Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

Seol Hee Im
Haverford College, shim@haverford.edu

Atit A. Patel

Daniel N. Cox

Michael J. Galko

Follow this and additional works at: https://scholarship.haverford.edu/biology_facpubs

Repository Citation

Im, S.H.; Patel, A.A.; Cox, D.N.; Galko, M.J. (2018) "Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization," *Disease Models and Mechanisms* 11(5).
ABSTRACT

Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRΔN24-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity.

KEY WORDS: Nociceptive sensitization, Insulin receptor, Diabetes, Sensory neurons, Hyperalgesia, Drosophila

INTRODUCTION

Drosophila has emerged as a useful system for the study of insulin signaling/diabetes and nociception. With respect to insulin signaling, flies have a canonical Insulin receptor (Insulin-like receptor, InR) (Fernandez et al., 1995), a collection of Drosophila insulin-like peptides (Ilps) (Ikeya et al., 2002) manufactured by insulin-producing cells (IPCs) in the brain, and a downstream signal transduction cascade consisting of conserved components (Telemen, 2010). Dysregulation of Ilp production leads to a type 1-like diabetic state in Drosophila larvae (Rulifson et al., 2002), while a high-sugar diet leads to insulin resistance and a type 2-like diabetic state (Morris et al., 2012; Musselman et al., 2011; Skorupa et al., 2008). Together, insulin signaling and diabetic states in Drosophila regulate systemic glucose metabolism and organ-specific metabolic programs that impact muscle/cardiac function (Demontis and Perrimon, 2010; Na et al., 2013) and immunity (Musselman et al., 2017). However, whether diabetic larvae exhibit the types of sensory phenotypes often associated with diabetic patients remains unclear.

Drosophila is also a powerful model for nociception and nociceptive sensitization (Himmel et al.; Im and Galko, 2012). Many of the essential cell types and molecular players are conserved across phyla. At the cellular level, responses to noxious heat and noxious mechanical stimuli in larvae are detected by class IV multidendritic (md) neurons (Hwang et al., 2007), the dendrites of which tile over the barrier epidermis (Grueber et al., 2002) and the axons of which connect to a variety of functionally important second-order neurons in the larval ventral nerve cord (Hu et al., 2017; Yoshino et al., 2017; Ohyama et al., 2015). A number of conserved signaling pathways regulate tissue damage-induced nociceptive sensitization (Gold and Gebhart, 2010). In Drosophila larvae, these include Tumor necrosis factor (TNF; Egr) (Babcock et al., 2009), Hedgehog (Hh) (Babcock et al., 2011) and Substance P/Tachykinin (Tk) (Im et al., 2015). Whether baseline nociception (in the absence of injury) or injury-induced nociceptive sensitization is altered by disease-like states, such as diabetes, remains an open question in Drosophila.

Patients with diabetes often experience discomfiting alterations in sensory perception as the disease progresses (Veves et al., 2008). These changes often begin with nociceptive hypersensitivity to temperature and touch before progressing to numbness or hyposensitivity. There is substantial debate about the etiology of these diabetes-induced sensory alterations (Obrosova, 2009; Zochodne, 2016), including their relation to systemic glucose levels, diabetes-induced vascular changes, peripheral neurodegeneration or neuronal functions of insulin signaling (Gralle, 2017; Grote and Wright, 2016). More recently, evidence has emerged of sensory neuron intrinsic factors (Tsantoulas et al., 2017) and glucose toxicity affecting sensory perception of painful stimuli (Bierhaus et al., 2012; Orestes et al., 2013). Most vertebrate experimental models of the painful diabetic neuropathy involve either systemic pharmacological treatments or whole-animal genetic alterations (Obrosova, 2009). One unaddressed question is the relative contribution of various tissues, including peripheral sensory neurons, to painful sensory alterations. To date, there have been no models of diabetes-associated nociceptive changes that employ highly genetically tractable organisms such as Drosophila.
RESULTS

