginal revenue and marginal cost coincide. But, we
know that when one firm increases its output, it reduces the revenue of all other firms. In
the non-collusive game, firms does not pay attention to cost they impose on other firms,
whereas the cartel does. We can see this more writing the cartel first order condition in the
following way:

p(Q) + p′(Q)qi︸ ︷︷ ︸
MR to firm i

+ p′(Q)Q−i︸ ︷︷ ︸
MR to other firms

= c′i(qi)︸ ︷︷ ︸
MC

The second term is negative, since P ′(Q) < 0. In the non-collusive equilibrium, each firm
chooses q to set the first term equal to the third term, ignoring the second term. Then,
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it must be from the joint perspective, the LHS is below the RHS. Each firm over-produces
relative to the collusive optimum. The cartel will direct each firm to produce less output,
which causes market supply to fall and the market price to rise.

But there is a problem. Suppose qc1, ..., qcn are production plans that maximize joint profits
—that solve the cartel’s first order conditions. We have just shown that they do not solve
any of the firm’s individual first order conditions, taking as given the other firms’ choices.
The plan is not consistent with any firm’s best response function. Given the production
choices of other firms, each firm would want to raise its quantity above the cartel level. (The
reason is exactly the opposite of why the cartel would want each firm to lower its output
below the Cournot equilibrium level.) Each firm has an incentive to reneg, and produce
more than the cartel instructs it to. [In a later chapter, we study how the cartel may enforce
commitment.]

To recap. Although each firm acts in its best interest in the Cournot equilibrium (taking as
given the other firm’), all firms earn lower profits that they would if they formed a cartel. The
firms settle on a Pareto inferior outcome. Furthermore, even if the firms try to implement
the Pareto optimal policy, they will not succeed, because each firm will be tempted to defect,
by producing more than agreed. What canonical game form does this remind you of?

Example 56. Consider the above example with linear demand. Set n = 2, and suppose the
firms have identical marginal costs ci = 25. Then, the cournot equilibrium is q∗1 = q∗2 = 25,
market supply is Q∗ = 50 and the market price is p∗ = 50. Each firm earns a profit of
π∗ = 625.

Now, let us solve for the cartel policy. The cartel maximizes:

max
q1,q−2

[(100− q1 − q2)q1 − 25q1] + [(100− q1 − q2)q2 − 25q2]

Evidently, this is equivalent to maximizing:

max
Q

(100−Q)Q− 25Q

Straightforwardly, the maximum occurs at Qc = 37.5, and so each firm should produce
qc1 = qc2 = 18.75. Immediately, we see that each firm over-produces relative to the cartel
optimum. The cartel price is pc = 62.5. The total cartel profits are 1406.25, and so each
firm’s fair share is 703.125.

Let us focus on these two focal quantities: q∗ = 18.75 and qc = 25. Suppose each firm
must decide whether to produce the Cournot quantity or the collusive quantity. We have
the following normal form game:

18.75 25
18.75 703.13, 703.13 525.94, 781.25

25 781.25, 525.94 625, 625

It should be clear that choosing q = 25 is a dominant strategy, although it results in a Pareto
inferior equilibrium allocation. This is precisely a Prisoners’ Dilemma.
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15.2 Bertrand Oligopoly

The Cournot model has a lot of interesting implications. But the lack of true price compe-
tition would seem to be limit its applicability. In this section, we consider an approach that
directly models price competition. We begin with the stark case where there are no capacity
constraints, and then relax this assumption.

15.2.1 No Capacity Constraints

There are n identical firms, each with an identical constant marginal cost technology c(q) =
cq. Firms have unlimited capacity; in principle they could serve the entire market. The
market demand function is q(p). Each firm announces a price pi. All consumers purchase
from the firm with the lowest price. (Implicitly, quantity demanded is the quantity associated
with the lowest price.) If there are multiple firms each having the lowest price, they equally
split the market.

A crucial feature of the Bertrand model is its ‘winner-takes-all’ feature. The firms have strong
incentives to slightly under-cut one another, because having just a slightly lower price might
be enough to win the entire market. With this in mind, what do best response functions
look like? Take a firm i.

p∗i (p−i) =

{
minj 6=i pj − ε if minj 6=i pj > c

c if minj 6=i pj ≤ c

for some small ε. The intuition is obvious. If the lowest competing price is above the firm’s
marginal cost, then the firm can slightly under-cut, steal the entire market, and make a
positive profit. (If the firm set that same minimum price, it would get a slightly higher price,
but half or fewer customers.) By contrast, if the lowest price is at or below c, the best the
firm can do is offer the lowest price consistent with not making a loss.

It should be evident that as long as the price is above marginal cost, there will be a strong
incentive for firms to undercut one another, pushing the price further towards marginal cost.
In a Nash equilibrium, it must be that all firms offer p = c.

It is worth pausing to consider just how stark this result is. In the Cournot model, as n
increased, each firm’s profit margin was squeezed, but it would still price above marginal
cost. Marginal cost pricing only arose in the limit as the number of firms became infinitely
(read very very) large. By contrast, in the Bertrand model, all it takes is 2 firms to compete
with one another, and they will push the price all the way to MC. A little competition is
sufficient to compete away all market power. Moreover, in equilibrium, both firms earn zero
profits. Does this seem plausible?

What if the firms had constant but heterogeneous marginal costs. Let firm i have cost
function ci(qi) = ciqi. How do things change? The best response functions are more-or-less
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as above (replacing the uniform c, with ci). Each firm undercuts the lowest price until it
reaches their marginal cost. But now, the implication is slightly different. Now, if there is a
single firm whose marginal cost is lower than all the others, then the price will be competed
down to (slightly under) the 2nd lowest marginal cost. The lowest-cost firm will win the
entire market, and sell at a price above its marginal cost, thus earning a positive profit. The
insight here is that there is a benefit to being a cost leader. [Of course, if the lowest cost is
shared by multiple firms, they will compete the price all the way down to this cost, thereby
competing away all profits.] Now, firms cannot freely choose their production technologies,
but the logic of the cost-leader earning positive profits suggests a strong motive for firms to
engage in R&D to reduce their cost of production below their competitors.

15.2.2 Capacity Constraints

An unrealistic feature of the baseline Bertrand model was that each individual firm had the
capacity to serve the entire market. This provided each firm with out-sized incentives to
undercut its opponents. In reality, firms are limited in how much they can produce (e.g.
because of various fixed resources). If so, the benefits to undercutting may be quite muted,
since the number of customers that are available to steal is small. Similarly, the cost to
setting a high price may not be so high, because not all customers can go to the cheaper
alternative.

Suppose firm i has capacity ki, which is to say it can produce any quantity up to ki at a
constant marginal cost c. [For simplicity, let us return to uniform marginal cost.] Impor-
tantly, we assume that K =

∑
i ki < q(c). The total capacity of all firms is insufficient to

meet demand if prices are at marginal cost. [The game theory becomes quite complicated if
this condition is not met.]

Capacity constraints dampen the benefit of undercutting ones opponent. Let pK = q−1(K).
At price pK , the demand for the good will be exactly equal to the maximum quantity the
firms can jointly supply to the market. At this price, every firm is already producing at
capacity. No firm has any incentive to lower its price further, since doing so does not steal
away any additional consumer. [To be clear; all the consumers will want to purchase from
that firm, but the firm will not be able to serve them all.]

Will the firms want to price above pK? (If so, the firm will not be producing at capacity.)
No! standard Bertrand logic still dictates that, then, cutting prices slightly will enable
firms to boost their sales up to capacity, at little cost to margins. Thus, the equilibrium of
the Bertrand game with capacity constraints is for firms to all coordinate on the price at
which the market can just meet the demand. Under our assumption on K, this implies an
equilibrium price above marginal cost.

We are now closer to a useful model. There is severe price competition between firms. This
creates strong incentives for firms to undercut one another. But the incentive exists only
when firms are producing below capacity. Once capacity is reached, there is no further reason



15.2. BERTRAND OLIGOPOLY 223

to lower prices. When overall capacity is low, this can result in prices above marginal cost,
consistent with strong price competition.

So far, we have taken the firm’s production capacity as given. But, of course, firms choose
their capacities, through their investments in resources (especially capital). And firms un-
derstand that their choice of capacity, along with the capacity choice of all other firms,
determines the market equilibrium price. What capacity should the firm choose? Each firm
chooses the capacity that maximizes its profits, taking as given the capacity choices of its
competitors.

Let k = (k1, ..., kn) be a profile of capacities, and let K−i =
∑

j 6=i kj be the capacity of all
firms except i. Let p(q) denote the (inverse) demand function. Firm i’s problem is:

max
ki

[p(ki +K−i)− c] ki

But this is a model of quantity selection, where the price arises endogenously as a function
of the total quantity selected by all firms. In fact, it is precisely the Cournot model! Thus,
there is a strong connection between the two approaches. Although we usually think of
Bertrand competition as being more descriptively true, it is far too stark without capacity
constraints. And since capacities are quantities that are chosen, the firms ultimately face a
quantity choice captured by the Cournot model, that induces an equilibrium in the Bertrand
game.

15.2.3 Heterogeneous Goods Bertrand Duopoly

Another strong assumption underlying the baseline Bertrand model is that firms produced
homogeneous goods that are perfect substitutes for one another. Suppose, instead that the
goods imperfect substitutes. Then, if one firm reduces its price below the other’s, it will not
necessarily steal all of their customers. This reduces the temptation to fight a price war all
the way down to marginal cost.

Let’s dig deeper. For simplicity, consider a market with 2 firms A and B, with demand
functions:

qA(pA, pB) = 12− 2pA + pB

qB(pA, pB) = 12 + pA − 2pB

Let us find the best response function for firm A. The firm’s problem is:

max
pA

(pA − c)(12− 2pA + pB) = max
pA
{−2p2

A + pA(12 + pB + 2c)− (12 + pb)c}
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which is quadratic in pA. Straightforwardly we have:

p∗A(pB) = 3 +
1

4
pB +

1

2
c

Notice that the best response function is increasing in the other firm’s price. We say the
firms are strategic complements. When one firm increases its price, this creates an incentive
for the other firm to increase its price as well. The incentive to undercut is muted. It should
be clear that this will enable the firms to sustain an equilibrium above marginal cost.

Let us complete the equilibrium characterization. By symmetry:

p∗B(pA) = 3 +
1

4
pA +

1

2
c

Hence:

p∗A = 3 +
1

4

(
3 +

1

4
p∗A +

1

2
c

)
+

1

2
c

p∗A =
15

4
+

1

16
p∗A +

5

8
c

p∗A = 4 +
2

3
c

and likewise p∗B = 4 + 2
3
c > c.



Chapter 16

Extensive Form Games

16.1 Extensive Form Games

Normal form games had two requirements that we may find limiting: First is the requirement
that players make decisions simultaneously. (Note —simultaneity is not to be interpreted
literally; the players may decide at different times. What is important is that the players
cannot observe their opponents’ choices before making their own choice.) Second is the
requirement that the strategic interaction be ‘one-shot’; there are no repeated interactions.
If we wish to incorporate these into our models, we need a model of sequential decision
making. Sequentiality changes the strategic environment by allowing agents who move later
in the game to condition their actions on the choices of the agents moving earlier. Strategies
can take the form: “If my opponent chooses A, I will respond by choosing X; otherwise I
will choose Y .” Importantly, such ‘contingent strategies’ allow players to reward or punish
their opponents on the basis of the actions they choose.

Example 57. Consider the following game: There are 2 players. Player 1 first chooses
whether to put $0, $1 or $3 into a pot. Player 2 then decides whether to match player
1’s contribution or to take the money from the pot. If player 2 matches, then the game
theorist adds a bonus to the pot: The bonus is $2.5 if each player contributed $1 and $5
if each contributed $3. At the end of the game, if there is money in the pot, player 1 gets
back double what she put in, and player 2 gets whatever is left. [This game is meant to
capture, in simple form, the interaction between a venture capitalist (player 1) who makes
an initial investment into a project, and an entrepreneur (player 2), whose effort determines
the success of the venture.]

We can represent this strategic situation using a game tree:

225
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We refer to a path (sequence of actions) from the top of the tree down to any node in the
tree as a history. In the above example, there are eight histories: ∅, $0, $1, $3, ($1,M),
($1, T ), ($3,M), and ($3, T ). The histories after which there are no further actions are called
terminal histories. Each terminal history is associated with a final outcome and payoffs. The
histories after which some player has a choice to make are called sub-histories.

Definition 37. A strategy for player i specifies the action that player i will take for every
sub-history at which he is required to take an action.

Note importantly — a strategy is a menu. It must specify the actions chosen after every
sub-history, including those that will not arise along the (equilibrium) path of play. For
example, in the Venture Capitalist example, a strategy must specify whether player 2 will
match or take in both scenarios where player 2 has a choice; i.e. if player 1 choose $1 or if
she chooses $3. Even if we are certain that player 1 would choose $3, we must still specify
what player 2 would have done had player 1 chosen $1 instead. A strategy might be: ‘T if
player 1 contributes $1 and M if player 1 contributes $3’.

Definition 38. A profile of strategies is a Nash Equilibrium if no agent could do strictly
better by changing her strategy, taking as given the strategy of all other players.

Example 58 (Venture Capitalist (cont.)). There is a unique Nash Equilibrium of the Venture
capitalist game. Player 1 should contribute $1. Player 2 should choose M if player 1
contributes $1 and T if player 1 contributes $3.

Let us check that this is a Nash Equilibrium. First consider player 1. Player 1 never wants
to contribute if player 2 will take, and player 1 is better of contributing than not if player 2
matches. Hence, player 1 will not contribute $3, but will be willing to contribute $1. Next,
consider player 2. Since player 1 contributes $1, player 2 can either match and get 1.5 or
take and get 1. Clearly matching is preferable.

Why did it matter what player 2 did in the sub-history where player 1 contributed $3.
Suppose we alter player 2’s strategy so that she always choosesM . (This won’t change what
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she does if player 1 contributes $1.) If player 1’s strategy is to contribute $1, then player
2’s new strategy is still optimal. However, player 1’s choice is not optimal given player 2’s
strategy. Player 1 could now do better by contributing $3, rather than $1. And, of course,
this cannot be an equilibrium, since if player 1 were contributing $3, player 2 would want to
take. Notice that, player 2’s choice ‘off-the equilibrium-path’ does not affect her payoff, but
it does affect the choice that player 1 would make, and therefore is strategically important.

