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RESEARCH Open Access

Bacterial alkylquinolone signaling
contributes to structuring microbial
communities in the ocean
Kristen E. Whalen1* , Jamie W. Becker1*, Anna M. Schrecengost1, Yongjie Gao1, Nicole Giannetti1 and
Elizabeth L. Harvey2

Abstract

Background: Marine bacteria form complex relationships with eukaryotic hosts, from obligate symbioses to pathogenic
interactions. These interactions can be tightly regulated by bioactive molecules, creating a complex system of chemical
interactions through which these species chemically communicate thereby directly altering the host’s physiology and
community composition. Quorum sensing (QS) signals were first described in a marine bacterium four decades ago, and
since then, we have come to discover that QS mediates processes within the marine carbon cycle, affects the health of
coral reef ecosystems, and shapes microbial diversity and bacteria-eukaryotic host relationships. Yet, only recently have
alkylquinolone signals been recognized for their role in cell-to-cell communication and the orchestration of virulence in
biomedically relevant pathogens. The alkylquinolone, 2-heptyl-4-quinolone (HHQ), was recently found to arrest cell
growth without inducing cell mortality in selected phytoplankton species at nanomolar concentrations, suggesting QS
molecules like HHQ can influence algal physiology, playing pivotal roles in structuring larger ecological frameworks.

Results: To understand how natural communities of phytoplankton and bacteria respond to HHQ, field-based incubation
experiments with ecologically relevant concentrations of HHQ were conducted over the course of a stimulated
phytoplankton bloom. Bulk flow cytometry measurements indicated that, in general, exposure to HHQ caused
nanoplankton and prokaryotic cell abundances to decrease. Amplicon sequencing revealed HHQ exposure altered
the composition of particle-associated and free-living microbiota, favoring the relative expansion of both gamma-
and alpha-proteobacteria, and a concurrent decrease in Bacteroidetes. Specifically, Pseudoalteromonas spp.,
known to produce HHQ, increased in relative abundance following HHQ exposure. A search of representative
bacterial genomes from genera that increased in relative abundance when exposed to HHQ revealed that they all
have the genetic potential to bind HHQ.

Conclusions: This work demonstrates HHQ has the capacity to influence microbial community organization,
suggesting alkylquinolones have functions beyond bacterial communication and are pivotal in driving microbial
community structure and phytoplankton growth. Knowledge of how bacterial signals alter marine communities
will serve to deepen our understanding of the impact these chemical interactions have on a global scale.
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Background
Interactions between phytoplankton and bacteria play a
central role in mediating biogeochemical cycling and mi-
crobial trophic structure in the ocean. The associations be-
tween phytoplankton and bacteria are complex and can be
both temporally variable [1] and species-specific [2]. These
interactions can range from mutualistic, as bacteria and
phytoplankton can support the growth of one another via
the exchange or recycling of nutrients [3], to pathogenic—
resulting in decreased chlorophyll biosynthesis and photo-
synthesis, induction of caspase-like activity, cell wall lysis
[4], and ultimately phytoplankton mortality [5]. Even within
a single bacterial-algal interaction, both modalities can be
observed as bacteria sense and respond to their eukaryotic
hosts [6]. Given that both bacteria and phytoplankton grow
exponentially, even slight decreases in growth rate have the
potential to dramatically influence population dynamics, ul-
timately influencing large-scale oceanic processes, including
phytoplankton bloom dynamics.
There is increasing recognition that exuded small mole-

cules can mediate marine microbial interactions through a
variety of mechanisms, including directing communication,
influencing mate-finding, inducing defenses, modifying be-
havior, and causing mortality [4, 7–11]. Originally described
in a marine bacterium four decades ago [12], quorum sens-
ing (QS) is a form of chemical communication by which
bacteria can, in unison, coordinate gene expression and in-
duce density-dependent cooperative behavior. This behav-
ior is triggered by small, diffusible chemical signals secreted
by bacteria that initiate group-beneficial behaviors after
accumulating to appreciable threshold levels [13]. Our
knowledge of the battery of genes that can be induced by
QS signals originates from understanding their roles in
human pathogenic bacteria, whereby QS-mediated patho-
genicity of Gram-negative bacteria is attributed to the pro-
duction and secretion of virulence factors (i.e., tissue
degrading enzymes, endotoxins, exotoxins, siderophores,
adherence components) [14]. Additional behaviors coordi-
nated by QS molecules aid in colonization, nutrient acquisi-
tion, and collective defenses, including changes in bacterial
motility that may allow bacteria to access resources, form
biofilms at densities up to three orders of magnitude
greater than planktonic bacteria, and produce exopolysac-
charides for adhesion, extracellular, hydrolytic enzymes,
and antibiotics [13, 15].
In Gram-negative bacteria, acyl-homoserine lactone