InR mutant larvae exhibit persistent thermal hyperalgesia

To explore the possibility that larvae with alterations in insulin signaling might exhibit nociceptive phenotypes, we first tested whether InR mutant larvae exhibited changes in baseline thermal nociception and thermal hyperalgesia (increased sensitivity to noxious thermal stimuli), using assays standard in the field (Chattopadhyay et al., 2012) (Fig. 1A,B). Because homozygous InR loss-of-function mutants are larval lethal (Chen et al., 1996), we tested larvae heterozygous for two hypomorphic alleles of InR (InR^{118;}, InR^{93Dj4}), and larvae transheterozygous for the two alleles (InR^{118/93Dj4}) (Tatar et al., 2001). These larvae had a normal number of responders during baseline thermal nociception in response to a noxious stimulus (43°C) in the absence of injury (Fig. 1C), although there was a difference in the average latency of the responders for the InR^{93Dj4/+} and InR^{118/93Dj4} alleles (Fig. S1). After UV-induced tissue injury (Babcock et al., 2009), both control and InR mutant larvae showed a normal acute thermal hyperalgesia response at 8 h post-injury when tested at this same temperature (Fig. 1D). However, in InR mutants, this acute sensitization failed to resolve over the normal time course (Fig. 1E), and continued as persistent thermal hyperalgesia at a time (24 h post-injury) when acute sensitization has resolved in controls. The persistent thermal hyperalgesia phenotype is significant in InR heterozygotes and is

Fig. 1. InR mutant larvae exhibit persistent thermal hyperalgesia. (A,B) Schematics of the nociception (A) and persistent nociceptive sensitization (B) assays. (C-E) Quantitation of nociceptive behavioral responses to thermal stimulation at 43°C of InR mutant larvae. w¹¹¹⁸ control larvae, two heterozygous hypomorphic alleles and a transheterozygous allelic combination of InR were tested: InR^{118/}+, InR^{93Dj4/}+, InR^{118/93Dj4}. Baseline responses without UV tissue damage (n=60 for w¹¹¹⁸, n=90 for others) (C), thermal sensitivity at 8 h post-UV (n=90 for w¹¹¹⁸, n=80 for InR^{118/}+, n=88 for InR^{93Dj4/}+, n=76 for InR^{118/93Dj4}) (D), thermal sensitivity at 24 h post-UV (n=88 for InR^{118/93Dj4/}, n=90 for others) (E). Statistical significance was determined by the Log-rank test. ***P<0.001, ****P<0.0001.
more severe in the transheterozygous larvae (Fig. 1E). Therefore, whole-animal InR mutant larvae exhibit persistent thermal hypersensitivity, a phenotype reminiscent of the early phase of painful diabetic neuropathy.

Type 1 diabetic larvae exhibit persistent thermal hyperalgesia after injury

To determine whether the persistent thermal hyperalgesia observed in InR mutant larvae might be related to diabetes-induced sensory changes, we utilized both type 1 and type 2 diabetes models (Musselman et al., 2011; Rulifson et al., 2002). To create a type 1 diabetes-like state (Fig. 2A), we silenced insulin-producing cells (IPCs) by expressing an inward rectifying potassium channel (Kir2.1) using the dilp2 (Ilp2)-Gal4 driver, which is specific for IPCs (Rulifson et al., 2002). Expression of Kir2.1 in these cells results in a lack of circulating *Drosophila* insulin-like peptides 2, 3 and 5 (Ilp2, 3, 5) (Park et al., 2014). Morphologically, silencing of IPCs in the absence of UV-induced injury did not significantly reduce the number of branches or total dendritic length of class IV neurons compared with Gal4 alone controls, although it was significant against UAS alone controls. Type 1 diabetic larvae when UV irradiated exhibited a reduction in number of branches and total dendritic length compared with irradiated Gal4 and UAS alone controls (Fig. 2B-D). Behaviorally, the baseline (absence of injury) nociceptive sensitivity of type 1 diabetic larvae at 43°C was similar to that of the Gal4 and UAS alone control larvae (Fig. 2E). Similarly, both controls and type 1 diabetic larvae showed similar responses to a 43°C probe at the peak hyperalgesia time point (Fig. 2F) following UV-induced tissue injury. By contrast, we found that the type 1 diabetes-like state resulted in persistent hypersensitization. Control larvae invariably resolved their thermal hyperalgesia by 24 h following injury (Fig. 2G). Type 1 diabetic larvae, by contrast, still exhibited thermal hyperalgesia at this time (Fig. 2G). Therefore, a type 1 diabetes-like condition results in

