Axiverse cosmology and the energy scale of inflation

D. J. Marsh

Daniel Grin
Haverford College, dgrin@haverford.edu

R. Hlozek

P. G. Ferreira

Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs

Repository Citation

This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact nmedeiro@haverford.edu.
Axiverse cosmology and the energy scale of inflation

David J. E. Marsh,¹,²,,* Daniel Grin,³ Renée Hlozek,⁴ and Pedro G. Ferreira⁵

¹Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario N2L 6B9, Canada
²Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3RH, United Kingdom
³School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA
⁴Department of Astronomy, Princeton University, Princeton, New Jersey 08544, USA
⁵Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, United Kingdom

DOI: 10.1103/PhysRevD.87.121701 PACS numbers: 98.80.Cq, 14.80.Va, 95.35.+d, 98.80.Es

(Received 21 March 2013; published 24 June 2013)

Ultralight axions ($m_a \lesssim 10^{-18}$ eV), motivated by string theory, can be a powerful probe of the energy scale of inflation. Here it is shown that in contrast to heavier axions the isocurvature modes in the ultralight axions can coexist with observable gravitational waves. Large-scale structure constraints severely limit the parameter space for axion mass, density fraction, and isocurvature amplitude. It is also shown that radically different cosmic microwave background observables for the ultralight axion isocurvature mode additionally reduce this space. The results of a new, accurate, and efficient method to calculate this isocurvature power spectrum are presented and can be used to constrain ultralight axions and inflation.

PACS numbers: 98.80.Cq, 14.80.Va, 95.35.+d, 98.80.Es

I. INTRODUCTION

Axions [1] are a leading candidate for the dark matter (DM) component of the Universe. Proposed to solve the strong $C\bar{P}$ problem, they are also generic in string theory [2], leading to the idea of an axiverse [3]. The number of axions in the axiverse is expected to be large. Due to the topological complexity of string compactifications, and due to nonperturbative physics/moduli stabilization, the resulting spectrum of axions can cover many decades in mass. Realizations of the axiverse have been achieved in type-IIB [4] and M-theory [5] moduli stabilization. Beyond the axiverse scenario, there are many proposed extensions to the standard model of particle physics (both within string theory and outside of it) that yield new light particles, such as hidden $U(1)$ sectors, minicharged particles, Kaluza-Klein zero modes, generic pseudo–Nambu-Goldstone bosons [6], massive gravitons [7], Galileons [8], chameleons [9], and axionlike particles.

There is a variety of experimental and observational techniques to search for such particles [6], such as light shining through walls experiments, constraints to fifth forces, stellar cooling, blazar spectra, helioscopes, and black hole super-radiance. Indeed, the population statistics of observed supermassive black holes exclude the existence of light scalar particles in the mass range 10^{-20} eV $\lesssim m \lesssim 10^{-17}$ eV [10].

At lower masses cosmological observations become increasingly powerful, provided these particles contribute to the energy density of the Universe, as DM or dark energy [11]. For the duration of this paper, we will refer solely to axions, though our techniques and results apply to any light particles produced in the same way and that exist and are massless during inflation. For $m \lesssim 10^{-2}$ eV the axion relic density results from vacuum realignment [12]. An important distinction between QCD axions and lighter axions is that the temperature dependence of the mass drops out, and this changes the scalings between the misalignment angle and relic density.

If axions are very light, with mass $m_a \lesssim 10^{-18}$ eV (ultralight axions, or ULAs), coherent oscillations of the field lead to the suppression of clustering power on small (but cosmological) scales and distinguish ULAs from cold (C)DM and thus possibly contribute to resolutions of small-scale problems with CDM [13–15]. Heuristically, the scale at which structure suppression sets in is the geometric mean of the axion de Broglie wavelength and the Hubble scale. Depending on the axion mass, this scale can affect observed cosmic microwave background (CMB) anisotropies and galaxy clustering and weak lensing power spectra. For the classic QCD axion ($m_a \sim 10^{-6} \rightarrow 10^{-10}$ eV), this scale is not cosmologically relevant. In the WKB approximation (averaging over the fast time scale associated with the axion mass, m_a^{-1}), the axion may be accurately treated as a fluid, with sound speed

$$c_s^2 = \begin{cases} \frac{k^2}{4m_a^2} & \text{if } k \ll 2m_a, \\ 1 & \text{if } k \gg 2m_a. \end{cases}$$

The scale of structure suppression begins at the scale k_m, defined such that those modes with $k \gg k_m$ had sound speed $c_s^2 = 1$ for some time while they were inside the horizon [15]. The effect saturates at the smaller scale $k_j = \sqrt{m_aH}$. Therefore, like massive standard model neutrinos or more novel warm DM candidates [16], axions exhibit a suppressed structure on small scales, as shown in Fig. 1.