(AHL)-mediated quorum signaling is the best under-
stood QS signaling system, which consists of a homoser-
ine lactone with a fatty acid side chain. However, 20
years ago, a second alkylquinolone-based QS signaling
system was described in Pseudomonas aeruginosa as part
of this signaling system, and the antibiotic alkylquino-
lone, 2-heptyl-4-quinolone (HHQ), was discovered [16].
Since the discovery of HHQ and the key role this QS

molecule has in coordinating virulence via activation of
canonical transcriptional regulators, additional studies
have demonstrated HHQ can repress both motility and
biofilm formation in bacteria and yeast, and exhibit potent
bacteriostatic activity against several Gram-negative
bacteria, including pathogenic Vibrio vulnificus [17]. This
work revealed HHQ acts as a novel interkingdom signal,
having both the ability to coordinate molecular circuitry
and cellular function in P. aeruginosa, as well as function
in an antagonistic fashion towards other microorganisms,
indicating a role for HHQ in mediating polymicrobial
communities from diverse environmental niches [17, 18].
Recently, marine bacteria within the genera Pseudoaltero-

monas and Pseudomonas were shown to produce HHQ
[19]. Additionally, the finding that nanomolar concentra-
tions of HHQ arrests cell growth without inducing cell
mortality in phytoplankton in a species-specific manner
[19] suggests alkylquinolones have a more widespread
influence on microbial and eukaryotic systems than previ-
ously appreciated. Similar to AHLs, which are known to be
involved in bacterial cross-talk and influence eukaryotic de-
velopment, HHQ appears to have an impact on microbial-
eukaryotic host interactions; however, the molecular under-
pinnings of these interactions are yet unknown. Studies of
human pathogenic bacteria have provided the fundamental
knowledge needed for understanding how alkylquinolones
engage bacteria in cooperative and coordinated behaviors
[17, 18, 20–22], yet parallel studies in marine systems in-
vestigating how alkylquinolones influence marine microbial
population dynamics are still emerging.
To date, studies of HHQ in relation to the marine envir-

onment have focused on laboratory experiments involving
specific phytoplankton-bacteria interactions and cannot
provide a comprehensive view of the community-wide
response of natural microbes to this signaling molecule. In
order to develop an understanding of how the alkylquino-
lone HHQ influences growth rates and the community
composition of marine microbes in situ, we conducted
field-based incubation experiments where natural assem-
blages were exposed to ecologically relevant concentra-
tions of HHQ.

Results and discussion
Our field-based study was designed to describe (i) how
bacterial/archaea and phytoplankton populations might be
perturbed in the presence of the bacterial signaling mol-
ecule, HHQ, and (ii) how variable this response is to HHQ
by examining community-level changes over the course of
a coastal phytoplankton bloom. Our efforts to stimulate a
phytoplankton bloom were successful, as evidenced by
elevated surface chlorophyll a concentrations in replete
mesocosms relative to unamended control mesocosm bags
(Fig. 1). At the peak of the bloom, picoeukaryotes were the
most numerically abundant group observed (Additional file
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1: Figure S1). Bulk free-living bacteria/archaea abundance
measurements remained relatively constant over the course
of the bloom (Fig. 1). Similar trends in pico-, nano-, and
bacterio-plankton abundances following nutrient additions
have been observed prior in this same ecosystem [23].
Water from three nutrient replete mesocosm bags was
pooled for DNA sampling at eight time points distributed
over the course of the bloom to investigate prokaryotic
(free-living and particle-associated) and eukaryotic phyto-
plankton community dynamics during the bloom and after
exposure to an environmentally relevant concentration of
HHQ (Fig. 1).