Important —the optimal choice for players choosing earlier in the game depends on choices
that other players will make later in the game. When choosing amongst her possible actions,
player 1 needs to know what player 2 would do in every contingency, in order to choose the
action that is best for her.

Example 59. Consider the following example, regarding the choice of a firm (the ‘chal-
lenger’) to enter an existing monopolistic market, and the choice of the monopolist (the
‘incumbent’) to retaliate by waging a price war or not.

Challenger

Incumbent

(2, 1)

Acquiesce

(0, 0)

Fight

In

(1, 2)

Out

This game has two Nash Equilibria: (Out, F ight) and (In,Acquiesce). The first
equilibrium is intuitive. The challenger chooses in. Given this choice, the incumbent’s best
response is to choose to acquiesce. This vindicates the challenger’s choice to go in. By
contrast, the second equilibrium is less intuitive. The incumbent threatens that he will

fight if the incumbent goes in. This threat deters the challenger from entering. Given that
the challenger stays out, the incumbent’s decision to fight or not does not affect the

outcome, and so there is no beneficial deviation for the incumbent.

Note, the importance of off-equilibrium-threats to sustaining equilibrium play. But are all
threats made equal? In the above example, the incumbent may wish to posture and claim
that he will fight if the challenger enters. But if the challenger calls his bluff and enters,
the incumbent would not wish to follow through with his threat. The threat to fight is
not credible. This demonstrates a problem with Nash Equilibrium — it permits agents to
make wild threats about how they will behave off the equilibrium path, and these threats
are believed by the other players. Although such behavior would be sub-optimal, as long
as the game never goes down those paths, they player is never called-on to actually make a
sub-optimal choice. Nevertheless, we would think that such threats are not realistic. The
other players shouldn’t believe the threat in the first place. This motivates the notion of
subgame-perfection.

Definition 39. Let h be a non-terminal history of an extensive form game. The subgame
following h is the part of the game that remains after history h has occurred.
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We can think of a subgame as creating a new game, starting from any non-terminal node in
the parent game, and then following the game from there onward.

Definition 40. A profile of strategies of an extensive form game is a subgame perfect equi-
librium if there is no subgame in which some player can do strictly better by choosing a
different strategy, taking as given the strategies of their opponents.

Subgame perfection requires that the agents’ strategies be optimal (i.e. Nash equilibria), not
only in the parent game, bit also in every subgame. One way to motivate this concept is to
suppose that —whilst every player seeks to choose the equilibrium strategy, so that the game
should follow the Nash equilibrium path —at every stage, a player may make a mistake (her
hand may tremble when choosing her action) and send the game down an off-equilibrium
path. Subgame perfection requires that the players continue to play optimal strategies, even
after arriving at mistaken histories.

Off-equilibrium path threats in a subgame perfect equilibrium are ‘credible’ in that, should
an agent call the threat-issuing player’s ‘bluff’, the player will optimally carry through with
the threat. In the incumbent-challenger example, above, there are two Nash equilibria, but
only one —the one in which the challenger enters and the incumbent acquiesces —is subgame
perfect. The other Nash equilibrium is not subgame perfect in that, if the challenger called
the incumbent’s bluff and entered, the incumbent would not want to follow throw with his
threat of fighting a price war.

Lemma 15. A subgame perfect equilibrium is a strategy profile that induces a Nash equilib-
rium in every subgame.

Corollary 3. Every subgame perfect equilibrium is a Nash equilibrium.

The Corollary reminds us that Subgame Perfection is not a different solution concept to
Nash Equilibrium — but rather an refinement of the Nash Equilibrium. In addition to the
usual requirement of a Nash Equilibrium that strategies are optimal on the equilibrium path,
subgame perfection insists that they are optimal off the equilibrium path as well. Hence every
subgame perfect equilibrium will be a Nash equilibrium, but some Nash equilibria may not
be subgame perfect.

To find the subgame perfect equilibria, we can use the method of backward induction.
Start at the bottom of the tree. For each ultimate choice, select the action that is best for
the player. Then progressively work back up the tree, assuming that subsequent play follows
the path you have found to be optimal. Once you get to the top, you will have found the
subgame perfect equilibrium.

Example 60. Return to the venture capitalist example. We indicate the subgame perfect
equilibria diagrammatically on the game tree. The optimal actions at each stage are shown
by bolding the associated edge.

Start at the bottom of the tree. In the sub-history after player 1 contributed $1, player 2
does best to meet. So we bolden the branch corresponding to ‘meet’ (after $1). In the sub-
history after player 1 contributed $3, player 2 does best to take. So we bolden the branch
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corresponding to ‘take’ (after $3). Now, work up to the previous level. Player 1 must choose
from the set {$0, $1, $3}. He know foresees that player 2 will meet if he chooses $1 and take
if he contributes $3. Comparing the associated payoffs, his optimal choice is to contribute
$1. We indicate this by boldening the branch corresponding to $1. We are now at the top
of the tree. The subgame perfect equilibrium strategies correspond to the bolded actions.

Example 61. Consider the following game (due to Osborne (2003))

I denote a strategy profile by a pair (W,XY Z) where W is the action chosen by player 1,
X is the action chosen by player 2 in history where player 1 chooses A, Y is the action by
player 2 following player 1’s choice of B, and Z is the action following C. This game has 6

subgame perfect equilibria: (A,DFJ),(A,DGJ), (A,EFJ),(B,EFJ),(C,EFJ),
(B,EGJ). Recall, each of these is also a Nash Equilibrium. Additionally, there are 3 Nash

equilibria which are not subgame perfect: (A,DFH), (A,DGH), (B,EGH).
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16.2 Stackelberg Duopoly

The Cournot model of duopoly involved firms simultaneously choosing quantities, anticipat-
ing opponent choices (which affects the market price, and hence, profit). The Stackelberg
problem has the same structure as Cournot, except that firms may choose outputs sequen-
tially (or at the very least, one or some firms are known market leaders who are privileged
to choose before the others). The sequential nature of the problem has distributional and
efficiency implications, relative to the Cournot outcome.

Suppose there are two firms i ∈ {1, 2}. Firm 1 is the leader and chooses its output q1

first. Firm 2 then chooses its output q2, after observing firm 1’s output. Each firm has cost
function Ci (qi). The market price is given by the inverse demand function P (Q), where
Q = q1 + q2 is market supply, and P ′ (Q) < 0.

How does the sequentiality change things? Let’s solve the game by backward induction.
Firm 2 chooses a quantity q2 to maximize her profit, taking q1 as given. [Note —unlike
the case with simultaneous moves, where firm 2 merely conjectures firm 1’s choice, in the
sequential game, firm 1’s choice is directly observable.] Firm 2’s problem is:

max
q2

P (q1 + q2)q2 − C2(q2)

The first order condition is:

P (Q) + q2P
′(Q)− C ′2(q2) = 0

Notice that this is exactly the same condition as in the Cournot case. Solving for q2 gives
the the best response function for firm 2, q2(q1). So far, nothing has changed.

Now, consider firm 1’s problem. Firm 1 chooses its quantity q1 to maximize its profits,
taking as given firm 2’s strategy , but not taking a particular quantity as given. Firm 1
knows that firm 2’s quantity is contingent on its choice q1. Thus, rather than taking firm 2’s
quantity as given, it realizes that firm 2 will change its quantity depending on what firm 1
does, according to the best response function. Firm 1’s problem is:

max
q1

P (q1 + q2(q1))q1 − C1(q1)

The first order condition is:

P (Q) + q1P
′(Q)[1 + q′2(q1)]− C ′1(q1) = 0

which is different from the usual Cournot first order condition. The condition is the sum of
3 terms. The first two terms together are firm 1’s marginal revenue, whilst the third term is
marginal cost. Focusing on the first two terms, the first term is revenue gained from selling
one more unit (at price P (Q)). The second term is negative. It is the revenue lost on all
the previous units sold because the price is now lower. In Cournot, when firm 1 increases
quantity by 1 unit, total supply increases by 1 unit, and so the price falls by P ′(Q). In
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Stackelberg, when firm 1 increases quantity by 1 unit, firm 2 best response by partially
decreasing q2, which means total supply increases by less than 1 unit. The overall effect is
muted. This means price will fall by less, and so the loss in revenue for firm 1 will be lower.
Firm 1 cam rely on firm 2 to mitigate the downside effect of its action.

Recall, q′2(q1) ∈ (−1, 0) —i.e. when firm 1 increases its output, firm 2 will decreases its
output, but less than one-for-one. Now, we can re-write firm 1’s first order condition as:

P (Q) + q1P
′(Q)− C ′1(q1) = −q1P

′(Q)q′2(q1)

In this form, the LHS is precisely the expression from the standard Cournot first order
condition. But in standard Cournot, the RHS was zero. In the Stackelberg game, it is
negative! (To see this, note that P ′(Q) < 0 and q′2(q1) < 0.) Suppose firm 1 produced the
Cournot output qC1 . Firm 2 will best respond by producing its Cournot output qC2 . If so, we
know the LHS will be zero. But to satisfy the Stackelberg FOCs, the LHS should be negative
at the optimum. [Put differently, the actual FOC is positive at the Cournot solution.] Firm
1 has an incentive to raise output. Hence qS1 > qC1 . Then, by firm 2’s best response function,
qS2 < qC2 . Additionally, since firm 2 decreases its output less than one-for-one, its must be
that total output rises QS > QC , and so the Stackelberg price is lower than the Cournot
price P S < PC . Since firm 2 produces less and receives a lower price, it must be that firm 2’s
profit has fallen πS2 < πC2 . Moreover, firm 1’s Stackelberg profit must be higher than under
Cournot, since it could have replicated the Cournot outcome, but chose not to, πS1 > πC1 .

The sequentiality of decision making in the Stackelberg setting provides a distinct advantage
to the first mover. The first mover does not need to best respond to what the second mover
does. Instead, the first mover can exploit the fact of this asymmetry by forcing firm 2 to
carry the heavier burden of lowering quantity in order to keep prices from falling too low.
In a sense, it is able to free-ride off firm 2.

Example 62 (Stackelberg Duopoly). Suppose the (inverse) demand function is: P = 100−Q
and firms have identical cost functions ci (qi) = 40qi. We previously saw that the best
response function for each firm in a Cournot duopoly is qi(q−i) = 30− 1

2
q−i. In equilibrium,

each firm produces qCi = 20, so that the total output was QC = 40 and the market price is
PC = 60. Each firm earns a profit of πC = 400.

Now consider the Stackelberg case. Firm 2’s best response function remains q2 = 30 − 1
2
q1.

Firm 1 chooses q1 to solve:

max
q1

(100− q1 − (30− 1

2
q1))q1 − 40q1 = max

q1
(30− 1

2
q1)q1

Straightforwardly, this solved by setting qS1 = 30. Firm 2 best responds by setting qS2 = 15.
The equilibrium market quantity is QS = 45 and the equilibrium price is P S = 55. Firm 1
earns profits of πS1 = 450, whilst firm 2’s profit is πS2 = 225.

Notice that firm 1’s quantity and profits are larger than in the Cournot duopoly, firm 2’s
quantity and profits are lower, the overall market supply is higher, whilst the market price
is lower.
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Before ending this section —a modelling comment. In our sequential game, we assumed
that firm 1 would get to move first, and that once it chose its quantity, it wouldn’t move
again. Firm 1 is committed to its chosen quantity. In reality, it’s not immediately clear
why this should be the case, and why firm 1 wouldn’t change its output having seen firm
2’s. [Taking firm 2’s output as given, firm 1 is not best responding!] Moreover, firm 2’s
behavior would be different if it anticipated firm 1 changing its mind. My goal here is not to
investigate where the first-mover’s commitment comes from. Rather, to note that, implicit
in the preceding analysis was the (strong) assumption that the first mover had the ability to
commit to policies, and that this commitment ability generated strong benefits for player 1.

16.3 Repeated Games

In the above sub-section, we showed that history dependent strategies, equilibrium strategies
are affected by (credible) threats about the path of play off the equilibrium path. In this
section, we turn our attention to repeated play of the simultaneous-move games from the
first sub-section. We are particular interested in games whose Nash Equilibrium is Pareto
dominated, such as the prisoner’s dilemma; can repeated play with credible punishments
cause agents to make efficient choices?

Example 63. We begin with a simple game, in which the following normal form game is
repeated twice:

L M R
L 6, 6 −1, 7 −5,−5
M 7,−1 0, 0 −5,−5
R −5,−5 −5,−5 2, 2

The one-shot version of this game has two (pure strategy) Nash equilibria —(M,M) and
(R,R). These equilibria are Pareto ranked — (R,R) Pareto dominates (M,M) —although
neither is Pareto Optimal, since (L,L) gives strictly larger payoff to both agents.

How many equilibria exist in the two-round version of the game? Naturally, the second
round reduces to a one-shot game, and so second period strategies must coordinate on one
of these equilibria. Let h be any history after round 1. (There are 9 such histories: h ∈
{LL,LM,LR,ML,MM,MR,RL,RM,RR}.) After each of these histories, it is subgame
perfect for both players to choose M or to both choose R. What about the first period?
Clearly (static-game) Nash play is optimal in the first round, since it satisfies mutual best
response. Hence there are 210 SPE in which the agents choose Nash actions in each period.
(There are two possible action pairs in the first period. For each of these, we must specify
second round play following 9 potential histories. For each history, there are two possible
action pairs that constitute a Nash Equilibrium.)
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In addition, there are 26 = 64 SPE in which agents choose non-Nash actions in the first stage.
These strategies are of the form: choose L in period 1, and in the second period choose R
after history (LL) and M for histories (L,M) and (M,L), and choose either R or M after
any other history (there are 6 of these). How does the equilibrium work? The reason why
(L,L) cannot be sustained as an equilibrium in the one-shot game is that players will be
tempted to defect and choose M . This earns an additional payoff of 1. The idea is to reward
players who stick to the plan and choose L and punish those who defect to M . The reward
is (R,R) in round 2; the punishment is (M,M). The net second period cost of defection is
2 —which should outweigh the 1 unit gained in round 1 from defecting.