Fig. 2. A type 1 diabetes-like state induces persistent thermal hyperalgesia in *Drosophila* larvae. (A) Schematic of the genetic manipulation that induces a type 1 diabetes-like state in *Drosophila* larvae by silencing IPCs. (B) Representative in vivo confocal images of class IV md neuron dendritic morphology in controls and in larvae exhibiting a type 1 diabetes-like state±UV irradiation. In all panels, dendritic morphology was visualized using a ppp-CD4::tdTomato transgene. Controls: dilp2-Gal4 alone and UAS-Kir2.1 alone. Type 1 Diabetes: dilp2-Gal4±UAS-Kir2.1. (C,D) Quantitative dendritic morphology analysis measuring number of branches (C) and total dendritic length (D) presented as mean±s.e.m. n=8 neurons. Statistical significance was determined by one-way ANOVA with Bonferroni multiple comparison post hoc test. (E-G) Quantitation of nociceptive behavioral responses to thermal stimulation (43°C) in control larvae and when IPCs were silenced genetically. In all behavioral analyses, accumulated total responses were plotted as a function of latency to aversive withdrawal. Baseline behavioral responses in the absence of UV irradiation (E), thermal sensitivity at 8 h post-UV (F), thermal sensitivity at 24 h post-UV (G). n=90 larvae tested for each condition. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
injury-induced persistent nociceptive hypersensitivity with no alteration in the baseline sensitivity or acute thermal hyperalgesia, similar to what is observed in \textit{InR} mutants.

Type 2 diabetic larvae exhibit persistent thermal hyperalgesia after injury

To model type 2 diabetes (Fig. 3A), we cultured larvae on a high-sugar diet (Musselman et al., 2011). This nutritional regimen results in increased circulating sugar levels, fat accumulation and increased expression of \textit{dilp} (\textit{Ilp}) genes. Morphologically, the type 2 diabetic condition did not affect the number of dendritic branches in class IV \textit{md} nociceptive neurons (Fig. 3B,C), although it did reduce the total dendritic length (Fig. 3B,D). No significant differences in morphological measures were observed with or without the high-sugar diet after UV-induced tissue injury (Fig. 3B-D).

Behaviorally, type 2 diabetic larvae did not exhibit any defects in baseline thermal nociception (43°C) (Fig. 3E) or in acute thermal hyperalgesia following UV-induced tissue injury (Fig. 3F). To test whether there is developmentally induced shift in the timing or duration of the hyperalgesic peak, we examined larvae 16 h after injury. Control larvae had returned to baseline, as observed before (Babcock et al., 2009), whereas larvae grown on the high-sugar diet remained hypersensitive (Fig. 3G), a condition that persisted 24 h after irradiation (Fig. 3H). Taken together, we found that \textit{Drosophila} larvae with a type 2 diabetes-like state exhibited a highly specific phenotype of persistent thermal hyperalgesia without corresponding defects in baseline thermal nociception or injury-induced acute thermal hyperalgesia.

Sensory neuron-specific loss of Insulin receptor causes persistent thermal hyperalgesia

The persistent thermal hyperalgesia in \textit{InR} mutants and diabetic larvae suggest that insulin signaling is required to regulate the persistence of acute thermal nociceptive hypersensitivity. We thus asked in which tissue(s) \textit{InR} function is required for diabetes-associated nociceptive persistence. To address this question, we...
utilized tissue-specific Gal4 drivers (Table S1) to express a UAS-
RNAi transgene targeting InR. We then tested whether persistent
thermal hyperalgesia was observed in progeny larvae expressing the
UAS-InR^{RNAi} transgene in each tissue compared with relevant
genetic controls (Gal4 transgenes alone). Larvae with muscle-, fat
body- and hemocyte-specific Gal4 expression of UAS-InR^{RNAi} did
not exhibit persistent thermal hyperalgesia (Fig. S2).