Bloom dynamics influence microbial diversity and
abundance
Non-metric multidimensional scaling (NMDS) analysis of
18S rRNA and 16S chloroplast amplicon sequences based
on Bray-Curtis dissimilarity between samples indicated
clear sample clustering by time point, in which the date of
sampling during the bloom explained 92% and 95% of the
variability, respectively (permutational multivariate analysis
of variance (PERMANOVA), p = 0.001 for both data sets;
Fig. 2a, b). Over the course of the bloom, there was a tran-
sition from a dinoflagellate-dominated community, specif-
ically Blecheleria sp., to a haptophyte (Chrysochromulina
sp., Prymnesium sp.)- and chlorophyte (Micromonas sp.)-
dominated community (Fig. 2c, d). Since estimates of

eukaryotic relative abundances can be confounded by taxo-
nomic variations in 18S rRNA copy number, we also exam-
ined 16S plastid amplicon sequence variants (ASVs) and
found a significant (p < 0.001) positive correlation (Spear-
man’s correlation coefficient = 0.66–0.76) with the 18S data
among the dominant eukaryotic phytoplankton divisions
after removal of sequences assigned to the Dinoflagellata
division (Additional file 2: Figure S2). The discontinuity
between the 18S rRNA and 16S plastid sequence results
with respect to the Dinoflagellata results from the fact that
most of the chloroplast genes have been lost to the nucleus
in dinoflagellate algae, while still retaining a cytologically
recognizable chloroplast [24]. Moreover, during the course
of the bloom, cyanobacterial abundance increased with
Synechococcus sp. dominating during and after the peak of
the bloom (Additional file 3: Figure S3).
Analysis of particle-associated and free-living prokaryotes

based on 16S rRNA amplicon sequencing indicated that,
similar to eukaryotic phytoplankton communities, the ma-
jority (75%) of the variability was explained by the date of
sampling during the bloom (PERMANOVA, p = 0.001;
Fig. 3a). Size-fractionation explained 9% of the variation
(PERMANOVA, p = 0.008), with the greatest separation be-
tween particle-associated and free-living prokaryotic com-
munities observed prior to the initiation of the bloom (i.e.,
experiments 1 and 2; Fig. 3a). Automated FlowCam analysis
of mesocosm water samples revealed increased numbers of
cellular aggregates over the bloom phase (i.e., experiments
3–6). These cellular aggregates continued to be observed in
the post-bloom phase with an increased amount of phyto-
plankton debris and fecal pellets (Additional file 1: Figure
S1a). Our data suggest that homogenization of particle-
associated and free-living prokaryotic communities during
and especially after the bloom may be a result of a distinct
shift in the eukaryotic phytoplankton community that serve
as prokaryotic reservoirs for specific species, and/or the
subsequent increase in particulate organic material that was
generated in response to bloom conditions that may also
serve as surfaces for transient free-living representatives to
colonize [25]. The most abundant orders of bacteria
present in both particle-associated and free-living samples
were the Rhodobacterales and Flavobacteriales, with the
relative abundances of these major groups oscillating over
the course of the bloom (Fig. 3b, c). Representatives from
the SAR11 clade generally increased in abundance in the
free-living fraction over the course of the bloom, similar to
previous reports [26], while the orders Chitinophagales,
Cellvibrionales, and Alteromonadales all decreased in
relative abundance in the particle-associated fraction over
the bloom.

HHQ impacts on microbial community structure
When mesocosm communities were exposed to nano-
molar concentrations of HHQ (410 nM or 100 ng/mL)

Fig. 1 Mesocosm chlorophyll a and microbial cell concentrations.
Chlorophyll a samples were taken from nutrient replete (green
circles and black arrows) and unamended control mesocosms (black
circles). Samples for total bacteria/archaea (blue triangles) and total
phytoplankton < 15 μm (orange triangles) cell abundances were
taken from replete mesocosms. DNA sampling and 2-heptyl-4-
quinolone manipulations occurred at eight experimental time points
(labeled 1 through 8) during sampling (red circles). All samples were
taken from a depth of 1 m and symbols represent the mean (± s.d.)
of biological triplicates.
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for 24 h, significant (p < 0.05) reductions in population-
level growth rates of eukaryotic phytoplankton, relative
to a DMSO control, were observed (Fig. 4a). Specifically,
HHQ exposure caused the growth rate of phytoplank-
ton—based on changes in bulk chlorophyll a concentra-
tion—to decrease significantly over the peak of the
bloom only, whereas the growth rate of HHQ exposed
nanoeukaryotes was significantly lower than the control
at all time points except experiment 8. Picoeukaryotes
did not exhibit a consistent, significant pattern in growth
rate response to HHQ exposure.
These results suggest species-specific growth responses

to HHQ, which have been observed in previous laboratory
experiments [19]. Interestingly, there was only one signifi-
cant response of picoeukaryotes to HHQ (experiment 6),
yet they comprised the highest percentage of the total
phytoplankton in terms of cell density and carbon biomass
during the peak and post-bloom. Conversely, while
nanoeukaryotes increased in population abundance over
the course of the bloom, the percent contribution of this