Important —take the subgame following any history of play in round 1. The payoffs in this
subgame are exactly given by the payoff matrix. However, the payoffs for the overall game
(starting from period 1) are not given by the entries in the matrix. These entries are just
the payoffs for round 1 —but additional payoffs will follow in round 2. This is why we can
sustain actions in period 1 that are not Nash-Equilibrium of the one-shot game; those actions
are dominated in the one-period game, but not in the extended game.

16.3.1 Finitely Repeated Prisoners’ Dilemma

Consider the following version of the Prisoner’s Dilemma:

C D
C 2, 2 0, 3
D 3, 0 1, 1

Can repeated play generate cooperation in the Prisoners’ Dilemma?

Lemma 16. Suppose the Prisoners’ Dilemma is repeated a finite number of times T . In the
unique equilibrium, each player chooses D in every period, following every history of play.

Proof. The proof is by backward induction. Base case: Begin with period T , and let hT by
any history of play up to period T . It is a dominant strategy for each agent to choose D in
period T , no matter the history of play. So we know aT = (D,D). Inductive step: Suppose
aτ = (D,D) for all τ > t. Now, consider the subgame at period t, following any history of
play in the preceding t − 1 periods. Each agent knows that his action in period t will not
affect his payoff in future periods (since both players will necessarily choose (D,D) in future
periods). So each agent simply optimizes in period t as if he is playing a one-shot game.
Hence (at) = (D,D).

We can think of this result in two different ways:
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1. Since the game ends in period T , the agents cannot sustain cooperation in period T by
threatening to punish defection (since there are no further periods in which to meat
out punishment). This makes period T play entirely predictable. Now consider period
T−1. Agents may try to sustain cooperation in period T−1 by promising to cooperate
in period T if the opponent cooperates (in period T − 1), but switching to defection if
the opponent defects. But such a threat is not credible, since it is known that agents
will definitely choose D in period T . Lacking a credible threat to sustain cooperation,
both agents will choose D in T − 1. The same logic applies all the way forward to
period 1. The fact that the game ends makes credible punishment impossible.

2. The agents know that they will eventually switch to choosing D towards the end of
the game. Nevertheless they may wish to choose C at the start. However, each agent
wants to be the one who defects first, and switches from C to D (because if not, she will
bear the loss of cooperating whilst her opponent defects). If player 1 expects player 2
to switch at period t, he will want to switch at period t− 1. In continuing to preempt
each other, the players bring the switching time all the way forward to round 1.

The inability to sustain cooperation can be made stark by considering the following variant
of payoffs:

C D
C 100, 100 −1, 101
D 100,−1 0, 0

Along the equilibrium path of play, both agents receive a discounted stream of utility of zero.
If they cooperated in every period, they would have each received 100T (taking δ = 1 for
simplicity). The temptation to earn 101 in some period, rather than 100, by defecting on
their opponent, causes both to earn 0!

16.3.2 Infinitely Repeated Prisoners’ Dilemma

The lesson from finitely repeated PDs was that cooperation cannot be sustained when op-
portunities for punishment dry up. Furthermore, there is a contagion effect, where this lack
of punishment at the end of the game, prevents punishment at any stage of the game. What
if the game is repeated infinitely, so that the possibility of future punishments are always
available? It should be clear that repetition of the static Nash actions remains an equilibrium
strategy. (If I always expect my opponent to choose D, the best I can do is to always choose
D.) However do other equilibria exist?

Yes! I demonstrate some of these equilibria by example. Before doing so, we need to know
how to find SPE in infinite games. (We know to use backward induction for finite games,
but this method cannot work in an infinite horizon.
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Proposition 5 (One-shot deviation principle.). A strategy profile of an infinitely repeated
game is a subgame perfect equilibrium if and only if no player can gain by changing her
action after any history, given both the strategies of the other players, and the remainder of
her own strategy.

Example 64 (Grim Trigger Strategies). Consider the following strategy for player i: si (φ) =
C and for every t = 1, 2, ...

si
(
a1, .., at

)
=

{
C if aτ=(C,C) for every τ ≤ t

D otherwise

This is the grim-trigger strategy. Agents begin by cooperating, but the immediately and
forever switch to defect after either agent chooses D. We call this the grim trigger, because
the punishment is severe. Once a player’s trust is lost, it can never be regained.

We can think of the strategy has having one of two states — C and D. The strategy prescribes
that each agent should choose C when the state is C, and choose D when the state is D. The
strategy must also prescribe the dynamics of state transitions. We have that the original
state is C, that D is an absorbing state, and that the state transitions from C to D if some
action pair other than (C,C) was chosen in the previous round.

Is it an equilibrium for both agents to choose such a strategy? We must check if there is a
favorable deviation to either agent. Recall, by the one-shot deviation principle, it suffices to
check for one period deviations. If the agents follow the strategy, then C is chosen by both
agents in every period, and so the payoffs are:

∞∑
t=0

δt−1u (C,C) =
∞∑
t=0

δt (2) =
2

1− δ

Suppose some agent deviates in period t and chooses D. Then the path of play will be (C,C)
until period t−1, (D,C) in period t, and (D,D) for every future period. The agent’s lifetime
utility is:

t−1∑
τ=0

δτ (2) + δt (3) +
∞∑

τ=t+1

δτ (1) = 2
1− δt

1− δ
+ 3δt +

δt+1

1− δ

Such a deviation is not favorable provided that:

2 ≥ 2
(
1− δt

)
+ 3 (1− δ) δt + δt+1

0 ≥ δt − 2δt+1

δ ≥ 1

2

Hence, there is an equilibrium in which agents always cooperate, sustained by the threat
of eternal punishment, provided that δ ≥ 1

2
. We shown that we can sustain cooperation if

agents are sufficiently patient — i.e. if they put sufficient weight on the future.
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Why can we sustain cooperation in the infinite game, but not in the finite game? In the
finite game, the game eventually ends. When it does, the ability to punish disappears, and
this undermines threats to punish in previous periods. By contrast, in the infinite game,
there always exist additional periods in the future in which to punish deviations. The threat
of punish will enforce cooperation provided that the agents are sufficiently patient (i.e. they
care enough about the future).

Are there other types of trigger strategies? Yes. Below are other common strategies:

1. Limited Punishment Strategies: This strategy is similar to the grim trigger, but is
less draconian, because the opponent is forgiven after sufficiently many periods of
punishment.

The game begins in state P0 and in this state, the agent chooses C. The state remains
in state P0 unless the opponent chooses D. If so, the state transitions to punishment
state P1 where the agent chooses D. The state then automatically transitions to state
P2 (and then again to state P3 and then back to state P0) regardless of the agents’
choices. In punishment states P2 and P3, the agent chooses action D. Hence, following
a defection by the opponent, the agent automatically defects for 3 periods, and then
reverts back to cooperating.

2. Tit-for-tat. In this strategy, the agent begins by choosing C, and then simply copies
what his opponent chose in the previous round. The strategy is:

si (φ) = C

si
(
a1, ..., at

)
=

{
C if at=(·, C)

D otherwise



Chapter 17

Public Goods & Externalities

17.1 Public Goods

Most of our analysis to this point has focused on private goods —those who consumption
only affects a single agent. Now we consider public goods. First some terminology.

We say a good is non-rival if its consumption by one agent does not reduce its availability
for consumption by others. E.g. a film screening is non-rival. The fact that I’m watching the
film doesn’t mean there is less film for you to watch (up to the point where the cinema fills
up!). By contrast, an apple is clearly rival. If I consume the apple, then it is not available
for you to consume. We say a good is non-excludable if it is impossible to prevent people
from consuming it. A film screening in an enclosed theatre is clearly excludable —you can
prevent people (non-payers in particular) from entering. A fireworks display, by contrast, is
non-excludable. You cannot prevent non-payers from looking up and enjoying the fireworks
show!

We say a good is public if it is both non-rival and non-excludable. Examples of public
goods include: police protection and national defense, lighthouses and streetlights, free-to-
air television and radio broadcasts etc. Not all non-private goods are public. Some goods are
non-rival but excludable, e.g. cable (or subscription streaming service) television —we refer
to such goods as club goods. By contrast, other goods are rival but non-excludable, e.g. street
parking. It is important to note that there are a range of goods that are commonly referred
to as ‘public goods’, typically because they are provided by governments, such as healthcare
and education, but which are quite clearly rival and excludable, and so are technically private
goods (even if they are socially very valuable).

17.1.1 Efficient Provision of a Discrete Public Good

Start with a simple example. There are two agents i ∈ {1, 2} and two goods —a private
good x and a public good G. Agent i has income yi, and must determine how to allocate

237
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this between the public and private good. Let gi be the allocation to the public good, and
xi = yi − gi be private consumption. Agents have standard preferences over the two goods
ui(G, xi) where ui is strictly increasing in both components.

First, suppose the public good is a fixed object that is either provided or not. (Later we
will consider choosing amongst different quantities of the public good.) Suppose it costs c
to provide the public good, so that:

G =

{
1 if g1 + g2 ≥ c

0 if g1 + g2 < c

Should the public good be provided? For each consumer i, let ri denote the maximum she
would be willing to pay in order that the public good be provided. We call r the reservation
price. ri satisfies:

ui(1, yi − ri) = ui(0, yi)

Now, let (g1, g2) be a pair of contributions satisfying g1 +g 2 ≥ c. If it is desirable for both
agents to make this contribution, then:

ui(1, yi − gi) > ui(0, y) = ui(1, yi − ri)

which implies that yi−gi > yi−ri for each i (since u is strictly increasing in both components).
Hence gi < ri. Combining this equation for both agents:

r1 + r2 > g1 + g2 ≥ c

Thus, if the sum of the willingnesses-to-pay amongst members of the public exceeds the cost
of provision, then it is efficient to provide the public good (in the sense that there is a way
to allocate the burden of paying for the good in a way that makes everyone better off from
doing so rather than not). Note the contrast to private goods, for which, efficiency requires
provision provided that the individual consumer’s willingness to pay is larger than the cost
of provision. In the case of public goods, it could be that the willingness to pay of each
agent is (well) below the cost of provision. However, since the good is non-rival and so can
be enjoyed by many, it may still be efficient to provide as long as the joint willingness to pay
exceeds the cost of provision.

17.1.2 Equilibrium Provision of a Discrete Public Good

Suppose r1 + r2 > c so that provision is efficient. Will the good be provided by the mar-
ketplace? The answer is often no! We consider two possibilities: (1) the good is provided
privately by the market; and (2) the good is provided by the government, based on the voting
behavior of the public.

First, consider the private market case (where, implicitly, there is no coordination amongst
the consumers). For tractability, suppose ri = 100 for each i ∈ {1, 2} and that c = 150.
Each agent must decide whether to purchase (individually) or not. We can represent the
consumers’ payoffs in the following matrix:
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Buy Don’t Buy
Buy 25, 25 −50, 100

Don’t Buy 100,−50 0, 0

Clearly the equilibrium is for neither agent to buy, even though we know that both could be
made better-off if each made a moderate contribution. Naturally, the problem here is one of
coordination.

Second, consider the voting case. Suppose there are 3 agents with r1 = 90, r2 = 30 and
r3 = 30, with c = 99. Then r1 + r2 + r3 = 150 > c and so provision is efficient. Suppose
in the voting scheme, each individual understands that they will be liable for a 1/3 share
(through taxation). Then the per-person cost is 33, which is above the reservation cost of 2
out of 3 consumers. A majority will note for the good not to be provided.

17.1.3 Efficient Provision of a Continuous Public Good

Now suppose the public good can be provided in any (non-negative) amount. Again, for
simplicity, suppose there are two agents, although the results generalize easily. If g1 + g2 is
contributed to the public good, then G = g1 + g2 is provided, and agent i receives utility
ui(G, xi) = ui(g1 + g2, yi − gi).

We argued in Econ 201 that if an allocation was Pareto efficient, it must maximize a weighted
sum of the agent utilities. Thus, the efficient provision of public goods must satisfy:

max
g1,g2

γ1u1(g1 + g2, y1 − g1) + γ2u2(g1 + g2, y2 − g2)

The first order conditions are:

γ1
∂u1(G, x1)

∂G
+ γ2

∂u2(G, x2)

∂G
= γ1

∂u1(G, x1)

∂x1

γ1
∂u1(G, x1)

∂G
+ γ2

∂u2(G, x2)

∂G
= γ2

∂u2(G, x2)

∂x2

It must be that γ1
∂u1(G,x1)

∂x1
= γ2

∂u2(G,x2)
∂x2

. Taking either equation and dividing the LHS by
the RHS gives:

∂u1(G,x1)
∂G

∂u1(G,x1)
∂x1

+
∂u2(G,x2)

∂G
∂u2(G,x2)

∂x2

= 1

MRS1
Gx +MRS2

Gx = 1

Recall, the marginal rate of substitution is the amount of the private good that each agent is
willing to give up to get one more unit of the public good. Efficiency requires that the sum
total of these willingnesses-to-forgo should coincide with the amount of private consumption
that must be forgone (which in our setup is 1). The analogy to discrete case should be
obvious.
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Example 65. Suppose the agents have identical Cobb Douglas preferences ui(G, xi) =
α lnG + (1 − α) lnxi, and let the incomes be y1 and y2 (not necessarily the same). The
marginal rate of substitution for agent i is:

MRSi =
∂u1(G,x1)

∂G
∂u1(G,x1)

∂x1

=
α
G

1−α
xi

=
α

1− α
· yi − gi
g1 + g2

Efficiency requires:

MRS1 +MRS2 = 1

α

1− α
· y1 − g1

g1 + g2

+
α

1− α
· y2 − g2

g1 + g2

= 1

α

1− α
· y1 + y2 − g1 − g2

g1 + g2

= 1

α(y1 + y2)− αG = (1− α)G

Geff = α(y1 + y2)

17.1.4 Equilibrium Private Provision of Continuous Public Good

Now that we’ve found the efficient quantity, what level of public good will actually be pro-
vided in a private market? Suppose each agent i voluntarily and independently contributes
gi towards the provision of the public good. Then G = g1 + g2 units of the public good are
provided. Each player makes their contribution to maximize their utility, taking as given
their opponent’s contribution. Naturally, we solve for a Nash equilibrium.