As InR function was not centered in typical metabolic
tissue control tissues, we tested sensory neurons themselves. Expression
of UAS-InR^{RNAi} using a pan-md sensory neuron driver did not
cause defects in baseline (Fig. 4A) or acute thermal hyperalgesia
(Fig. 4B). By contrast, md neuron expression of UAS-InR^{RNAi} did
result in prolonged thermal hyperalgesia that was apparent 24 h
post-injury (Fig. 4C) and worsened throughout the third larval stage
(Fig. 4D). These results indicate that perturbing InR function within
multidendritic nociceptive sensory neurons, but not within other
tissues that typically control metabolic regulation, leads to persistent
thermal hyperalgesia following injury.

Specificity to peripheral nociceptive sensory neurons is supported
because we also observed persistent thermal hyperalgesia with an
independent pan-md driver and a class IV nociceptive sensory
neuron md driver (Table S1, Figs S3 and S4). Independent
UAS-InR^{RNAi} transgenes targeting nonoverlapping regions of InR
(Fig. 4A-C; Fig. S5) gave the same phenotype, as did a UAS-InR^{RNAi}
transgene (Wu et al., 2005) expressing a dominant negative form of
InR (Fig. S6), ruling out RNAi off-target effects. RNAi transgenes
targeting other components of the insulin-like signaling (ILS)
pathway (chico, Pi3K genes) also resulted in persistent thermal
hyperalgesia (Fig. S7).

Morphologically, md neuron-specific expression of UAS-InR^{RNAi}
did not affect the total number of branches of class IV md neurons
under baseline conditions, although it did reduce the total dendritic
length (Fig. 4E-G). This pattern of morphological changes is similar
to what was observed in the type 2 diabetic condition (Fig. 3B-D).
However, with UAS-InR^{RNAi} expression in md neurons, there was a
significant increase in the number of class IV dendritic branches
after UV irradiation (Fig. 4E,F) that was not accompanied by a
responding increase in total dendritic length (Fig. 4E,G). The
relationship between the consistent behavioral phenotype and the
relatively modest morphological changes across different genotypes
and diabetic conditions is discussed further below.

**Persistent thermal hyperalgesia is associated with elevated
calcium responses in class IV nociceptive neurons**

Is the behavioral hypersensitivity seen upon loss of InR in
nociceptive sensory neurons accompanied by cellular level changes
in neuronal activity? To assess this, we tried to use GCaMP (Chen
et al., 2013) expressed within sensory neurons, but found that
the GFP fluorescence was not stable over the duration of the
noxious heat exposure (data not shown). As an alternative, we
expressed CaMPARI (Fosque et al., 2015), a genetically encoded
calcium integrator that undergoes fluorescence conversion from
green to red as a function of high intracellular calcium and
photoconverting (PC) light, in md neurons with or without
UAS-InR^{RNAi}. Progeny larvae (control and InR loss of function)
were mock irradiated or UV irradiated as in our behavioral analysis,
and both groups were either challenged with a 43°C heat probe
stimulus or not (see Materials and Methods, Fig. 5A for experimental
flowchart). In the absence of PC light, the ratio of F_{Red}/F_{Green}
(CaMPARI response) is low under all conditions tested, as expected
(Fig. 5B, no PC). Exposure to PC light led to a slight (but not
significant) increase in the CaMPARI response with or without UV
irradiation (Fig. 5B, PC, no stimulation). In control larvae, adding a
noxious heat stimulus (43°C heat probe) with or without UV-induced
injury did not significantly increase the observed CaMPARI response
(Fig. 5B, compare PC, no stimulation controls with PC, stimulation
controls). For UAS-InR^{RNAi}-expressing larvae, exposure to a noxious
stimulus by itself was not sufficient to cause a significant increase in
the CaMPARI response compared with controls (Fig. 5B, PC,
stimulation). By contrast, UAS-InR^{RNAi}-expressing larvae that were
UV irradiated and exposed to a noxious heat stimulus showed a
significant increase in CaMPARI responses compared with all other
relevant conditions (Fig. 5B, PC, stimulation). Representative
neuronal cell bodies reflecting the average CaMPARI responses
are depicted in Fig. 5C. Together, these results suggest that a
significant increase in neuronal calcium is apparent when UV-
induced tissue injury is combined with heat stimulation. Similar to
our behavioral results, this increase at 24 h postirradiation is only
seen when InR function is reduced in md neurons.