group to total cell counts and carbon biomass decreased.
Due to their small size and higher growth rates, picoeu-
karyotes often have a competitive advantage over other
co-occurring groups of phytoplankton [27, 28]. The
addition of nitrate and phosphate at the beginning of the
mesocosm experiment could have promoted picoeukar-
yote growth over nanoeukaryotes. It is impossible to de-
tangle if HHQ was more impactful to nanoeukaryotes
because this group has enhanced susceptibility, or if fast-
growing populations, such as the picoeukaryotes, are not
impacted by HHQ. Thus, the impact of HHQ on natural
populations may be mediated by cell physiological param-
eters as well as community composition.
NMDS analysis of 18S rRNA, 16S chloroplast, and 16S

cyanobacterial amplicon sequences indicated clear cluster-
ing of samples that were exposed to HHQ with those taken
from the DMSO control at the same time point, indicating
that HHQ exposure had a minimal impact on the commu-
nity composition of eukaryotic phytoplankton and cyano-
bacteria (PERMANOVA, p > 0.1; Fig 4b, c, Additional file 2:

Fig. 2 Nonmetric multidimensional scaling ordination displaying eukaryotic communities over the course of the bloom. Ordination of eukaryotic
phytoplankton communities based on 18S rRNA (a) and 16S chloroplast (b) amplicon sequence variants visualized by non-metric
multidimensional scaling (NMDS) of Bray-Curtis distance. Triangle color indicates experimental time points. Relative abundances of eukaryotic
phytoplankton divisions (≥ 1%) determined by 18S rRNA (c) and 16S chloroplast (d) amplicon sequence variants. X-axes indicate experimental
time points.
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Figure S2). Additionally, no significant differences in the
relative abundance of any eukaryotic ASVs were observed
following HHQ exposure at any experimental time point.
This data in combination with the earlier finding articulat-
ing how HHQ resulted in a significant decrease in both
bulk chlorophyll and nanoeukaryotic growth rates suggests
that HHQ reduced eukaryotic cell growth across all
nanoeukaryotes species but did not significantly change
community composition. This finding is consistent with
earlier work demonstrating HHQ causes the arrest of cellu-
lar growth rather than lysing phytoplankton cells [19],
which would be lost from the system. Further, given the
short duration of these experiments, it is possible that
phytoplankton communities exposed to HHQ for longer
periods of time may experience distinct shifts in commu-
nity composition, as those groups not influenced by HHQ

would opportunistically outcompete those cemented in
arrested growth.
For bacteria/archaea, the addition of HHQ resulted in

changes in growth rate and diversity. When exposed to
HHQ, the growth rate of the bulk microbial population
was significantly (p < 0.05) slower than the DMSO control
at the beginning of the bloom (experiments 1–4; Fig. 5a).
NMDS analysis of 16S rRNA amplicon sequences indi-
cated potential separation between the DMSO control
and HHQ addition treatments during the peak of the
bloom (Fig. 5b, c). While HHQ was not a significant driver
of the overall observed variation (PERMANOVA, p > 0.1),
removal of pre- and post-bloom samples (experiments 1
and 7) from the ordinations revealed that the HHQ treat-
ment explained 31% (p = 0.013) and 25% (p = 0.053) of the
variation among the remaining particle-associated and

Fig. 3 Nonmetric multidimensional scaling ordination displaying microbial communities over the course of the bloom. Ordination of
heterotrophic prokaryote communities based on 16S rRNA amplicon sequence variants (a) visualized by non-metric multidimensional scaling
(NMDS) of Bray-Curtis distance. Triangles and circles correspond to particle-associated (> 1 μm size) and free-living communities, respectively.
Symbol color denotes experimental time point. Relative abundances of heterotrophic prokaryote orders (≥ 1%) determined by 16S rRNA
amplicon sequence variants for particle-associated (> 1 μm size) (b) and free-living (c) communities. X-axes indicate experimental time points.
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free-living heterotrophic prokaryotic communities,
respectively. Overall, these patterns indicate that HHQ
impacted the growth and subsequent diversity of both
particle-associated and free-living bacteria/archaea com-
munities in the early and peak phases of the bloom,
highlighting the role of HHQ as a potential driver of
microbial diversity under bloom conditions.
Interestingly, Flavobacteriales representatives in both

particle-associated and free-living fractions generally
decreased in their relative abundance upon exposure to
HHQ during and after the bloom, in contrast to represen-
tatives of the Rhodobacterales and Alteromonadales or-
ders, which significantly increased in relative abundance
(BH-adjusted p value < 0.1) in response to HHQ in both
size fractions (Figs. 6 and 7; Additional file 3: Figure S3
and Additional file 4: Figure S4; Additional file 9: Table S1)
. It is important to note that the changes in relative abun-
dance we report should not be interpreted as changes in
absolute abundance due to the inherent compositional