Player i’s problem is:
max
gi

ui(gi + g−i, yi − gi)

The first order condition is:
∂ui(G, xi)

∂G
=
∂ui(G, xi)

∂xi

Let’s interpret the expression. The LHS is the marginal benefit to agent i of increasing gi by
1 unit, taking as given g−i. The RHS is the marginal (opportunity) cost to agent i, in terms
of xi forgone. Each agent chooses their contribution level gi to maximize their net benefit.
Contrast this to the first order condition that defines the efficient output:

∂ui(G, xi)

∂G
+
γ−i
γi

∂u−i(G,x−i)
∂G

∂ui(G,xi)
∂G

=
∂ui(G, xi)

∂xi

The term in red is the ‘external benefit’ that the other agent receives (normalized to the
same unit of utility as agent i) when agent i increases her contribution by 1 unit. The social
planner naturally takes this into account, but with private provision, the agent herself does
not. Naturally, we should expect this to generate an under-provision of the public good.



17.1. PUBLIC GOODS 241

We see this by re-writing the FOC in terms of marginal rates of substitution. We have
MRSi = 1 for each i, which implies MRS1 + MRS2 = 2. As before, the LHS is the
marginal social benefit to increasing G by one unit. Notice that the condition has become
more demanding. The public good will be provided only up to the point that its marginal
social benefit is twice its marginal cost (whereas efficiency requires its provision as long as
MSB > MC). The private market will under-provide the public good.

Example 66. Continue the previous example with Cobb-Douglas preferences. Agent i
maximizes ui(G, xi) = α ln (gi + g−i)+(1−α) ln(yi−gi), taking g−i as given. The first order
condition implies:

α

gi + g−i
+

1− α
yi − gi

= 0

(1− α)(gi + g−i) = α(yi − gi)
g∗i (g−i; yi) = αyi − (1− α)g−i

This is agent i’s best response function. Notice that gi is decreasing in g−i. There is a
free-riding problem! As her opponent increases her contribution, each agent has an incentive
to reduce her contribution and free-ride off her opponent. This results in a decreased overall
provision of the public good.

What is the equilibrium provision? Combining the best response functions:

g∗1 = αy1 − (1− α)g∗2
g∗2 = αy2 − (1− α)g∗1

which implies that: g∗1 + g∗2 = α(y1 + y2)− (1− α)(g∗1 + g∗2), and so:

G∗ = g∗1 + g∗2 =
α

2− α
(y1 + y2) < α(y1 + y2) = Geff

17.1.5 Public Provision of a Continuous Public Good through Vot-
ing

Now, consider public provision through voting. To make the problem more interesting,
suppose there are n agents, i = 1, ..., n. Suppose it has been exogenously determined that
agent i will pay for a share si ∈ [0, 1] of whatever quantity of the public good is provided,
such that

∑
i si = 1. (Think about si as representing marginal tax rates that are determined

independently of the level of public good spending.) The equilibrium level of public provision
Gv is the one for which a majority of voters cannot be found who would either increase or
decrease it.

First, let us find the optimal level of public goods provision for a given voter. Voter i’s ideal
G solves: maxG ui(G, yi − siG). The first order condition implies:

∂ui(G, xi)

∂G
= si

∂ui(G, xi)

∂xi
MRSi = si
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The intuition is straight-forward. Each agent wants to provide public goods up to the point
where their wililingness-to-pay (MRSi) is equal to their share (si) of the cost of provision.
Let Gi be the optimal provision of public goods for agent i, and assume (naturally) that
agent i prefers allocations less and less, the further is the quantity from Gi.

Let m index the median voter —the one who has the middle value of Gi. Thus, half the
voters have an ideal public good provision below Gm and half have an ideal level above Gm.
Suppose the government proposes G < Gm. Then a majority exists (i.e. the median and
everyone who prefers even larger G) that would vote to raise G to Gm. Suppose instead
that the government proposes G > Gm. Again, a majority (the median and everyone who
prefers lower provision) would vote to lower G to Gm. Thus, the voting equilibrium will
select Gv = Gm, and so Gv is characterized by the condition:

MRSm = sm

Is this efficient? Recall, the efficient quantity is given by:
∑

iMRSi = 1, which we can
re-write as:

1

n

∑
i

MRSi =
1

n

Thus, efficiency requires that the average MRS is equal to the average contribution 1
n
. But

depending on the distribution of incomes and contributions shares {si}, the Gv that solves
the voting equilibrium may either be higher or lower than the efficient level.

Why the ambiguity? With voting there are two sources of inefficiency that push in opposite
directions: First, as with the private market case, individual agents ignore the benefit to
others of public goods provision, and this will cause public goods to be under-provided.
Second, with government provision, any given agent doesn’t pay for the cost of the public
good, but only a fraction of the cost —forcing the remainder of the costs onto the rest of
society. This makes public goods seemingly cheaper, and so will result in an over-provision
(all else equal). The two effects taken together may either result in an under- or over-
provision, depending on the size of each effect.

Example 67. Continue with the Cobb-Douglas example. Each agent i has preferences
ui(G, xi) = α lnG + (1 − α) ln(yi − siG). Analogous to results above, the efficient level of
public goods is

Geff = α
∑
i

yi = nαy

, where y is the average income. Now, each individual agent’s ideal level of public provision
is given by the first order condition;

α

G
− si

1− α
yi − siG

= 0

, which implies:

Gi = α
yi
si

= (nαy) · yi
y
· 1

nsi
= Geff ·

(
yi
y
· 1

nsi

)
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Hence Gv > Geff provided that:
ym
y
> nsm

or equivalently:
ym
sm

>
y
1
n

Recall Gi = α yi
si
, and so each agent’s ideal level of public goods provision is proportional

to yi
si
. All else equal, we know that richer agents will want more of the public good than

poorer agents (because of diminishing marginal utility from the private good). Hence, as
income increases, so will demand for public goods. Similarly, as sm increases, the agent must
internalize more of the cost of financing the public goods, and this will cause demand for
public goods to decrease. For Cobb-Douglas preferences, what matters is the ratio.

Now, the efficient level Geff is proportional to that ratio for the average agent: y
1
n

. Hence,
the voting equilibrium level will be higher than the efficient level if the median voter’s ratio
is larger than this ratio, and vice versa.

17.2 Externalities

An important ingredient to the First Welfare Theorem was that each agent’s utility only
depended on their allocation, and was unaffected by what was given to others (except through
the social resources constraint). But we know, in many instances, that the consumption of
some directly affects the utility of others. We refer to such consequences to third parties as
externalities.

In general, externalities may either be positive (e.g. education, immunisation) or negative
(e.g. pollution). In this section we will explore the relevant concepts through the canonical
example of a firm whose production process emits pollution.

Example There are two firms. Firm 1 produces output x which it sells in a competitive
market at price p. The production of x involves direct costs c(x) to firm 1, and also imposes
external costs e(x) on firm 2. Both costs functions (c(x) and e(x)) are assumed increasing
and convex in x, so that the marginal cost and marginal external cost are positive and
increasing in the level of output. The profits of the two firms are:

π1 = max
x

px− c(x)

π2 = −e(x)

Clearly, the profit maximizing output is given by p = c′(xmax) (i.e. standard marginal cost
pricing).

To determine the efficient level of output, we ask what output would be produced if the two
firms merged so as to internalize the externality. (Under this scenario, there are no longer an
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externalities, and so the first welfare theorem will apply.) If so, the joint firm would choose
output to maximize:

π = max
x

px− c(x)− e(x)

The first order condition is:
p = c′(xeff ) + e′(xeff )

Clearly xmax > xeff and so, in the presence of a negative externality, there will be an over-
provision in the private market. (To see this, note that that since e′ > 0, c′(xmax) = p =
c′(xeff ) + e′(xeff ) > c′(xeff ). Then, since c′′ > 0, c′(xmax) > c′(xeff ) implies xmax > xeff .)

17.2.1 Solutions to the Problem of Externalities

Here we consider two common solutions: (1) Pigouvian taxes and (2) Missing markets.

Pigouvian Taxes. Suppose the government imposes a per-unit tax on firm 1’s output.
Firm 1’s first order condition becomes:

p = c′(x) + t

and so, setting t = e′(xeff ) will cause firm 1 to naturally make the socially efficient choice.
The tax causes the firm to internalize the externality. Of course, to implement such a
scheme, the government would need to know the externality function, which might be quite
informationally demanding.

Missing Markets. Under the missing markets view, the problem of externalities arises
because firm 2 values the pollution created by firm 1, but has no way to influence it. We
could solve this problem by explicitly adding a market for pollution in which firm 2 can
participate.

Consider a market for pollution. For simplicity, suppose that producing x units of output
generates x units of pollution. (As we will see below, it is not at all important that the
relationship be one-for-one.) Let r be the price of pollution. For each unit of pollution
produced, firm 1 must find a buyer to sell it to; it can’t simply dump it in the environment.
The natural buyer will be firm 2, since it is the other actor affected by the pollution. Let
x1 be firm 1’s production (and thus its supply of pollution). Let x2 be firm 2’s demand for
pollution. We have:

π1 = max
x1

px1 + rx1 − c(x1)

π2 = max
x2
−rx2 − e(x2)

The first order conditions are:

p+ r = c′(x1)

0 = −r − e′(x2)
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The first equation defines the supply of pollution (formally, xs = [c′]−1(p+r)) and the second
equation defines the demand for pollution xd = [e′]−1(−r). Since, in equilibrium, we must
have x1 = x2, then the first order condition simplifies to:

p = c′(x) + e′(x)

which is the condition for efficiency.

The basic idea is that equilibrium in the market for pollution will causes the pollution to
be priced exactly so that it causes the firm to internalize the externality it creates. Notice
that r∗ = −e′(x∗) < 0 —which makes sense; pollution is a bad. The buyer will not want
to pay for it, but rather needs to be paid to accept the pollution. The buyer (firm 2), will
be willing to buy pollution as long as the payment received (−r per unit) is larger than the
cost it faces in ‘enjoying’ the bad (e′(x)).

To relax the one-for-one assumption, modify the problem slightly. Suppose firm 1 can pro-
duce x units of output and y units of pollution at cost c(x, y). If there is no market for
pollution, then the firm’s maximization problem is:

max
x,y

px− c(x, y)

which implies first order conditions:

p =
∂c(x, y)

∂x

0 =
∂c(x, y)

∂y

Firm 1 chooses output such that price equals marginal cost, and chooses the level of pollution
that minimizes the cost of production (for the desired output level). Since pollution is not
priced, the firm will pollute as long as doing so reduces costs.

Now, suppose there is a market for pollution, and that each unit of pollution costs r. For
each unit of pollution produced, the firm must sell it on the market —it cannot simply dump
it in the environment. Naturally, firm 2 (who experiences the pollution) will be the ‘buyer’.
Now, the firms’ profits are:

π1 = max
x,y1

px+ ry1 − c(x, y1)

π2 = max
y2
−ry2 − e(y2)

The first order conditions are:

p =
∂c(x, y1)

∂x

r =
∂c(x, y1)

∂y

−r =
∂e(y2)

∂y
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Now, in equilibrium, it must be that y1 = y2. Hence, we have: p = c(x,y))
∂x

and c(x,y))
∂y

= − e(y))
∂y

—which is exactly the condition for efficiency. Notice —the second condition states that
marginal cost to firm 1 of increasing pollution should coincide with the marginal cost to firm
2 of accepting it. (What reallocation could take place if this weren’t true?)

Creating markets for externalities seems like a promising way forward. The problem is that
these markets are often very thin. For example, in the above example, the market consisted
of just two participants —a single buyer and single seller —which makes the assumption of
a competitive market rather dubious.

17.2.2 Truth-telling Mechanism

(This subsection is drawn from Varian 2010.) We previously noted that significant problem
with the Pigouvian tax approach is that it requires the government to know what the efficient
tax is —an informational requirement that is probably too demanding. But, it might be less
unreasonable to believe that the firms themselves know the level of externalities, and thus
the efficient tax rate. Can the government design a mechanism to get the firms to reveal this
ideal tax rate?

Yes. The procedure is in two stages:

1. Announcement Stage: Firms i ∈ {1, 2} each (independently) announce a Pigouvian
tax ti (not necessarily truthfully).

2. Choice Stage: If firm 1 produces a positive quantity x, it pays a tax t2x, and firm 2
receives compensation of t1x. Additionally, each firm pays a penalty that depends on
the difference between their announced rates.

The form of the penalty is inconsequential, except that it is zero if t1 = t2 and positive
otherwise. For tractability, suppose the penalty is (t1 − t2)2. Hence, the payoffs are:

π1 = max
x

px− c(x)− t2x− (t1 − t2)2

π2 = −e(x) + t1x− (t1 − t2)2

It turns out the this mechanism is truth-revealing. Let us solve the for the sub-game perfect
equilibrium, using backward induction. In the second stage only firm 1 has a choice. The
first order condition is:

p = c′(x) + t2

which is precisely the output that results from a pigouvian tax of t2. Let x(t2) be the
resulting output. Note that x′(t2) < 0.
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What about the first stage? Each firm chooses the tax to announce, taking as given their
opponent’s announcement, and the equilibrium second stage decision. Firm 1’s decision is
easy. t1 only enters her payoff through the penalty; she should set t∗1(t2) = t2.

Firm 2’s decision is less straight-forward. The problem is:

max
t2
−e(x(t2)) + t1x(t2)− (t1 − t2)2

The first order condition is:

[t1 − e′(x(t2))]x′(t2)− 2(t1 − t2) = 0

Now, since t1 = t2, and since x′(t2) < 0, this simplifies to:

t2 − e′(x(t2)) = 0

But from firm 2’s first order condition from stage 2, we know that t2 = p− c′(x(t2)). Thus,
firm 2 will choose t2 to ensure:

p = c′(x(t2)) + e′(x(t2))

which is the condition for efficiency.