**Constitutive activation of InR causes hyposensitivity during
the acute phase**

Our genetic analysis suggests that ILS might be required within md
neurons to actively shut off acute thermal sensitization. To test this
possibility we overexpressed a constitutive active (CA) form of InR
(UAS-InR^{CA}) (Wang et al., 2008) in md neurons. If ILS is a general
regulator of nociceptive sensation, we might expect constitutive
activation of this pathway to alter baseline nociception in the
absence of injury. This was not observed—InR^{CA} expression did not
alter baseline (no injury) thermal nociception (43°C) (Fig. 6A).
However, the acute thermal hyperalgesia, which peaked at 8 h after
UV-induced injury in controls, was greatly attenuated in
UAS-InR^{CA}-expressing larvae, even dipping below the normal
nociceptive response to the 43°C stimulus (Fig. 6B). When examined
at the normal recovery time point (24 h after injury) there were no sensitivity differences between UAS-InR^{CA}
expressing and relevant control larvae (Fig. 6C). Therefore,
constitutive InR activation causes acute hyposensitivity after
injury. Baseline nociception was not affected and the injury-
induced hyposensitivity resolved with similar kinetics compared
with the normal injury-induced hypersensitivity.

Multidendritic neuron-specific restoration of ILS rescues persistent nociceptive hypersensitivity

The finding that md neuron-specific loss causes persistent thermal
hyperalgesia suggests that normal ILS is required in md neurons to
successfully turn off injury-induced acute sensitization. The
dampening of acute thermal hyperalgesia upon constitutive
activation of ILS supports this idea. To further test this hypothesis
we attempted to rescue ILS function in md sensory neurons both in
InR mutants and in type 2 diabetic larvae. We expressed a UAS-InR
transgene specifically in md neurons in a heterozygous InR¹⁹
background and tested the resulting larvae for thermal sensitization
versus relevant genetic controls. There were no differences in
baseline thermal nociception (Fig. 7A) or acute thermal
hyperalgesia (Fig. 7B) between the rescued larvae and the
controls. However, at the recovery time point, we found that
larvae expressing UAS-InR¹⁹ in their nociceptive sensory neurons
showed a normal recovery, whereas control larvae (Gal4 or UAS
transgene alone) lacking InR expression still showed persistent
thermal hyperalgesia (Fig. 7C). We also found that constitutively
activating InR in nociceptive sensory neurons of type 2 diabetic
larvae did not affect baseline nociception (Fig. 7D), but caused
hypoalgesia at the acute time point (Fig. 7E) coupled with a normal
recovery to baseline at 24 h (Fig. 7F). Together, these results support the hypothesis that the function(s) of InR relevant to regulating nociceptive sensitivity following injury or induction of a diabetic state lie mainly within nociceptive sensory neurons.

DISCUSSION

Our results suggest that InR function in nociceptive md sensory neurons is important to regulate the persistence of injury-induced nociceptive sensitization (Fig. 8). InR mutants exhibit a highly...
specific phenotype whereby baseline nociception and the normal acute nociceptive sensitization response are unaffected. In InR mutant larvae, however, the acute response does not resolve back to baseline, resulting in persistent sensitization. An md neuron-intrinsic function of InR is supported by four lines of evidence: (1) md neuron-specific loss of InR function leads to persistent thermal hyperalgesia; (2) md neuron-specific loss of InR function leads to increased neuronal calcium responses at a time point consistent with behavioral hypersensitivity; (3) md neuron-specific restoration of InR rescues persistent thermal hyperalgesia observed in InR mutants; and (4) md neuron-specific constitutive activation of InR dampens the peak of acute injury-induced hyperalgesia. These results suggest that InR function might become active during the recovery phase of sensitization – a conclusion supported by the specific dampening of the acute thermal hyperalgesia response in nociceptive sensory neurons expressing constitutively active InR.