nature of the underlying data. Other orders with ASVs that
significantly increased in relative abundance upon HHQ
exposure in free-living fractions included Cellvibrionales,
Nitrosococcales, Parvibaculales, SAR11, Oceanospirillales,
Betaproteobacteriales, and Tenderiales (Additional file 9:
Table S1). Representatives from the order Pseudomona-
dales were significantly higher in relative abundance in
both the free-living fraction in post-bloom samples and
particle-associated fraction in pre-bloom samples. In con-
trast, groups showing significantly lower relative abun-
dances due to HHQ exposure included representatives
from the Marine Group (MG) II Euryarchaeota, Chitino-
phagales, and additional ASVs that could not be identified
at the order level (Additional file 9: Table S1). Rhodobac-
terales, Flavobacteriales, Cellvibrionales, and Alteromona-
dales orders all contained individual ASVs that responded
in opposite directions when exposed to HHQ; however,
only one ASV in the Flavobacteriaceae family (Dokdonia_
ASV_19) significantly responded both negatively and

Fig. 4 Response of phytoplankton communities to HHQ exposure. Difference in growth rate (d−1) in phytoplankton abundance after 24 h
exposure to 410 μM (100 ng mL−1) 2-heptyl-4-quinolone (HHQ) compared to the DMSO control determined by chlorophyll a concentration, or
flow cytometry counts of nano- and pico-eukaryotes (a) over eight experimental time points. Bars represent the mean (± s.d.) of biological
triplicates and asterisks indicate significant changes in phytoplankton growth rate between the two treatments (p < 0.05). Ordination of eukaryotic
phytoplankton communities based on 18S rRNA (b) and 16S chloroplast (c) amplicon sequence variants visualized by non-metric
multidimensional scaling (NMDS) of Bray-Curtis distance. Circles and triangles correspond to DMSO control and HHQ exposed communities,
respectively. Symbol color denotes experimental time point.
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positively to HHQ depending on the phase of the bloom
(Fig. 7). The complexity of these signals, in which an ASV
changes its response depending on the bloom phase and
distinct ASVs within a single genus display disparate
trends, highlights the advantage of using ASVs as opposed
to binning similar amplicons into operational taxonomic
units (OTUs), as these signals would be lost at broader
taxonomic resolutions.

Searching for alkylquinolone binding partners in HHQ-
responsive bacteria
While diffusible signals coordinate cellular activities to the
benefit of the producing organism, often competitors are
“listening in,” decoding, and disarming these messages in
heterogeneous microbial communities [17]. This concept
of interspecies signaling has evolved from the biomedical
literature with respect to how signaling molecules influence

the outcome of infectious diseases [18]; however, parallels
can be drawn to marine host-microbe communities as well.
Of the 55 alkylquinolones known to be produced via the
PqsABCDE biosynthetic pathway in P. aeruginosa [18], we
are beginning to understand their functions beyond their
QS capacity, including their ability to act synergistically to
inhibit bacterial growth [29], iron chelation, and antimicro-
bial activity [18]. Alkylquinolones, like HHQ, facilitate the
emergence of P. aeruginosa in complex biofilms but have
also been found to modulate the virulence behavior of
different pathogens, or inhibit biofilm formation in Gram-
positive bacteria and serve as a bacteriostatic agent to
several Gram-negative species including Vibrio spp. [18].
Moreover, co-colonizing microbes have developed the
ability to degrade HHQ or quench alkylquinolone signals,
indicating the influence of these molecules in the polymi-
crobial community [18, 22]. Our results in light of these

Fig. 5 Response of microbial communities to HHQ exposure. Difference in growth rate (d−1) in heterotrophic prokaryote abundance after 24 h
exposure to 410 μM (100 ng mL−1) 2-heptyl-4-quinolone (HHQ) compared to the DMSO control determined by flow cytometry over eight
experimental time points (a). Bars represent the mean (± s. d.) of biological triplicate and asterisks indicate significant changes in the growth rate of
the bulk communities between the two treatments (p < 0.05). Ordination of heterotrophic prokaryote communities based on particle-associated 16S
rRNA (b) and free-living 16S rRNA (c) amplicon sequence variants visualized by non-metric multidimensional scaling (NMDS) of Bray-Curtis distance.
Circles and triangles correspond to DMSO control and HHQ exposed communities, respectively. Symbol color denotes experimental time point.
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findings indicate that HHQ could interact directly with
non-producing alkylquinolone bacterial species and serves
to highlight the importance of alkylquinolone chemical
messages in structuring microbial communities by both
promoting and hindering microbial growth. When exam-
ining general trends between particle-associated and free-
living bacteria displaying significant changes in response
to HHQ, Proteobacteria in the gamma and alpha classes
(i.e., Psychrobacter, Sulfitobacter, Glaciecola) were more
apt to increase their abundance in response to HHQ, sug-
gesting these genera may have the capacity to respond to