What is the intuition? For firm 1, it is straight-forward. It wants to match firm 2’s announce-
ment to avoid the penalty. What about firm 2? If firm 1’s announces t1 higher than the
efficient tax, then firm 2 will wants to set a low tax, to entice firm 1 to produce high x, which
will result in a high compensation (which more than makes up for the cost of pollution).
But, knowing this, firm 1 will not make a high announcement. Similarly, if firm 1 announces
t1 lower than the efficient level, then firm 2 will announce a very high t2 to discourage firm
1 from producing, since firm 2 will not be sufficiently compensated. But this will encourage
firm 1 to raiser her announcement. The only tax rate that is equilibrium consistent is the
efficient one, since it just compensates firm 2.
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Chapter 18

Games with Incomplete Information

18.1 Normal Form ‘Bayesian’ Games

In all the games considered to this point, we have assumed that the agents have perfect
information about the payoffs of all agents (both themselves and their opponents). In reality,
there may be considerable uncertainty about this. For example:

1. Firms may not know each others’ cost functions.

2. A seller’s willingness to part with a good may depend on its quality, which the buyer
might not know.

To capture this uncertainty, we assume that each agent can identify its different potential
realizations, and associates each with a ‘state of the world’. For example, firm 1 might know
that firm 2 has a constant marginal cost technology, and that the marginal cost can take one
of 3 values: {cL, cM , cH}, where cH > cM > cL > 0. We can think of there being 3 ‘states’:
{L,M,H}, each associated with a different cost function for firm 2. Firm 1’s uncertainty,
then, is captured by its beliefs over the likelihood that each of the 3 states is actually the
true state. E.g. firm 1 may have beliefs Pr(L) = 0.6, Pr(M) = 0.3 and Pr(H) = 0.1, in
which case, it doesn’t know the true state, but it believes that it is twice as likely that L is
the state as M , which, in turn, is three times as likely to be the state as H. [Note —this
conceptualization of uncertainty requires that the agents know or at least have beliefs about
what the possibilities are. The agent cannot say: ‘I have no earthly idea what my opponent’s
cost function looks like.’]

How does the agent assign probabilities to different states? We allow for the possibility
that agents receive a (noisy) signal about the state of the world, that guides their belief
formation. For example, suppose the agents are playing Battle of Sexes, and the relevant
states are {Rainy, Sunny}. The payoffs from the different options (opera and sports) are

249



250 CHAPTER 18. GAMES WITH INCOMPLETE INFORMATION

dependent on the weather on the evening of the event. The players must decide which event
to attend in the morning. Before making their decision, each player might observe some
signal about the likely evening weather (e.g. is it cloudy? are people carrying umbrellas?)
The players form beliefs about the likelihood of rain accordingly. Different players may
observe different signals and form different beliefs.

An implication of players receiving signals is that the same player might, depending on which
signal they receive, choose different strategies. We often refer to a player’s signal as their
‘type’, and expect that strategies will be ‘type-dependent’.

With this discussion in mind, let us define a Normal Form Bayesian Game.

Definition 41. A Bayesian Game with Imperfect Information consists of:

• a set of players, i ∈ I.

• a set of actions Ai for each player i ∈ I

• a set of states, ω ∈ Ω.

• a set of signals Ti that agent i may receive, and a signal function τi(ω) that associates
a signal with each state. (We sometimes refer to an agent’s signal as her type.)

• a belief function (probability distribution) πi(ω|ti) for each player, about the states
consistent with the signal.

• a state dependent payoff function ui(a, ω) for each player i ∈ I, which depends on the
action profile a = (a1, .., aI)

Example 68. Consider a variant of the battle of the sexes game (due to Osborne (2003))
in which player 1 is unsure whether player 2 wants to meet her or to avoid her. The game
is summarized in the game tableau below:

The main features of the game are as follows: There are two states of the world: Ω =
{meet, avoid}. Player 1 receives signal z and has signal function: τ1(meet) = z = τ1(avoid),
which captures the idea that the signal is uninformative for player 1. Player 2 receives one
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of two signals, m and v; her signal function satisfies: τ2(meet) = m and τ2(avoid) = v,
which captures the idea that her signal perfectly reveals the state (i.e. player 2 knows her
preferences!). Player 1’s beliefs satisfy π1(meet) = 1

2
and π1(avoid) = 1

2
. Player 2’s beliefs

satisfy: π2(meet) = 1, π2(avoid) = 0 and π2(avoid) = 1, π2(meet) = 0.

Definition 42. A pure strategy for player i is a function ai : Ti → Ai that assigns an action
to each signal (information set).

Definition 43. A profile of strategies (a1, .., aI) is a Bayes Nash Equilibrium if every type
of every player maximizes his expected utility, given the strategies of every other player (and
associated types) and the players beliefs about the state of the world. Formally, a strategy
profile (a∗1(t1), ..., a∗I(tI)) is a Bayes Nash Equilibrium if, for each type ti ∈ Ti of player i:∑

ω∈Ω

πi (ω|ti)ui
(
a∗i (ti) , a

∗
−i (τ−i (ω)) , ω

)
≥
∑
ω∈Ω

πi (ω|ti)ui
(
a′, a∗−i (τ−i (ω)) , ω

)
for every a′ ∈ Ti.

Example 69. In the Battle of the Sexes variant, the unique Bayes Nash Equilibrium is given
by the strategy profile: a∗1 (z) = B and a∗2 (m) = B and a∗2 (v) = S. To verify that this is
an equilibrium, we check that neither player would want to change their actions, given the
equilibrium action of the other. Since player 1 chooses B, player 2 would choose B after
receiving message m (since this gives her utility 1, which is preferable to utility 0 received
if she chose S), and she would choose S after receiving message v. Expecting player 2 to
behave in this way, and given his beliefs that each state is equally likely, player 1’s expected
utility from choosing B is 1

2
× 2 + 1

2
× 0 = 1, whilst his expected utility from choosing S is

1
2
× 0 + 1

2
× 1 = 1

2
. Clearly B is the better choice.

In fact, it is optimal for player 1 to choose B no matter what probability he assigns to the
two states (as long as he puts some probability weight on the avoid state). By contrast, in
the standard (complete) information game, there were two Nash Equilibria —one in which
the players coordinated on S. Introducing uncertainty can help with equilibrium selection
and coordination.

Example 70. Contagion. Consider the following game (also due to Osborne (2003)):
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In this game, agents are uncertain about each other’s knowledge. There are 3 states —α, β, γ.
Player 1’s preferences are the same in states β and γ, but differ in state α. Player 1 knows
his preferences, so he knows whether the state is α or not. (But note, he cannot distinguish
states β and γ). Player 2’s preferences are identical in all states. She can distinguish state γ,
but not states α and β from each other. If the true state is γ, both players will know which
game they are playing. By contrast, if the state is α or β, player 1 will know the game form,
but player 2 will not. To formalize the information sets and signalling technology, suppose
T1 = {a¬a}, where π1(α | a) = 1 and π1(α | ¬a) = 0 with π1(β | ¬a) = 3

4
and π1(γ | ¬a) = 1

4
.

Similarly, let T2 = {c,¬c}, where π2(γ | c) = 1 and π2(γ | ¬c) = 0 with π2(α | ¬c) = 3
4
and

π2(β | ¬c) = 1
4
.

The unique Nash equilibrium of this game is for both types of both players to choose R.
To see this, begin by considering the type a of player 1 (i.e. player 1 knows the state is
α). It is a dominant strategy for player 1 to choose R. Hence, we know that a∗1(a) = R.
Next, consider a type ¬c of player 2 (i.e. the type who knows the state is either α or β, but
cannot distinguish these). Player 2’s expected utility if she chooses L is either 0 (if player
1 chooses R in state β) or 1

2
(if player 1 chooses L in state β). Hence, choosing L gives

expected utility of at most 1
2
. By contrast, if player 2 chooses R, her expected utility is at

least 3
4
(and potentially 1 if player 1 chooses R in state β). Hence, it is a dominant strategy

for player 2 to choose R when her signal is ¬c. We have: a∗2(¬c) = R.

Now, consider a type ¬a of player 1. He cannot distinguish states β and γ, but knows that
if the state is β, that his opponent will choose R. Hence, choosing R gives expected utility
of at least 3

4
, whilst choosing L gives expected utility of at most 1

2
. Hence a∗2(¬a) = R.

Then finally, the c type of player 2 chooses R, knowing that her opponent will always choose
R in states β and γ.

What is interesting about this example is that, when the state is γ, both players know that
they are playing a coordination game. In the world with certainty, there would be two
equilibria —one where both agents chose L and one where they both chose R. However,
adding uncertainty, even though all agents know the game payoffs, only one equilibrium
survives. Why? Player 1 and player 2 both know what the payoffs are. [Player 2 knows
the state is γ. Player 1 knows it is either β or γ. In either case, the payoffs are the same.]
Furthermore, player 2 knows that player 1 knows what the payoffs are. [Player 2 knows
that since the state is γ, player 1 must have received the signal ¬a.] However, player 1
doesn’t know whether player 2 knows what the payoffs are. [Player 1 believes the state is
β with probability 3

4
. But when the state is β, player 1 knows that player 2 will receive

signal ¬c, which means player 2 might believe that the true state is α, which has different
payoffs.] Moreover, although player 2 knows the true payoffs, and player 2 knows that player
1 knows the true payoffs, player 2 understands that player 1 doesn’t know whether player 2
knows the true payoffs. This uncertainty causes both players to play ‘conservatively’. Player
1 has a strict incentive to choose R just in case player 1 thinks the true state is α. But,
understanding this, player 2 chooses R as well —even though, given the payoffs as understood
by both players, (L,L) would also be an equilibrium. This example illustrates the important
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role of uncertainty and beliefs, not just in terms of what each player directly knows about
the game, but what each player believes the other player knows about the game, what each
player believes the other player be lives that she believes about the game, and so on.

Example 71. (Providing a Public Good) Consider a polity with n people. There is a public
good which will be provided if at least one member of the group pays the cost c. Let vi be
agent i’s valuation of the public good. Valuations are private, so each agent only knows their
own valuation, but not the valuations of the other agents. However, it is known that each
agent’s valuation is an i.i.d draw from a distribution, and that F (v) is the probability that
vi < v for each v. We assume v ∈ [v, v], so that F (v) = 0 and F (v) = 1. Furthermore, c < v
and so F (c) < 1. (It is not the case that all agents’ valuations are definitely below the cost.)

We say a strategy profile is symmetric if all similarly situated agents employ the same
strategy. Let us characterize the symmetric Bayesian Nash equilibrium of this game.

Take a given player i. First, since each of the other agents decisions’ to contribute or not
depends on their valuation, and these are unknown to player i, from player i’s perspective,
it is uncertain whether any of her opponents will provide the public good. Let Pi be the
probability that she assigns to none of her opponents contributing. Player i’s utility from
contributing is ui(C) = vi − c and her expected utility from not contributing is ui(N) =
(1− Pi)vi. Thus, she should contribute provided that:

ui(C) > ui(N)

vi − c > (1− Pi)vi
vi >

ci
Pi

I.e. she should employ a threshold strategy in which she contributes only if her valuation
lies above some threshold.

Now, in a symmetric equilibrium, all agents should use the same threshold. Let this threshold
be v∗. The probability that each agent does not contribute is F (v∗), and so the probability
that none of the other agents contributes is Pi = F (v∗)n−1. Thus we have:

v∗F (v∗)n−1 = c

Since F ()n−1 ≤ 1, it follows that v∗ ≥ c. Moreover, if v∗ = c, then we need F (v∗) = F (c) = 1,
which violates our assumption that F (c) < 1. Hence v∗ > c. Each player’s threshold for
contributing exceeds the cost. Thus it is possible for every agent to have a valuation exceeding
the cost but lower than the threshold, which results in the public good not being provided,
although each agent would be individually willing to pay for it. Why? Although each agent
is willing to pay for the good, they would rather free-ride of other agents.

How is the threshold affected by the number of players n? Let v∗n be the threshold with n
players, so that v∗nF (v∗n)n−1 = c. Take m > n. Since F (v∗n) < 1, then F (v∗n)m−1 < F (v∗n)n−1,
and so vn(v∗n)m−1 < c, and so v∗m > v∗n. As n increases, so does the threshold, so each agent
becomes less likely to contribute, ceteris paribus. The incentive to free ride becomes stronger
as the number agents.
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18.2 Extensive Form Games

Definition 44. An extensive form game with imperfect information (and chance moves)
consists of:

• a set of players, i ∈ I

• a set of terminal histories.

• a function (the player function) that assigns either a player or "chance" to every history
that is a proper sub-history of some terminal history.

• a function that assigns to each history that the player function assigns to chance,
a probability distribution over the actions available after that history (where such a
distribution is independent of all other such distributions).

• for each player i, an information partition of the set of histories assigned to that player
by the player function, such that for every history h in any given partition, the set
A (h) of actions is the same.

• for each player, preferences over the set of lotteries over the terminal outcomes.

Example 72. Card Game. Each of two players begins by putting a dollar in the pot. Player
1 is then dealt a card that is equally likely to be High or Low ; she observes her card, but
player 2 does not. Player 1 may see or raise. If she sees, she shows her card to player 2. If
her card is High, she takes the money in the pot, and if it is Low, player 2 takes the money;
in both cases the game ends. If she raises, she adds a dollar to the pot and player 2 chooses
whether to pass or meet. If player 2 meets, she adds a dollar to the pot, and player 1 shows
her card (with the same outcome as before). If she passes, player 1 takes the money in the
pot.

Nature

P1

(1,−1)

See

(1,−1)

Pass

(2,−2)

Meet

Raise

H
1
2

P1

(1,−1)

Pass

(−2, 2)

Meet

Raise

(−1, 1)

See

L
1
2

P2
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• The set of terminal histories is: H = {φ,H,L, (H,See) , (L, See) , (H,Raise, Pass) , (L,Raise, Pass) , (H,Raise,Meet) , (L,Raise,Meet)}.

• The player function is: P (h), where P (φ) = ”chance”, P (H) = P (L) = 1, and
P (H,Raise, ) = P (L,Raise) = 2.

• The chance moves: Pr [H|φ] = 1
2

= Pr [L|φ].

• The information partitions: For player 1: {H} and {L}. For player 2:
{(H,Raise) , (L,Raise)}.

Definition 45. A behavioral strategy for player i in an extensive form game, is a function
that assigns to each of i’s information sets Ii a probability distribution over the actions in
A (Ii), with the property that each probability distribution is independent of every other
distribution.

Definition 46. A belief system in an extensive form game is a function that assigns to each
information set, a probability distribution over the histories in that information set. An
assessment is a pair (β, µ) consisting of a profile of behavioral strategies and a belief system.