Axions in inflationary cosmology carry isocurvature fluctuations [17], further distinguishing them from thermally...
produced CDM. The amplitude of these fluctuations is set by the energy scale of inflation and is thus tied to the amplitude of primordial gravitational waves. Axions thus offer an interesting window into the inflationary epoch, the string landscape, and the multiverse [18]. For a QCD axion, the isocurvature bounds imply that tensor modes are unobservably small; surprisingly this does not happen for ultralight axions, and we will shortly explain why.

In past work, these two aspects of axion cosmology—the suppression of clustering and the existence of isocurvature perturbations—have been viewed in isolation. Probes for axion-seeded isocurvature have been restricted to the QCD axion, for which structure suppression on small scales is observationally irrelevant [18,19]. Meanwhile, observations of CMB anisotropies and galaxy clustering place limits to axion-induced structure suppression [14] but do not yet include the isocurvature constraint.

II. ISOCURVATURE PERTURBATIONS, GRAVITATIONAL WAVES, AND THE CMB

It is well known that the tensor-to-scalar ratio, r, is a probe of the inflationary energy scale and may be measured using CMB B modes [20]. The isocurvature amplitude of axions is directly related to r, because both ULAs and gravitons are massless during inflation. The standard formulas for the tensor, P_h, and scalar, P_R, power give the well-known result for the tensor-to-scalar ratio $r = P_h/P_R = 16 \epsilon$, where ϵ is a slow roll parameter. Given that the scalar amplitude, $A_s = (1/2\epsilon)(H_I/2\pi M_{pl})^2$, is well measured, a measurement of ϵ constitutes a measurement of the Hubble scale during inflation, H_I. The isocurvature fraction also depends on ϵ: measuring it constrains a function of H_I and the axion initial misalignment angle [17]. To measure H_I using isocurvature, one must either constrain or make assumptions about the axion initial misalignment angle. Tensor modes only measure H_I if they have an inflationary origin. The sensitivity to tensor modes and isocurvature improves with results from Planck [21].

Isocurvature perturbations are entropy fluctuations of the form $S_{ij} = (\delta n_i/n_i) - (\delta n_j/n_j)$, where the δn_i and n_i are number density fluctuations and average number densities, respectively, in each species present. Entropy fluctuations arise if there are (nearly) massless spectator fields present during inflation [22], and the axion is one example.

The axion is an independent quantum field from the inflaton, energetically subdominant during inflation, and therefore the axion seeds isocurvature perturbations that are uncorrelated with the dominant adiabatic fluctuations. The axion isocurvature fluctuations generated in this manner are unavoidable in any standard inflationary scenario as long as neither the inflationary fluctuations of the axion nor reheating restore the Peccei-Quinn symmetry [18]. This is often the case for the large, stringy, values of $f_a \gtrsim 10^{12}$ GeV.

The de Sitter space quantum fluctuations of the axion field ϕ have magnitude

$$\sqrt{\langle \delta \phi^2 \rangle} = \frac{H_I}{2\pi}. \quad (2)$$

There are constraints (e.g. WMAP9 [19]) on the relative amplitude, α, of CDM isocurvature fluctuations defined by

$$\frac{\alpha}{1 - \alpha} = \frac{P_S(k_0)}{P_R(k_0)}, \quad (3)$$

where P_S is the isocurvature primordial power spectrum evaluated at pivot wave number k_0.