alkylquinolone signals (Additional file 4: Figure S4, Add-
itional file 5: Figure S5, Additional file 6: Figure S6). Ge-
nomes from bacterial representatives closely related
(98.6–99.4% partial 16S rRNA gene sequence identity) to
those ASVs found to significantly increase (BH-adjusted p
value < 0.1) in response to HHQ were mined for the LysR
family regulator PqsR (also known as MvfR) from Pseu-
doalteromonas piscicida (strain A757, GenBank Acc. No.
KT879198). PqsR has been shown to be activated by
HHQ and is responsible for controlling ~ 140 genes, in-
cluding several virulence factors (i.e., pyocyanin, LecA,

Fig. 6 Heatmap showing average relative abundances of microbial communities after HHQ exposure. Relative abundance of heterotrophic
prokaryotes in particle-associated (> 1 μm) (a) and free-living (b) communities for orders representing ≥ 1% of the community in at least one sample.
Experimental time points and bloom phase is noted below each heatmap. Each column represents the mean of triplicate samples taken from replete
mesocosms (T0) or exposed for 24 h to DMSO or 2-hepyl-4-quinolone (HHQ). Bolded taxa contain amplicon sequence variants that changed (+/−)
significantly (BH-adjusted p value < 0.1) in relative abundance after HHQ exposure compared to the DMSO control.
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and elastase) in P. aeruginosa [22]. This search revealed
representatives from the genera Psychrobacter, Sulfitobac-
ter, and Glaciecola, all contain putative LysR-type family
regulators with homology to the HHQ-responsive PqsR
transcriptional regulator (Additional file 10: Table S2),
indicating the potential of these species to respond to
environmental chemical signals.
Previously, a proteomic level screen in P. aeruginosa was

used to identify binding partners for alkylquinolones [14],
including HHQ, and was used in this study to identify

molecular targets of interspecies signaling. This study iden-
tified three additional targets (WbpB, FtsZ, and AstB) that
are under QS control and are potential binders of HHQ
[14]. Searches for homologous sequences in the genomes
of bacteria related to the ASVs that increased in relative
abundance following HHQ exposure found homologs for
WbpB, FtsZ, and AstB in Psychrobacter, Sulfitobacter, and
Glaciecola strains (Additional file 10: Table S2). WbpB and
FtsZ are suggested to be an “off target” binding partner of
alkylquinolones. Previous work has shown alkylquinolones

Fig. 7 Amplicon sequence variants showing significant changes in their relative abundance following HHQ exposure. Phylogenetic relationship of
amplicon sequence variants (ASVs) that significantly (BH-adjusted p value < 0.1) increased (magenta) or decreased (gray) in relative abundance
after 24 h exposure to 2-heptyl-4-quinolone (HHQ). One ASV showing both an increase and decrease at different time points is labeled in green.
Sequences were aligned using MAFFT and maximum-likelihood phylogenetic inference was done using RAxML.
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can affect colony morphology [14], and FtsZ function has
been linked to alteration in colony phenotypes, as FtsZ is
a tubulin-like protein that forms part of the septum in the
contractile ring during cell division [30]. WbpB is thought
to be involved in synthesizing sugar derivatives important
in protein glycosylation involved in lipopolysaccharide
biosynthesis and may interface in pathways that govern
virulence factor production [31], and AstB is the second
enzyme of the arginine succinyltransferase pathway in-
volved in arginine catabolism for nitrogen utilization [32].
While further work is needed to explore the impact of
HHQ on those genera shown to be responsive in our field
studies, mining of genomic data from bacterial representa-
tives has led to the identification of several promising
putative HHQ targets homologs warranting further
investigation.
There is increasing evidence that cross-communication