Definition 47. An assessment (β, µ) is a weak sequential equilibrium if it satisfies the fol-
lowing conditions:

1. Sequential Rationality: Each player’s strategy is optimal in the part of the game that
follows each of her information sets, given the strategy profile and her belief about the
history in the information set that has occurred. Precisely, for each player i and each
information set Ii of player i, player i’s expected payoff to the probability distribution
OIi (β, µ) over terminal histories generated by her belief µi at Ii and the behavior
prescribed subsequently by the strategy profile β is at least as large as her expected
payoff to the probability distribution OIi ((γi, β−i) , µ) generated by her belief µi at Ii
and the behavior prescribed subsequently by the strategy profile (γi, β−i), for each of
her behavioral strategies γi.

2. Weak consistency of beliefs with strategies: For every information set Ii reached with
positive probability given the strategy profile β, the probability assigned to by the
belief system to each history h∗ in Ii is consistent with Bayes’ Rule.

Example 73 (Card Game (cont.)). Solve the game backward. Let I2 =
{(H,Raise) , (L,Raise)} denote player 2’s information set when it is her turn to move.
Let µ2 (H|I2) ∈ [0, 1] denote probability she assigns to the the card being High. Player 2’s
expected utility from choosing Pass is −1, and her expected utility from choosing Meet
is 2 − 4µ. Hence: β2 (meet|I2) = 1 if µ2 (I2) < 3

4
, β2 (meet|I2) = 0 if µ2 (I2) > 3

4
and

β2 (meet|I2) ∈ [0, 1] if µ2 (I2) = 3
4
.

Now consider Player 1, and history I1 = {H}. If he sees, his payoff is 1. If he raises, his
payoff is β2 (meet|I2) · 2 + (1− β2 (meet|I2)) · 1 = β2 (meet|I2) ·+1. Hence, β1 (raise|H) = 1
if β2 (meet|I2) > 0 (i.e. if µ2 (I2) ≤ 3

4
) and β1 (raise|H) ∈ [0, 1] if µ2 >

3
4
. Now consider
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history I1 = {L}. If he sees, his payoff is −1. If he raises, his payoff is β2 (meet|I2) · (−2) +
(1− β2 (meet|I2)) · 1 = 1− 3β2 (meet|I2). Hence, β1 (raise|L) = 1 if β2 (meet|I2) < 2

3
(i.e. if

µ2 ≥ 3
4
) and β1 (raise|L) = 0 if β2 (meet|I2) > 2

3
(i.e. if µ2 ≤ 3

4
) and β1 (raise|L) ∈ [0, 1] if

β2 (meet|I2) = 2
3
(i.e. if µ2 = 3

4
). Sequential rationality implies:

µ2 (H|I2) =
1
2
β1 (raise|H)

1
2
β1 (raise|H) + 1

2
β1 (raise|L)

How does this hang together? Suppose µ2 (I2) < 3
4
. Then β2 (meet|I2) = 1, which implies

β1 (raise|H) = 1 and β1 (raise|L) = 0. Then, by Bayes’ Rule, µ2 (H|I2) = 1 6< 3
4
. Contra-

diction. Suppose µ2 (I2) > 3
4
. Then β2 (meet|I2) = 0, which implies β1 (raise|H) ∈ [0, 1] and

β1 (raise|L) = 1. Then, by Bayes’ Rule, µ2 (H|I2) = β1(raise|H)
β1(raise|H)+1

≤ 1
2
6> 3

4
. Contradiction.

Finally, suppose µ2 (I2) = 3
4
. Then β2 (meet|I2) ∈ [0, 1]. There are several cases to consider:

• If β2 (meet|I2) = 0, then (as before) µ2 (H|I2) ≤ 1
2
6= 3

4
. Hence this cannot be the case.

• Suppose β2 (meet|I2) ∈
(
0, 2

3

)
. Then β1 (raise|H) = 1 and β1 (raise|L) = 1, and so

µ2 (H|I2) = 1
2
6= 3

4
. Contradiction.

• Suppose β2 (meet|I2) ∈
(

2
3
, 1
]
. Then β1 (raise|H) = 1 and β1 (raise|L) = 0, and so

µ2 (H|I2) = 1 6= 3
4
. Contradiction.

• Suppose β2 (meet|I2) = 2
3
. Then β1 (raise|H) = 1 and β1 (raise|L) ∈ [0, 1], and so

µ2 (H|I2) = 1
1+β1(raise|L)

= 3
4
provided that β1 (raise|L) = 1

3
.

Hence, in sequential equilibrium, player 1 will always raise after history H, raise with prob-
ability 1

3
after history L and see with the complementary probability. Player 2 holds be-

liefs µ2 (H|raise) = 3
4
, and meets with probability 2

3
, and passes with the complemen-

tary probability. The equilibrium expected payoffs for player 1 are: E [u1 (see|L)] = −1
and E [u1 (raise|L)] = 2

3
(−2) + 1

3
(1) = −1 and E [u1 (raise|H)] = 2

3
(2) + 1

3
(1) = 5

3
>

1 = E [u1 (see|H)]. (This confirms that it is optimal to always raise following history
H, and to mix following history L.) The equilibrium expected payoffs for player 2 are:
E [u2 (meet|I2)] = 3

4
(−2) + 1

4
(2) = −1 = E [u2 (see|I2)], which confirms that mixing is

optimal.



Chapter 19

Asymmetric Information

So far, we have studied market failures arising from market power (monopoly, oligopoly),
externalities, and public goods. There is a third major source of market failure —asymmetric
information. We usually divide asymmetric information problems into two types: problems
arising from hidden information and problems arising from hidden actions. With hidden
information, the more informed party has an incentive to use their informational advantage
to gain a larger share of the surplus. Understanding this, the less informed party will behave
more ‘conservatively’, including by not engaging in surplus creating transactions, which it
otherwise would have done if it were symmetrically informed. This leads to the problem of
adverse selection. When there is hidden information, the parties may wish to take actions to
have the information revealed to mitigate the adverse selection. The nature of these actions
depends on which party is taking the action. When the informed party takes an action
that credibly communicates her information, we say there is signalling. By contrast, when
the uninformed party takes an action designed to entice the informed party to reveal her
information, we say there is screening.

Hidden action is common in Principal-Agent interactions, where a principal seeks to engage
an agent to perform some task on her behalf. Often, the principal cannot perfectly monitor
the agent. Then, if the agent’s preferences differ from the principal’s, the agent may behave
differently from how the principal had intended. This is the problem of moral hazard. Parties
can mitigate moral hazard problems by engaging in optimal contracting.

19.1 Adverse Selection

Example 74 (The Market for Lemons). Consider a buyer on the used car market who meets
a seller. Suppose a car may either be high quality or low quality. Let vi be the value to
the buyer of a quality-i type car with vH > vL and let ri < vi be the reservation price of
a typical seller of quality-i type car, where i ∈ {L,H}. Assume that the seller knows the
quality of the car, but the buyer doesn’t —but has prior belief that the probability of being
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high quality is π. Assume there is buyer-competition, so the buyer will pay his full valuation
to the seller.

What happens if the quality is known? The buyer will pay vH for a high-quality car and vL
for a low quality car. Trades will always take place, regardless of quality. This is efficient
since vi > ri. Regardless of quality, the trade is always social welfare enhancing, because for
each quality type, the buyer values the car more than the seller.

Now let quality be unknown by buyer. Suppose the buyer offers πvH + (1− π) vL —which
is the average value of the car. A low-type seller will always accept the buyer’s offer. But a
high-type seller will reject the offer if πvH+(1− π) vL < rH (which will be true if π < rH−vL

vH−vL
).

If so, the buyer’s offer will only be accepted by the low type. This means that (i) only the
low quality of car ever gets sold (which is inefficient), and (ii) the buyer will have over-paid
for the car. Obviously, this cannot be an equilibrium. In equilibrium, the buyer, knowing
that only the low-quality seller will deal with him, will only offer to pay vL, and this deal
will proceed. But this definitely precludes a sale with the high quality seller.

This example illustrates the problem of adverse selection. Adverse selection occurs when one
side of the market is less informed about some relevant characteristic (quality, cost, value
etc.) than the other. There is hidden information. The strategic incentives for different
agents to enter/exit the market result in inefficient outcomes. Since the uninformed agent
cannot distinguish good and bad quality products, he can only afford to offer a price equal
to the expected value. But this is often too low for high-quality sellers which forces high
quality sellers out of the market. In equilibrium, only low quality products are sold. Bad
quality goods drive out the good quality ones.

A particularly important example of adverse selection is in the market for healthcare. Sup-
pose (as the Affordable Care Act requires), that insurers cannot charge different prices for
different agents based on their risk status (e.g. based on pre-existing conditions). The best
insurers can do is charge a premium equal to the expected medical costs incurred by the
agent with the average risk status in the insured pool. But agents know (better) their risk
status, and at this ‘average’ price, low risk (‘healthy’) agents might find insurance to be not
worthwhile. So they will drop out of the market. But this makes the average agent remaining
in the market riskier, which will cause insurers to raise premiums. With higher premiums,
some more ‘healthy’ people will drop out of the market, causing the insured pool to become
riskier, and so on. In extreme cases, this dynamic can cause insurance premiums to rise so
high that only the most unhealthy individuals find it optimal to purchase insurance. All
other individuals are driven out. We say there is a ‘death spiral’.

Example 75 (Death spiral). A buyer wants to purchase a good from a seller. Let v be the
quality of the good, and suppose, at every quality level, the seller demands a price at least
r = kv, where k < 1. The seller knows the quality, but the buyer believes it is drawn from
a distribution v ∼ U [0, 1]. Since k < 1, it should be that at every quality level, the buyer
values the good more than the seller. So if there were complete information, trades would
always take place.
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What happens with asymmetric information. Suppose the buyer offers a price P . The buyer
knows that this price will be accepted by the seller if the quality of her good is v ≤ P

k
.

Hence, conditional on the offer being accepted, buyer knows that the average quality of the
good that he receives will be: E[v | v < P

k
] = P

2k
. Is it worthwhile to the buyer to make such

a trade?

Suppose k ≤ 1
2
. Then E[v | v < P

k
] ≥ P , so the buyer will on average be better off. This is

true no matter the price. So the best that the buyer can do is offer P = k. This guarantees
that every seller will sell to the buyer, and the expected value of the good received is 1

2
> P .

Suppose instead that k ∈
(

1
2
, 1
)
. Then, for every P > 0, E[v | v < P

k
] < P . So any positive

price that the buyer offers, she will have over-paid on average if the sale goes ahead. The
only price consistent with optimal behavior is P = 0. Trade only occurs when the seller has
the lowest quality good. We say the market ‘completely unravels’. [One way to see this is
to argue step-wise. Suppose the buyer originally assumes all sellers will part with the good.
Then he will offer at most P0 = 1

2
. But at this price, the buyer then reasons that only sellers

with quality v ≤ 1
2k

will sell. So the buyer offers at most the average price in this sub-market,
which is P1 = 1

4k
. But at this lower price, the buyer reasons that only sellers with quality

v ≤ 1
4k2

will sell. So the buyer offers at most the average price in this sub-sub-market, which
is P2 = 1

8k2
. This process of reasoning continues ad infinitum. At the nth round, the buyer

will offer at most Pn = 1
2·(2k)n

. Since 2k > 1, its clear that this maximum offer is getting
smaller in each round, and that Pn → 0 as n→∞.]

19.2 Screening

In the adverse selection problem, we might think we could restore efficiency if the informed
party could reveal information to the uninformed party. However there is no guarantee
that the informed agent will be truthful - in the above case, a low-quality car owner has an
incentive to claim to have a high quality car, in order to get a better price. ‘Screening’ occurs
when the uninformed party creates incentives that entice the informed party to truthfully
reveal information. The basic idea is to offer different versions of the product or contract
—with different versions being more or less optimal for different types of sellers. (Examples of
screening contracts include second degree price discrimination in product markets, different
levels of deductibles in insurance etc.)

19.2.1 A Model of Second Degree Price Discrimination

There is a monopolist with constant marginal cost technology c(q) = cq. There are two
types of potential buyers —high and low. The monopolist does not know the buyer’s type,
but knows that each buyer has a probability π of being the high type. A type i ∈ {H,L}
buyer has utility ui(q, T ) = αiq − 1

2
q2 − T , where αH > αL > c, and T is the total cost to

the buyer of purchasing q units of the good.
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Suppose the unit price of the good is p. Then, the agent’s problem is:

max
q
αiq −

1

2
q2 − pq

Taking the first order conditions, we find the agent’s (Marshallian) demand function is qi(p) =
αi−p. So the agents’ utility functions imply linear demands with different intercepts. (This is
identical to the demand function we studied we looked at third degree price discrimination.)

If the firm could third degree price discriminate, we know that it would charge a different
price to each type of buyer. [In fact, if it could price discriminate and charge a two-part
tariff, it would set a different fixed fee for different types, but then sell all units at marginal
cost.] Here, the monopolist cannot distinguish the types, so third degree price discrimination
is not possible. And the optimal two-part tariff will not work, since all agents would profess
to being the low type in order to pay the lower fixed fee. Rather than setting a unit price
and letting the agent choose how many units to purchase, suppose the monopolist instead
creates ‘packages’ (q, T ) where it offers to sell q units at total package price T . [This implies
a per-unit price of T

q
for this package, but different packages may have different implied

per-unit prices.] Since there are two types of buyers, it suffices for the monopolist to offer
two types of packages —one aimed at each type.

As a benchmark, consider the problem under full information. What packages would the
monopolist charge? For a type i buyer, the monopolist seeks to maximize:

max
q,T

T − cq s.t. αiq −
1

2
q2 − T ≥ 0

The constraint is known as the participation constraint or individual rationality (IR) con-
straint. It states that the buyer must be made no worse off by buying her intended package,
rather than not, or she would simply not purchase. Naturally, the monopolist will want to
set T as high as possible without violating the constraint. So T = αiq − 1

2
q2 —the firm sets

a package price that extracts all of the buyer’s consumer surplus.