Our results also suggest that the md neuron-specific role of InR might be relevant to diabetes-associated nociceptive phenotypes. First, larvae experiencing both type 1 and type 2 models of diabetes exactly phenocopy the loss of InR in md neurons – persistence of thermal hypersensitivity. Second, md neuron-specific rescue of InR function can ameliorate the persistent thermal hyperalgesia seen in both InR mutants and in type 2 diabetic larvae. Below, we discuss the possible implications of these findings in flies and in other models of diabetes-associated pain.

InR has diverse functions in multiple tissues so that each tissue can be responsive to the organism’s metabolic state (Demontis and Perrimon, 2010; Wassells et al., 2004). The relevant tissue for the regulation of nociception is not clear. Our data suggest that the activity of InR relevant to nociceptive sensitization is not localized in the major metabolic signaling tissues of the fly larva – fat body, muscle or hemocytes. Rather, InR functions in the very sensory neurons that respond to noxious thermal stimuli. In vertebrates, the insulin receptor is expressed on nociceptive sensory neurons (Sugimoto et al., 2002, 2000), but whether it functions in nociceptive sensory neurons has not been tested to date. Further, the conditional InR knockouts generated to date have not been tested for pain phenotypes (Bruning et al., 2000). However, mouse insulin receptor can regulate synapse number and neuronal plasticity, at least in central nervous system neurons (Chiu et al., 2008; Grillo et al., 2015). Given that nociceptive biology is evolutionarily conserved, our work suggests that it would be interesting to test pain physiology in a nociceptor-specific knockout of the mouse insulin receptor.

With InR loss of function we observe cellular-level changes – increased cellular calcium measured by CaMPARI and modest changes in dendritic morphology – that could conceivably help explain the observed behavioral hypersensitivity. As a genetically encoded calcium integrator, CaMPARI allows for post hoc assessment of neural activation states as a function of stimulus conditions and in combination with genetic perturbations. Previous studies have utilized CaMPARI to measure in vivo neuronal activity levels in response to a broad range of sensory stimuli in Drosophila, zebrafish and mice (Enjin et al., 2016; Fosque et al., 2015; Turner et al., 2016), as well as in mapping functional synaptic connectivity (Zolnik et al., 2017). In the case of InR function assessed here, CaMPARI analysis indicates increased md neuron function/output at the time when hypersensitivity would have resolved in control larvae. The observed morphology changes, which are modest but significant, are not uniform across diabetic conditions (type 1 and type 2) and genetic manipulations (md neuron-specific expression of InR^{NL110}). However, the observed behavioral phenotype – persistent thermal hyperalgesia – is shared across all conditions. For this reason, we suspect that morphological changes at the dendritic level are unlikely to be a major driver of the behavioral phenotype. The morphological changes observed are consistent with the peripheral neurogenic effects of insulin observed in vertebrate neuronal culture (Fernyhough et al., 1993; Recio-Pinto et al., 1986).
An important question is when ILS is activated following injury. Given that InR loss of function results in persistent thermal hyperalgesia following a normal peak of acute hyperalgesia, it seems likely that ILS would be activated after the acute response. The normal thermal nociception baseline and the acute thermal hyposensitivity observed upon constitutive activation of InR are consistent with this idea. There is precedence in *Drosophila* for UV injury increasing ILS in non-neuronal tissues (Karpac et al., 2011). If ILS were activated neuronally after the peak of acute hyperalgesia, this could in turn dampen injury-induced hypersensitivity and help the acute response return to baseline. Consistent with this idea, pre-activating ILS (constitutive activation of InR) temporally shifts the dampening of nociceptive sensitivity from the recovery time point (24 h) to the peak time point (8 h). Comparing the timing and magnitude of sensitivity between *InRRNAi* and *InRCA*-expressing larvae, the most likely time of activation of ILS following injury is during the normal recovery phase (Fig. 8).