involving QS signaling molecules exists in complex mar-
ine microbial communities in biofilms, and similarly, may
likely contribute to structuring the phycosphere. We now
recognize that organisms can degrade or quench QS sig-
nals by blocking steps in the signaling pathway, which has
been extensively described for AHLs [33]. Recently, the
supernatant of Psychrobacter sp. (B98C22) isolated from a
marine sponge was able to inhibit AHL activity and impair
the formation and stability of P. aeruginosa PA14 and Ba-
cillus subtilis biofilms, suggesting this genus has the ability
to quench QS signaling [34]. In addition, the marine bac-
terial species Sulfitobacter (family Rhodobacteraceae) and
Glaciecola (family Alteromonadaceae) both isolated from
Ulva colonized rocks were found to produce AHLs [35].
However, when Sulfitobacter (isolate 5) was grown in the
presence of an AHL-degrading bacterium, its AHL pro-
duction was severely disrupted [35]. These findings sug-
gest Psychrobacter, Sulfitobacter, and Glaciecola are either
able to quench QS signals or associate with species that
do and in light of additional examples [36] of QS interfer-
ence/quenching offer insight into the complexity of chem-
ical signaling in heterogeneous microbial communities on
surfaces. Moreover, enzymes involved in alkylquinolone
degradation have recently been identified [22], emphasiz-
ing the idea that sympatric bacteria can disarm a possible
alkylquinolone threat [18]. Future efforts aimed at under-
standing the crosstalk between QS signaling systems in
free-living marine microbial communities and polymicro-
bial biofilms associated with phytoplankton hosts, in
terms of who is producing signaling molecules and those
capable of listening for them, will help to elucidate the
underlying mechanisms that dictate microbial community
structures. Our results reveal several marine bacterial gen-
era that appear responsive to HHQ signaling for further
investigation into HHQ-mediated crosstalk.
Following HHQ exposure, representatives from the Bac-

teroidetes phylum (Formosa, Olleya, Ulvibacter) generally

decreased in relative abundance (Additional file 6: Figure
S6). These trends in the reduction of representative Bac-
teroidetes in response to HHQ were more consistent for
particle-associated bacteria than free-living bacteria
(Fig. 7), suggesting HHQ may influence surface-associated
and free-living species differently. It is known from clinical
studies that HHQ can negatively impact the growth of
non-HHQ producing bacteria within a polymicrobial
population [18]. However, as stated above, due to the
compositional nature of our data, we are unable to deter-
mine if the reduction in relative abundance of these gen-
era is due directly to HHQ exposure from coercive growth
inhibition, or the increased relative abundance of HHQ-
responsive bacteria resulting in these observed decreases,
independent of any changes to their absolute abundances.
Indeed, a third possibility exists in which the modulation
of virulence or other key phenotypes in other opportunis-
tic bacteria within the phycosphere could also cause the
reduction in the relative abundance of these genera.
Further experiments utilizing representative laboratory
isolates from these genera are needed to disentangle these
possible explanations.

Response of Pseudoalteromonas spp. to HHQ exposure
Given that HHQ is produced by marine Pseudoaltero-
monas spp. [19, 37], we were interested in examining if
naturally occurring marine Pseudoalteromonas spp. were
capable of responding to HHQ. A key finding of the
amplicon analysis revealed that Pseudoalteromonas ASVs
significantly increased in relative abundance (BH-ad-
justed p value < 0.1) in both particle-associated and free-
living fractions following HHQ exposure in comparison
to DMSO controls (Fig. 7, Additional file 4: Figure S4,
Additional file 5: Figure S5). For the particle-associated
microbial fractions, Pseudoalteromonas ASVs signifi-
cantly increased in relative abundance after HHQ expos-
ure at time points corresponding to before and during
the bloom (experiments 1, 3, and 5) (Additional file 6:
Figure S6a–f ). Interestingly, time zero samples indicated
that representatives of the Alteromonadales order, which
includes Pseudoalteromonas, associated with particles
generally decreased in abundance over the course of the
bloom, while free-living representatives increased during
experiment 3 then decreased during experiment 5 and 7
(Fig. 6). Members of the Alteromonadales order are
known to be associated with eukaryotic hosts [38, 39],
and these associations may have been disrupted with the
shift in the dominant eukaryotic phytoplankton and sub-
sequent increase in cellular aggregates and fecal pellets
over the course of the bloom. In the free-living fraction,
a significant increase in the relative abundance of two
Pseudoalteromonas ASVs corresponding to experiment 3
only was observed after HHQ treatment, indicating
HHQ had a greater impact on Pseudoalteromonas spp.
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in particle-associated communities at multiple time
points over the course of the bloom in comparison to
free-living communities. Upon closer inspection of Pseu-
doalteromonas ASV_148, which significantly increased
in relative abundance in both particle-associated and
free-living fractions, we observed that in every instance
when HHQ exposure experiments were performed,
ASV_148 increased in relative abundance compared to
the paired DMSO control, with significant increases oc-
curring during the bloom phase (Fig. 8). Moreover, a
similar trend was observed for all other Pseudoalteromo-
nas ASVs (22, 49, 117) found to have significantly in-
creased in response to HHQ at some point during the
bloom, with relative abundances of these additional
ASVs frequently higher under conditions when HHQ
was present in comparison to DMSO and time zero con-
trols (Additional file 6: Figure S6). These results indicate
that in natural systems, marine Pseudoalteromonas spp.
increase their relative abundance in response to nano-
molar concentrations of an alkylquinolone signaling