What quantity will it sell? Substituting the constraint into the objective gives:

max
q
αiq −

1

2
q2 − cq

i.e. the monopolist chooses q to maximize the joint surplus between buyer and seller. [This
should be obvious, since the monopolist then goes on to extract all of the surplus which
would otherwise accrue to the buyer. So the seller wants to maximize the total surplus.]
Solving the first order condition gives: q̂i = αi − c. It is as if the seller prices at marginal
cost, and the extracts the full consumer surplus through the package fee. The fee for each
type would be T̂i = 1

2
(αi − c)2.
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19.2.2 Separating Equilibrium

Now consider the screening contracts with hidden information. The principal offers two
contracts (qH , TH) and (qL, TL), targeted at the respective agents. However, the seller cannot
force the buyer to choose the intended package. They must willingly do so (and in so doing,
they reveal their private information about their type). Thus, in addition to the participation
constraint, the contracts must satisfy the incentive compatibility constraint :

αiqi −
1

2
q2
i − Ti ≥ αiq−i − q2

−i − T−i

The incentive compatibility constraint states that a type i buyer should do at least as well
purchasing the package intended for her type, than purchasing the other package. We say,
neither type has an incentive to ‘imitate’ the other.

The monopolist’s problem is:

max
qH ,qL,TH ,TL

π(TH − cqH) + (1− π)(TL − cqL)

subject to

(IRH) αHqH −
1

2
q2
H − TH ≥ 0

(IRL) αLqL −
1

2
q2
L − TL ≥ 0

(ICH) αHqH −
1

2
q2
H − TH ≥ αHqL −

1

2
q2
L − TL

(ICL) αLqL −
1

2
q2
L − TL ≥ αLqH −

1

2
q2
H − TH

For each agent only one of these constraints will bind. (To see this, take a H-type buyer, and
notice that the LHS terms of IRH and ICH are the same, but the RHS terms are different.
Generically, one of the RHS terms will be larger than the other. Since both inequalities must
be satisfied in equilibrium, it must be that the more demanding inequality is satisfied. Note
—it cannot be that both inequalities were slack. If it were, then the monopolist must be
leaving money on the table, and thus not profit maximizing.)

Which constraints bind. Intuitively, the high type wants to buy more and is willing to pay
a higher price than the low type. So, in equilibrium, the low type will never do better to
imitate the high type. By contrast, since the monopolist will charge the low type a lower
price, the high type might want to imitate the low type, in order to get the lower price.
Thus, the participation constraint will bind for the low type, and the incentive compatibility
constraint will bind for the high type. [It is not difficult to rigorously show that this must
be the case, by simply guessing other pairs of binding constraints, and showing that you get
a contradiction. For example, it cannot be that IRH and IRL both bind. If IRL binds,
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so that αLqL − 1
2
q2
L − TL = 0, then since αH > αL, it must be that αHqL − 1

2
q2
L − TL > 0.

So type-H strictly prefers type L’s bundle to not participating. But incentive compatibility
states that H must (weakly) prefer her own bundle to L’s bundle. Thus, H must strictly
prefer her own bundle to not participating, which means that IRH cannot be binding.]

Using IRL, we have: TL = αLqL − 1
2
q2
L. Using ICH , we have:

TH = TL + αH(qH − qL)− 1

2
(q2
H − q2

L) = αHqH −
1

2
q2
H︸ ︷︷ ︸

Consumer Surplus

− (αH − αL)qL︸ ︷︷ ︸
Info Rent

The monopolist is able to extract the full consumer surplus from the low type, but not from
the high type. If it tried to fully expropriate the high type, H would find it better to mimic
the low type. Hence, the monopolist must ‘leave some money on the table’ for the high
type —just enough that the high type prefers to reveal herself as the high type. We call
this an informational rent. The uninformed party must pay the informed party to reveal her
information! Substituting these into the firm’s objective problem gives:

max
qH ,qL

π[αHqH −
1

2
q2
H − cqH − (αH − αL)qL] + (1− π)[αLqL −

1

2
q2
L − cqL]

The first order conditions are:

∂π

∂qH
= π(αH − qH − c) = 0

∂π

∂qL
= (1− π)(αL − qL − c)− π(αH − αL) = 0

Solving the FOCs gives: q∗H = αH − c and

q∗L =

{
αL − c− π

1−π (αH − αL) π ≤ αL−c
αH−c

0 π > αL−c
αH−c

where, we acknowledge the possibility of a corner solution at qL = 0 if π is high enough.

What do we notice? The monopolist produces the efficient quantity for the high type, but
an inefficiently low quantity for the low type. We say there is downward distortion of the
low type. As before, the monopolist full extracts the low type’s consumer surplus, but leaves
the high type with an informational rent. Why is there downward distortion of the low-
type’s quantity? First, we know that the low type will not seek to imitate the high type, in
equilibrium, so there is no need to distort the high type’s package. However, we know that
the high type might seek to imitate the low type, and to prevent this, the monopolist must
give the high type an informational rent. The rent will be higher the more attractive it is for
the high type to imitate the low type. [As we showed previously, this benefit from pretending
to be a low type is proportional qL.] Thus, the monopolist can reduce the informational rents
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it pays to the high type by ‘damaging’ the low-type package, thus making it less attractive.
Of course, by ‘damaging’ the low-type package, the monopolist earns lower profits from the
low type. Thus there is a trade-off. Damaging benefits the monopolist to the extent the
eventual buyer is a high type, but hurts the monopolist if the eventual buyer is a low type.
Naturally, the rate at which the monopolist trades these off depends on the likelihoods ( π

1−π )
of meeting a high versus low type agent. The higher is the likelihood of meeting a high
type agent, the more damage the monopolist will be willing to inflict. In fact, if π is high
enough, the monopolist will simply not sell to the low type, and thus not need to provide
any informational rents to the high type.

There is an important broader insight here. We see ‘versioning’ in a variety of different
product markets. For example, airlines have ‘business’, ‘premium economy’ and ‘economy’
versions of what is largely the same product. The business and premium economy versions
have more space and more comfort, whereas economy is designed to be unpleasant. Airlines
don’t necessarily squeeze economy seats close together to fit more seats onto the plane.
(They are simultaneously giving more room to the more expensive versions, so that overall,
there may actually be fewer seats on the flight.) The point is to make the cheaper option
less attractive to wealthy travelers, thus encouraging them to buy the higher cost versions.
Economy is not bad because the airline seeks to punish lower income travelers or because it
cannot afford to provide better comfort. It is uncomfortable in order to entice travellers to
pay for upgrades.

This insight was first noted by Jules Dupruit (a 19th Century French economist) who wrote:

’It is not because of the few thousand francs which would have to be spent
to put a roof over the third-class seats that some company or other has open
carriages with wooden benches. . . . What the company is trying to do is prevent
the passengers who can pay the second-class fare from traveling third-class; it
hits the poor, not because it wants to hurt them, but to frighten the rich. . . .
And it is again for the same reason that the companies, having proved almost
cruel to third-class passengers and mean to second-class ones, becomes lavish in
dealing with first-class passengers. Having refused the poor what is necessary,
they give the rich what is superfluous.’

19.2.3 Pooling Equilibrium

The separating equilibrium is useful because it allows the monopolist to separate the types
and get more output from the high-type. However, separating the types is costly for the
principal. Might the principal simply be better off not separating the types? Whilst this
doesn’t necessarily get the efficient output, it saves on informational rents.

A pooling contract is one where the monopolist offers the same contract to both potential
buyers. (Obviously the IC constraints no longer matter, since there is no longer an opportu-
nity to imitate the other type.) Of course, the monopolist must still satisfy the participation
constraints.
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The monopolist’s problem is:

max
qP ,TP

TP − cqP

subject to

(IRH) αHqP −
1

2
q2
P − TP ≥ 0

(IRL) αLqP −
1

2
q2
P − TP ≥ 0

Since both constraints must be satisfied and αH > αL, it should be clear that (IRL) will bind
and (IRH) will not. Hence TP = αLqP − 1

2
q2
P . Substituting this into the objective function

reduces the problem to:

max
qP

αLqP −
1

2
q2
P − cqP

which coincides with the monopolist’s full information problem when facing the low type.
We have: q∗P = q̂L = αL−c and TP = T̂L = 1

2
(α2

L−c2). The firm’s profit is: ΠP = 1
2
(aL−c)2.

The firm produces the efficient quantity for the low type and fully expropriates all of the low
type’s consumer surplus. The quantity is inefficiently low for the high type, but the high
type retains a positive surplus.

19.2.4 Other Applications

• Principal is buyer and agent is seller with unknown costs. (Baron and Myerson, 1982).
Low cost firm is undistorted and receives informational rent. High cost firm’s quantity
is downward distorted, and receives no rents.

• Principal is lender, agent is borrower with unknown productive. (Freixas and Laffont,
1990). High productivity borrower is undistorted in credit market and earns an infor-
mational rent. Low productivity borrower is rationed in lending, but receives a lower
interest rate.

19.3 Signalling

Screening occurs when the uninformed party creates incentives for the informed party to
reveal their information. As we saw, this essentially requires the uninformed party to ‘pay’
the informed party. Now we consider the alternative approach where the informed party
voluntarily reveals their information to the uninformed party. The informed party must do
so in a way that is credible —since talk is cheap, it is not enough to say that you are the
high-type. Signalling occurs when the high type takes a costly action that the low type
would never find it optimal to do, thus revealing her type.
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19.3.1 A Model of Education (Spence 1973)

Consider the following environment: There are two players: a worker and an employer. The
worker’s marginal product θ may either be high or low: θH > θL. The employer doesn’t know
the worker’s productivity, but knows the prior probability π that the worker is a high type.
The employer must decide how much to pay the worker. Labor markets are competitive, so
the employer will pay the worker her (expected) marginal product.

The worker can signal her quality by investing in education. The cost of acquiring education
is c (e, θ) = e

θ
. (More generally, we take c (e, θ) such that c is increasing and convex in e for

each θ, c (e, θH) < c (e, θL) for every e, and ce (e, θH) < ce (e, θL) for every e.) Hence, for
both types of workers, each extra unit of education acquired is costlier than the previous
unit, and the cost and marginal cost for the high type are lower than for the low type, at any
level of education. The agent’s utility function is u (w, e; θ) = w− c (e, θ). Note importantly
that education does not improve productivity —it is simply a tool used to demonstrate an
agent’s type, since it is less costly for high types can acquire education than low types.

A strategy for the worker is a pair (eH , eL), which specifies the level of education chosen
by each type. A strategy for the employer is a function w(e) that assigns a wage to be
paid for every possible level of educational attainment. Naturally, w(e) = E[θ|e] = Pr(θ =
θH)θH + (1 − Pr(θ = θH))θL. Thus the wage function is directly related to the employer’s
beliefs about the worker’s type. A Perfect Bayesian Equilibrium is a triple (eH , eL, w(·) such
that:

• Each type of agent does strictly better choosing their equilibrium level of education
than any other level, given the employer’s wage function. I.e

w(ei)−
ei
θi
≥ w(e′)− e

θi
∀e′ ≥ 0

• The employer must have correct beliefs about the equilibrium actions of the agents.
Thus:

– If eH 6= eL, the employer’s beliefs should be Pr(θ = θH | eH) = 1 and Pr(θ =
θH | eL) = 0. Thus w(eH) = θH and w(eL) = θL.

– If eH = eL = ê, the employer’s beliefs should satisfy: Pr(θ = θH | e = ê) = π, and
so w(ê) = πθH + (1− π)θL.

– The employer is free to assign any beliefs for any e not chosen in equilibrium (i.e.
‘off the equilibrium path’.)

19.3.2 Separating Equilibria

Suppose there is a separating equilibrium with effort levels (eH , eL), with eH 6= eL. In
equilibrium, it must be that w(eH) = θH and w(eL) = θL. These education choices must be
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optimal for each agent type. First, take the low-type agent. Incentive compatibility implies:

θL −
eL
θL
≥ w (e)− e

θL
∀e

In particular, this must be true for e = 0, and so θL − eL
θL
≥ w (0). Now w(e) ∈ [θL, θH ]

for every e, so w (0) ≥ θL. Hence θL − eL
θL
≥ θL, which can only be true if eL = 0. Hence,

w (0) = θL. Since the low-type agent will be discovered in equilibrium, and education is
costly, the low type will do best by not educating. Of course, in equilibrium, the low type
must not have an incentive to imitate the high type. Incentive compatibility for type L
implies:

θL ≥ θH −
eH
θL

and so eH ≥ θL (θH − θL). This is the minimal level of education that is sufficiently costly
that the low type would rather reveal herself as a low-type than try to mimic the high type.
It is costly enough to credibly signal that the agent is a high type.

Incentive compatibility for type-H is:

θH −
eH
θH
≥ w (e)− e

θH

for any other e. In particular, incentive compatibility must hold for e = 0. (I.e. the high-type
must not want to imitate the low-type.) Hence, θH − eH

θH
≥ θL, and so eH ≤ θH (θH − θL).

Hence eH ∈ [θL (θH − θL) , θH (θH − θL)], and w(eH) = θH .

Are there any other profitable deviations for the players? In equilibrium, there shouldn’t
be. To ensure this, we need that w(e) ≤ θL − e

θL
and that w(e) ≤ θH − eH−e

θH
. (The former

ensure that the low type has no profitable deviation, and the latter ensures that the high
type doesn’t. It suffices to set w(e) = θL whenever e < eH and w(e) = θH whenever e ≥ eH .
(Also, the employer could se w(e) = θL for all e 6= eH .)

We can sustain a continuum of separating equilibria with eL = 0 and eH ∈
[θL (θH − θL) , θH (θH − θL)]. Amongst these equilibria, the most efficient is the one in which
eL = 0 and eH = θL (θH − θL) —the low-type does not engage in costly education, and the
high-type educates the minimum amount to separate himself from the low type. Notice that,
with signalling contracts, the ‘good’ type must pay to reveal his type, whereas with screening
contracts, the ‘good’ type was paid to reveal his information!