Several models could potentially account for how InR regulates the persistence of acute sensitization. One model, consistent with our experiments with activation of InR and the timing of ILS activation, is that ILS helps shut off the acute nociceptive sensitization response. This model predicts some crosstalk between ILS and acute sensitization pathways, such as TNF, Tachykinin or Hedgehog, and/or the downstream TRP channels through which these sensitization pathways act (Babcock and Galko, 2009; Babcock et al., 2011; Im et al., 2015). Hedgehog...
Fig. 8. Graphical representation of pain levels versus time postinjury, annotated across control, persistently hypersensitive genotypes and diabetic conditions, and upon constitutive activation of InR. Control, blue solid line; persistently hypersensitive genotypes and diabetic conditions, red dashed line; constitutive activation of InR, green dashed line. Landmark time points (gray vertical bars) and the likely window of ILS activity in nociceptive sensory neurons (orange arrow/text) are indicated.

Our work establishes a novel genetically tractable model of neuronal InR function and diabetes-associated nociceptive changes. Such fly models can serve as hypothesis generators for complementary vertebrate approaches, as well as a platform for future gene discovery approaches (Bellen et al., 2010; Graham and Pick, 2017). One implication of our work is that diabetes-associated nociceptive changes might be more injury dependent and closely related to the acute-to-chronic switch associated with standard injury-dependent sensitization than previously appreciated. A second implication is that diabetes-associated changes in nociception could be more driven by primary changes in ILS, as opposed to secondary effects on associated tissues such as the vasculature (Powell et al., 1985). Future work on this model and testing logical hypotheses emerging from this model in vertebrate systems will determine how relevant the model is, given the added complexity of diabetes-associated sequelae and nociceptive circuits in vertebrates.

MATERIALS AND METHODS

Fly stocks and genetics

Stocks were obtained from the Bloomington *Drosophila* Stock Center (NIH P400D018537) and the Vienna *Drosophila* RNAi Center. All experimental crosses were performed at 25°C, with the exception of *InR* transheterozygotic combination (*InR*^19/9354*) (Tatar et al., 2001), which was reared at 18°C until third instar larval stage and then moved to 25°C for experiments. Flies were raised on regular corn meal media except for the type 2 diabetes experiments. A high-sugar diet (10 g/l agar, 80 g/l brewer’s yeast, 20 g/l yeast extract, 20 g/l peptone, 342 g/l sucrose, 0.5 g/l MgSO₄, 0.5 g/l CaCl₂, 6 ml/l propionic acid, 0.1% mold inhibitor) contains 6.7 times higher sugar compared with a control diet (51 g sucrose, all other ingredients the same) (Musselman et al., 2011). w¹¹¹B and/or Gal4^109/2894* (crossed to w¹¹¹B) served as control strains for behavioral analysis and staining. *InR* mutant alleles used were *InR*^en* and *InR*^9354*. Tissue-specific expression of *UAS* transgenes was controlled by Gal4^109/2894* (Gao et al., 1999) or 21-7-Gal4 (Song et al., 2007) for all four classes of md neurons, ppk1.9-Gal4 for class IV md neurons (Ainsley et al., 2003), dilp2-Gal4 for IPCs (Rulifson et al., 2002), hmlΔ-Gal4 (Sinenko and Mathey-Prevot, 2004) for circulating hemocytes, Dmef2 (Mel2)-Gal4 for muscle (Zars et al., 2000) and OK376-Gal4 for larval fat body (Wu et al., 2009). *UAS-Kir2.1* was used to silence IPCs and block ilp secretion (Kim and Rulifson, 2004). *UAS-InR*^W* (K1409A) (Wu et al., 2005), *UAS-InR*^C* (A1325D) (Wang et al., 2008) and *UAS-InR* (Martin-Pena et al., 2006) were used to manipulate InR function, and *UAS-CalMPAR1* (Fosque et al., 2015) was used to monitor Ca²⁺ levels with DiOred RNAi lines (Dietzel et al., 2007; Ni et al., 2011) used were *InR*^Ps4182*, *InR*^Ps1815*, *chico*^Ps2964*, P1*3K92G*D1225* and *Luc*^Ps1355*. Table S2 lists all of the specific genotypes used in each figure panel throughout the manuscript.