The axion power spectrum is given by

$$\langle \delta^2_{\alpha,i} \rangle = 4\left(\frac{\delta \phi}{\phi} \right)^2 = \frac{(H_I/M_{pl})^2}{\pi^2(\phi_i/M_{pl})^2}. \quad (4)$$

$$\left(\frac{\phi_i}{M_{pl}}\right)^2 = \frac{6H_0^2\Omega_a}{m_a a_{osc}}. \quad (5)$$

The initial misalignment angle is $\theta_i = \phi_i/f_a$; it is fixed by the relic density and a_{osc}, which is a function of axion mass defined by $3H(a_{osc}) = m_a$ [15,23]. Subsequent to a_{osc}, the axion redshifts as matter but displays suppression of the structure formation.

Before we can relate α to m_a, H_I and Ω_a using Eqs. (4) and (5), we must clarify the isocurvature normalization. The usual CDM isocurvature normal mode is defined by

1These fluctuations also set the variance on the initial misalignment angle and may alter the axion abundance Ω_a [18]. In our mass range of interest, this effect is negligible.
taking \(\delta_c = 1 \) as the initial amplitude of the CDM overdensity and normalizing the power spectrum such that \(P_S = P_c \), where \(P_c \) is the power spectrum of the CDM fractional overdensity.

If axions are now included as a subcomponent of the DM with the same equation of state and sound speed as CDM (as in Ref. [19] and others), then there is a single DM effective fluid (with fractional density perturbation \(\delta_a \)) whose isocurvature normal mode is defined by \(\delta_a = 1 \). If axions carry isocurvature fluctuations, while the CDM itself carries only adiabatic fluctuations, then \(P_S = (\Omega_a / \Omega_d)^2 P_a \), where \(P_a \) is the axion perturbation power spectrum. In the treatment we develop in Ref. [23], we incorporate ULAs as a separate effective fluid component with their own independent equation of state and sound speed, in addition to the CDM. In the axion isocurvature normal mode, the initial fractional axion over density is \(\delta_a = 1 \), giving \(P_S = P_a \). This yields two definitions of \(\alpha \), which we call \(\alpha_{\text{CDM}} \) (if axions are just included in the overall CDM density) and \(\alpha_a \) (if axions are treated as a separate species). The WMAP 9-year constraints to axions [19] are derived and stated in terms of \(\alpha_{\text{CDM}} \).

The two different definitions for the isocurvature fraction are given by

\[
\alpha_a = \frac{8\epsilon}{1 - \alpha_a} = \left(\frac{\Omega_a}{\Omega_d} \right)^2 \frac{\alpha_{\text{CDM}}}{1 - \alpha_{\text{CDM}}}. \tag{6}
\]

Measuring the set \(\{\alpha, \alpha_a, \Omega_a, m_a\} \) allows one to constrain \(H_I / M_{\text{pl}} \). For any definition of \(\alpha \), one has the well-defined prior range \(\alpha \in [0, 1] \).

In axion isocurvature models, once \(m_a \) and \(\Omega_a \) are specified, \(r \) (and thus \(\epsilon \) and \(H_I \)) is uniquely determined by \(\alpha \), and vice versa. We visualize the interplay of tensor and isocurvature constraints through a schematic plot, Fig. 2, which plots contours in \(r \) across the range of \(m_a \) with effects distinct from CDM in the CMB and large-scale structure (LSS), using Eqs. (5) and (6) for a given \(\alpha_{\text{CDM}} \) to fix \(\epsilon \) at each point. In particular, when \(a_{\text{osc}} > a_{\text{eq}} \), where \(a_{\text{eq}} \) is the scale factor at matter radiation equality, one finds that \(r \) no longer depends on \(m_a \) at fixed \(\alpha \), and so constraints from ULAs can be markedly different from CDM axions. The two dashed lines span the observable range for \(\alpha_{\text{CDM}} \) and \(r \). The isocurvature range is \(0.01 < \alpha_{\text{CDM}} < 0.047 \) where the upper bound is from Ref. [19] and the lower bound is the forecasted sensitivity of a cosmic variance limited all sky CMB experiment in temperature and polarization [24]. The range for tensors is \(0.01 < r < 0.1 \), implying a range of sensitivity of 1 order of magnitude to the energy scale of inflation.