19.3.3 Pooling Equilibria

Suppose there is a pooling equilibrium, where e (θH) = e (θL) = eP . Then, necessarily,
µ (eP ) = π and as such, w (eP ) = π (θH − θL) + θL. Again, these education choices must
be optimal for each type. Incentive compatibility for the low type implies: π (θH − θL) +
θL − eP

θL
≥ w (e) − e

θL
, for every e. In particular, this must hold true for e = 0. Hence,

π (θH − θL) + θL − eP
θL
≥ w (0) ≥ θL, and so eP ≤ πθL (θH − θL).
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Are there any other profitable deviations for the players? Since the deviations are off the
equilibrium path, we can assign beliefs to the principal however we like. It suffices to take
w(e) = θL whenever e < πθL (θH − θL) and w(e) = πθH+(1−π)θL for any e ≥ πθL (θH − θL).
As above, this implies that there is never an incentive to choose e ∈ (0, eP ) or e > eP . We’ve
already checked that the L-type agent will not deviate from eP to 0. It is simple to check
that the same is true for the high-type. Hence, there are a continuum of pooling equilibrium,
with eP ∈ [0, πθL (θH − θL)]. Of course, the most efficient pooling equilibrium has eP = 0.

Which equilibrium is better? In the most efficient pooling equilibria, the agent utilities are(
uPH , u

P
L

)
= (πθH + (1− π) θL, πθH + (1− π) θL). In the most efficient separating equilib-

rium, the agent utilities are:
(
uSH , u

S
L

)
=
(
θH − θL(θH−θL)

θH
, θL

)
.

Obviously the pooling equilibrium is better for the low-type agent. It is also better for the
high-type agent if:

π (θH − θL) + θL ≥ θH −
θL
θH

(θH − θL)

π ≥ 1− θL
θH

Again this is intuitive. In the separating equilibrium, the high-type agent has to expend
costly resources to signal his high-type. If low-types are abundant, then average income is
low, and so there is a strong benefit to separating. But if low-types are few, then the average
income is already high. The cost of signalling is larger than the gain it produces.

19.3.4 Other Applications

• Warranties: Agent is seller. Principal is buyer. A warranty is a costly action for the
seller — they incur a cost whenever the product fails. Obviously it is costlier for the
low-quality seller than the high quality one. Warranties may enable separation. (But
it may or may not be efficient for sellers to carry out repairs –> pooling)

• Advertising: Agent is seller. Principal is buyer. Advertisements are costly, but send
information about product quality. A larger campaign is needed to convince public of
value of poor quality product.

• Corporate Finance: Agent is a risk averse entrepreneur with risky project. Principal
is the ‘market’. Holding equity in the firm is costly for the risk averse entrepeneur
— but sends a signal about the project quality. An entrepreneur with a bad quality
project would want to hold less equity than an entrepreneur with high quality project.
Enables separation, but results in inefficient risk bearing.

• Exchange Rates: Agent is LDC government with poor reputation. Principal is the
‘market’. Government has private information about their commitment to not devalue.
Dollarizing is a costly signal, but more costly for less committed governments. Enables
separation, but potentially inefficient defaults.
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• Incomplete Contracts: Principal and Agent are both potential partners in a joint
venture. Sender is better informed about his commitment to relationship than partner.
Leaving contract incomplete (e.g. not signing pre-nup) is costly for committed partner
(it may cause inefficient outcomes in future contingencies); but it is even more costly
for the uncommitted partner. Enables separation, but results in inefficient outcomes
ex post.

19.4 Moral Hazard

Adverse selection was a consequence of hidden information — the informational asymmetry
resulted in inefficient allocations of goods (both in the sense of net-loss transactions occurring
and value-creating transactions not taking place). The challenge with adverse selection (i.e.
signalling/screening) is to provide the correct incentives for the informed party to credibly
transfer her information. Moral Hazard, by contrast, is a consequence of hidden action. Con-
sider a situation where an agent’s choice of action affects some other person (the principal).
If the principal could directly observe the agent’s action, then he could directly contract
for the agent to perform the desired action. By contrast, if the principal cannot perfectly
observe the agent’s actions, then she can only create incentives/rewards/punishments for the
agent that depend on observable outcomes that are (statistically) correlated with the agent’s
action.

For example, in the workforce, entrepreneurs would like to write labor contracts that reward
high effort and punish low effort. However, since owners can typically only imperfectly
monitor their workers, this may not be possible. Instead, they can reward good or bad
outcomes, even if sometimes, high effort results in bad outcomes and low effort results in
good outcomes.

19.4.1 Simple Model

There are two players — a principal and agent. The agent’s preferences are given by w−c (e)
where e is the effort level of the agent, w is the agent’s wealth and c exhibits increasing
marginal cost. The agent has an outside option of not working that generates utility ū.

For simplicity, suppose the agent can only exert one of two types of effort: eL and eH , with
eL < eH . The agent’s effort affects the likelihood that a project will succeed. Let pL and pH
denote the probability of success given the different effort levels, and let xS and xF denote
the payoff to the principal if the project succeeds and fails (respectively), with xS > xF . For
simplicity, assume the principal has risk neutral preferences.

The principal’s expected utility as a function of the agent’s effort is:

π (e) =

{
pH (xS − xF ) + xF e = eH

pL (xS − xF ) + xF e = eL
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The benefit to the principal of having the agent exert high effort is ∆π = (pH − pL) (xS − xF ).
The net cost of exerting high effort is ∆c = c (eH)− c (eL). Suppose that ∆π > ∆c, so that
exerting high effort is efficient.

Suppose the principal want to entice the agent to exert high effort. He offers the agent a
contract with outcome-dependent wage (wS, wF ). The agent will exert high effort provided
that this contract satisfies both the IC and IR constraints. The principal’s problem is:

maxwS ,wF
pH (xS − wS) + (1− pH) (xF − wF )

s.t. pHwS + (1− pH)wF − c (eH) ≥ pLwS + (1− pL)wF − c (eL)

pHwS + (1− pH)wF − c (eH) ≥ ū

Notice that we can re-write the principal’s problem in the following way:

maxwS ,wF
pHxS + (1− pH)xF − pH(wS − wF )− wF

s.t. (pH − pL)(wS − wF ) ≥ c(eH)− c(eL)

pH(wS − wF ) + wF ≥ c(eH) + ū

The incentive compatibility constraint depends only on the wage differential wS − wF . The
individual rationality constraint and the principal’s payoff both depend on wF and the wage
differential wS −wF . Intuitively, the principal will want to keep both wF and wS −wF low.
But both of these will need to be high enough to incentivize the agent.

In equilibrium, it must be that both the IC and IR constraints bind. [To see this, note that,
if the IC constraint did not bind, the principal could reduce ∆w = wS −wF a little without
violating the constraint. This would generate higher expected profits for the principal with-
out causing the agent to reduce her effort. Similarly, if IR did not bind, then (assuming IC
binds, as we’ve shown it must), the principal could reduce wF without causing the agent to
reduce her effort.]

We have two equations in two variables (wF , wS) (or equivalently, (wF ,∆w). We can solve
these simultaneously. From the IC constraint:

∆w =
c(eH)− c(eL)

pH − pL

Substituting this into the IR constraint gives:

wF = c(eH) + u− pH∆w

wF = c(eH) + u− pH
pH − pL

(c(eH)− c(eL))

= u− pHc(eL)− pLc(eH)

pH − pL
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Finally:

wS = wF +
c(eH)− c(eL)

pH − pL

= u+
(1− pL)e(cH)− (1− pH)e(cL)

pH − pL

Comments

This contract is optimal if ū ≤ pHxS + (1− pH)xF − c (eH).

Proof. The optimal contract that induces high effort solves:[
pH − pL − (pH − pL)
pH (1− pH)

] [
wS
wF

]
=

[
∆c

ū+ cH

]
[
wS
wF

]
=

1

pH − pL

[
(1− pH) (pH − pL)
−pH (pH − pL)

] [
∆c

ū− cH

]
=

[
ū+ 1−pL

pH−pL
cH − 1−pH

pH−pL
cL

ū− pL
pH−pL

cH + pH
pH−pL

cL

]

Like-wise, the optimal contract that induces low effort is: (w′F , w
′
S) =(

ū+ cL − pL
pH−pL

∆c, ū+ cL + 1−pL
pH−pL

∆c
)
. The expected profits are: πH = pHxS +

(1− pH)xF − ū − cH πL = pLxS + (1− pL)xF − ū − cL. By assumption πH > πL since
(pH − pL) (xS − xF ) > cH − cL. Hence, the firm always prefers inducing high effort over
low effort provided that this generates positive profits. This is guaranteed by the condition:
ū ≤ pHxS + (1− pH)xF − c (eH).

Note that the average wage paid to the worker is simply the reservation utility plus the cost
of exerting high effort. The firm retains all remaining profits.

In the above equilibrium, the agent’s effort was not observable. The principal could only con-
dition his contract on the observable outcome, rather than observable effort. Since outcomes
and effort are correlated a contract inducing high effort exists. What would the contract
look like if the firm could observe effort? The firm can now condition the contract on both
effort and outcomes, and does so to maximize profit. For each e ∈ {H,L}, we have:

minweS ,weF
{peweS + (1− pe)weF}

s.t. peweS + (1− pe)weF − c (e) ≥ ū

Clearly, the participation constraint must bind. Hence we have: peweS + (1− pe)weF =
ū+ c (e). Notice that state-dependent wages are not crucial in and of themselves — all that
matters is that the worker is remunerated for his effort and reservation utility on average.
It suffices to make wages constant (non-outcome contingent), with we = ū+ c (e).
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On average, the worker is paid the same amount when effort is observable or unobservable.
However, the worker’s remuneration is stochastic in the unobservable case — and this creates
the incentive to exert effort. The worker is forced to internalize some of the randomness that
the firm faces in its profit stream. By contrast, in the observable case, the worker receives a
constant wage, and the firm internalizes all the randomness in payoffs.

19.5 Continuum of Payoffs

We switch to the setting of the owner of a firm who is trying to incentivize his manager
to exert appropriate effort. Continue to assume that the manager (formerly the worker)
can choose between two effort levels — e ∈ {eL, eH}. Let π ∈ [π, π̄] denote the payoff
to the project. Suppose π is stochastically related to e, with f (π|e) being the conditional
probability density function of π, given e. Assume that the distribution of π conditional upon
high effort eH first-order stochastically dominates the distribution of π conditional upon low
effort eL. Formally,

F (π|eH) ≤ F (π|eL)

for all π ∈ [π, π̄], where F (·|e) is the conditional cumulative distribution function. In
particular, this implies that E [π|e = eH ] ≥ E [π|e = eL]. (We proved in Section 2 that
E [X] > E [Y ] if X first order stochastic dominates Y .)

The manager is an expected utility maximizer with utility u (w, e) = v (w) − c (e) where
c (eH) > c (eL). We sometimes specialize to the case: v (w) = w — which implies that the
manager is risk neutral.

19.5.1 Optimal Contract with Effort

Suppose the owner’s can observe the manager’s effort. The owner offers the manager a
contract that specifies the manager’s effort e ∈ {eL, eH} and his wage payment as a function
of observed profits. We have:

maxe∈{eL,eH},w(π)

∫
(π − w (π)) f (π|e) dπ

s.t.
∫
v (w (π)) f (π|e) dπ − c (e) ≥ ū

We solve this problem in two steps. First, find the optimal wage contract for each effort
level e. Then, we determine which is the idea effort choice. Note that maximizing profits is
equivalent to minimizing the expected value of the owner’s compensation scheme. Forming
the Lagrangian, with multiplier λ, we have:

L =

∫
w (π) f (π|e) dπ − λ

[∫
v (w (π)) f (π|e) dπ − c (e)− ū

]
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The FOC is:

f (π|e)− λv′ (w) f (π|e) = 0

v′ (w (π)) =
1

λ

If the manager is strictly risk averse (so that v′ (w) is strictly decreasing in w), and immediate
implication is that the optimal compensation scheme w (π) is constant. (This is simply a risk
sharing result — analogous to our results from the section on efficiency in asset markets.)
Given that the contract explicitly dictate’s the manager’s effort choice, and there is no
problem with providing incentives, the risk-neutral owner should fully insure the risk-averse
manager against any risk in his income stream. By the constraint, we have:

v (w∗)− c (e) = ū

w∗ = v−1 [ū+ c (e)]

which is exactly the result we obtained above. By contrast, if the manager is risk neutral
(so that v′ (w) = 1), then any compensation scheme that satsifies the constraint (i.e. that
gives the agent an expected wage of ū+ c (e)) is optimal.

Now, consider the optimal choice of e. The owner solves:

max
e∈{eL,eH}

Π (e) =

∫
πf (π|e) dπ − v−1 (ū+ c (e))

and the optimal e∗ is found by a simple comparison of these.

19.5.2 Optimal Contract without Effort

Now suppose the owner cannot observe the manager’s effort level. As above we saw in
the simple example, to incentivize the manager to exert high effort, the owner must relate
the manager’s pay to the realization of profits — which results in a stochastic compensation
scheme. To highlight this point (and focus on the work-incentives, unencumbered by the risk-
sharing), we focus on the case of a risk neutral manager. In the principal agent problem with
unobservable managerial effort and a risk-neutral manager, an optimal contract generates
the same effort choice and expected utilities for the manager and owner as when effort is
observable.

Proof. The idea of the proof is as follows: Hidden action imposes an additional constraint
upon the owner — it is now subject to the manager’s IC constraint as well. Clearly the
owner cannot do better when effort is unobservable, than when it is observable. Hence, if
we can find some compensation schedule that is as good for the principal as in the case with
observable effort, then it must be optimal (for the principal).
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Consider the compensation schedule: w (π) = π − α, where α is some constant. Essentially,
the owner "sells the firm" to the manager, and retains a fixed income stream α. If the
manager accepts this contract, he will choose the effort level that maximizes provided that:∫

w (π) f (π|e) dπ − c (e) =

∫
πf (π|e) dπ − α− c (e)

= Π (e) + ū− α

Since ū and α are constant, then the effort level that maximizes this, exactly coincides with
the effort level that maximizes the owner’s profit. Hence, the same effort choice will be made.
Further, the manager will accept the contract provided that:∫

πf (π|e) dπ − α− c (e) ≥ ū

Let α∗ be the α for which this expression holds with equality. Clearly, this is the largest α
which is consistent with the agent accepting the contract. Moreover, since the owner’s profit
is α, this maximizes the firm’s profit. We have:

Π =

∫
πf (π|e) dπ − c (e)− ū

which is precisely the firm’s profit in the case with observable effort.
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