Behavioral assays

UV-induced tissue damage and thermal nociception assays were performed as described previously (Babcock et al., 2009; Chattopadhyay et al., 2012; Im et al., 2015), and a brief description follows. To induce tissue damage, early third instar larvae were etherized (Ethyl Ether Anhydrous, Thermo Fisher Scientific), immobilized and exposed to 254 nm wavelength UV at a setting of 11-14 mJ/cm². Mock or UV-irradiated larvae were returned to fly food until thermal nociception assays were performed. For the thermal nociception assay, a metal tip of a custom-built thermal probe, the surface temperature of which is fine-tuned, touches the dorsal side of an early third instar larva in abdominal segments A3-A5. All thermal nociception assays in this paper were performed at a heat probe setting of 43°C (Babcock et al., 2009). Thermal hyperalgesia assays were performed 8 h after UV irradiation. Persistent hyperalgesia assays were performed 24 h or 42 h after UV irradiation. Aversive withdrawal behavior (corkscrew-like rolling) was scored under a dissecting stereomicroscope and the latency was recorded up to a 20 s cutoff. Behavioral assays were performed in triplicate sets of 30 or more larvae, and accumulated total percent responses were plotted as a function of latency (duration of probe contact until initiation of...
Live imaging and confocal microscopy

Confocal imaging of in vivo neuronal morphology was performed as previously described (Das et al., 2017; Turner et al., 2016). Briefly, third instar larvae were mounted on slides with 1.5 (v/v) diethyl ether:halocarbon oil and imaged on a Zeiss LSM780 confocal system. Z-stacks of class IV md neurons were obtained and neuromorphometric analyses of two-dimensional maximum projections of the z-stacks were performed using Adobe Photoshop and ImageJ (Analyze Skeleton plug in: http://imagej.net/AnalyzeSkeleton) as previously described, with modification (Iyer et al., 2013). Statistical significance was tested using one-way ANOVA with Bonferroni multiple comparison post hoc test in GraphPad Prism.

CaMPARI analysis

CaMPARI imaging was performed as previously described (Patel and Cox, 2017; Turner et al., 2016) with the following modifications. Third instar control and UAS-InTRNAi larvae expressing UAS-CaMPARI were analyzed in the presence or absence of photo-converting (PC) light. CaMPARI responses across conditions. Statistical significance was tested using one-way ANOVA with Bonferroni multiple comparison post hoc test in GraphPad Prism.

Acknowledgements

We thank Elizabeth Chen, Yuh Nung Jan, Ulrich Theopold and Kartik Venkatachalam for Drosophila stocks; members of the Galgo laboratory for critical comments on the manuscript; Adriana Paulacci-Holthauzen for assistance with confocal microscopy; and Cox laboratory members Jamin M. Letcher and Shatadhi Bhattacharjee for assistance with morphology analyses.

Competing interests

The authors declare no competing or financial interests.

Author contributions

Funding

This work was supported by National Institute of Neurological Disorders and Stroke (NINDS) (R01NS098828 to M.J.G.; R01NS086082 to D.N.C.); National Institute of General Medical Sciences (NIGMS) (R35GM126929 to M.J.G.); Office of Extramural Research, National Institutes of Health (T32-CA009299-34 to S.H.I.); Georgia State University (D.N.C.; 2CI Neurogenomics Fellowship and Kenneth W. and Georganne F. Honeycutt Fellowship to A.A.P.); and University of Texas MD Anderson Cancer Center (R. Lee Clark Fellowship to M.J.G.).

Supplementary information

Supplementary information available online at http://dmm.biologists.org/lookup/doi/10.1242/dmm.034231.supplemental

References