Figure 2 shows contours of fixed \(r \) and \(\alpha \). Areas shaded between these contours have both of observable magnitude. This is in contrast to the QCD axion, due to the different scaling of the relic density, and the very low mass. In the regions of the \(\{m_a, \Omega_a / \Omega_d\} \) not shaded by our contours for \(r \) and \(\alpha \), there are two possibilities: either

\(\alpha \) or \(r \) must be unobservable. If high mass ULAs exist and constitute a subleading fraction of the dark matter, bounds to \(\alpha \) imply unobservable \(r \) and probe low-scale inflation [18]. Novel to the case of ULAs with \(a_{\text{osc}} > a_{\text{eq}} \), however, is the fact that if they exist and are energetically important today, existing bounds to the tensor amplitude imply unobservably small \(\alpha \). The opposite behavior comes from the switch in the dependence of the relic density on mass at \(a_{\text{osc}} = a_{\text{eq}} \).

Figure 2 also shows the constraints to \(\{m_a, \Omega_a / \Omega_d\} \) from LSS taken from Ref. [14]. Areas of the \(\{m_a, \Omega_a / \Omega_d\} \) plane below the contours of Ref. [14] are permitted. These constraints severely limit the region where both \(r \) and \(\alpha \) are simultaneously observable.

The dark shaded regions in Fig. 2 are particularly interesting; both regions correspond to simultaneously observable values of \(\alpha \) and \(r \), while also being consistent with the constraints to \(\Omega_a / \Omega_d \) of Ref. [14]. Future large-scale galaxy redshift and weak lensing tomography surveys will be able to probe \(\Omega_a \) at the subpercent level [15]. In an inflationary
We show example spectra in Fig. 3. Given that there are sources of observable tensor modes possible even with low-scale inflation [25], these regions provide a novel and truly unambiguous way to measure the energy scale of inflation from their isocurvature fraction and is shown in Fig. 2. Isocurvature power spectrum falls off rapidly at large ℓ, most constraining power on isocurvature comes from the addition of power along the low-ℓ plateau before the first peak at $\ell \sim 200$. When the isocurvature power is suppressed along this plateau, the isocurvature spectrum remains significant only at lower and lower ℓ. Therefore, we should expect that not only will allowed values of α_a be different from α_{CDM} due to normalization but also due to the power suppressing properties of ULAs. The effect of this is estimated from the reduced number of modes available to measure the isocurvature fraction and is shown in Fig. 2. Isocurvature becomes harder to measure and further constrains the observable regions for $\{\alpha, r\}$ at the lowest masses, $m_a \lesssim 10^{-28}$ eV. The lowest mass region is harder to access observationally using LSS measurements since the structure suppressing properties of the axions only occur on very large scales [15]. In addition, producing an observable relic density with $m_a \lesssim 10^{-28}$ eV would require additional physics, for example, a large number of axions with nearly degenerate masses.

III. CONCLUSIONS

In this paper we have demonstrated that in the case of ultralight axions, one is able to unambiguously infer the energy scale of inflation from their isocurvature fraction by using large-scale structure constraints to bound the relic density. In addition, there are regions of parameter space allowed by current constraints where both the isocurvature fraction and the tensor-to-scalar ratio are within observable reach of the near future CMB experiments. This predicted concordance of three observables is a potentially powerful probe of the energy scale of inflation. In the context of the axiverse, the inferred value of H_I from observed tensor modes would predict the observable axion isocurvature across more than 4 orders of magnitude in axion mass. We present constraints to this model in a forthcoming paper [23].

ACKNOWLEDGMENTS

D.J.E.M. acknowledges the hospitality of the Department of Astronomy at Princeton University, the Institute for Advanced Study, and the BIPAC, Oxford. D. J. E. M. thanks Luca Amendola for providing the results of his previous work and Cliff Burgess for useful discussions. R. H. thanks the Perimeter Institute for hospitality. We thank Katie Mack for a careful reading of the
AXIVERSE COSMOLOGY AND THE ENERGY SCALE OF ... PHYSICAL REVIEW D 87, 121701(R) (2013)

manuscript. D.G. was supported at the Institute for Advanced Study by the National Science Foundation (Grant No. AST-0807044) and NASA (Grant No. NNX11AF29G). P.G.F. was supported by STFC, BIPAC, and the Oxford Martin School. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.