molecule they are known to produce. Of interest would
be to investigate if Pseudoalteromonas’ predatory nature
against competitive bacteria could be attributed to alkyl-
quinolone signaling via binding partners (Additional file
10: Table S2) in response to exogenous HHQ application
similar to what is seen in P. aeruginosa.
Indeed, alkylquinolones may help protect the Pseu-

doalteromonas particle-associated niche from competi-
tors or enable opportunistic behavior to increase their
growth relative to other members of the phycosphere
community. In the biomedical literature, physiological
concentrations (i.e., low micromolar) of HHQ have been
shown to inhibit both bacterial motility and biofilm at-
tachment/formation, as well as being bacteriostatic—
exhibiting antimicrobial activity against a range of both
Gram-negative and Gram-positive microorganisms [17].
Additionally, membrane vesicles containing large con-
centrations of alkylquinolones derived from P. aerugi-
nosa strongly inhibit the growth of both Gram-positive
and Gram-negative bacteria whereby these vesicles can
fuse to bacterial competitors and release their contents
[40]. Interestingly, the production of these membrane
vesicles can be stimulated by exogenous application of
alkylquinolones. Similar to P. aeruginosa, three strains of
Pseudoalteromonas piscicida also produce extracellular
vesicles of similar size capable of being transferred to
the surface of Vibrio cells and inducing lysis [41]; how-
ever, the alkylquinolone content of these vesicles has not
yet been investigated.

Conclusions
Our findings have important implications for the ability of
alkylquinolones such as HHQ to modify the composition
of natural marine microbial communities. We demonstrate
that nanomolar concentrations of the QS signal, HHQ
were capable of decreasing the growth rate of photosyn-
thetic eukaryotes based on bulk chlorophyll measurements;
however, HHQ exposure did not significantly change the
composition of the eukaryotic community. In contrast, het-
erotrophic prokaryote populations were restructured in the
presence of HHQ, with the most notable finding that Pseu-
doalteromonas spp., a genus known to produce HHQ, sig-
nificantly increased in relative abundance in both particle-
associated and free-living bacterial communities. In
addition, ASVs belonging to the genera Psychrobacter, Sul-
fitobacter, and Glaciecola were found to respond positively
to HHQ incubations, and a mining of representative ge-
nomes from these groups indicates they contain putative
binding partners for HHQ, suggesting these bacteria are
capable of listening in and interpreting information from
exogenous chemical signals in complex microbial commu-
nities. This study is the first to investigate how small mol-
ecule signals like alkylquinolones govern microbe-microbe
interactions in heterogeneous environments in natural

Fig. 8 A representative Pseudoalteromonas ASV showing increased
relative abundance following HHQ exposure. Normalized counts of
Pseudoalteromonas ASV_148 from replete mesocosms at time zero
(T0; black circles), and after 24 h exposure to either a solvent control
(DMSO; gray circles) or 2-heptyl-4-quinolone (HHQ; magenta circles).
Asterisks indicate significant differences in the relative abundance
after HHQ exposure compared to the DMSO control (BH-adjusted p
value < 0.1). X-axes indicate experimental time points.
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marine ecosystems and how these molecular interactions
impact their eukaryotic hosts. Given the ubiquity of Pseu-
doalteromonas and Pseudomonas spp. in the marine envir-
onment, and the pervasiveness of naturally occurring
alkylquinolones, our results suggest that there is potential
for alkylquinolone signaling to play a role in structuring
complex microbial communities. This study provides the
framework upon which to start interrogating how chemical
messages can influence both community homeostasis and
intracellular interactions.

Methods
Mesocosm setup, sampling, and HHQ addition
experiments
Samples were collected from mesocosm experiments
conducted from 13 May through 30 May 2017 at the
National Mesocosm Facility located at the Espeland
Marine Biological Station at the Raune-fjord (60o22.1′N,
5o28.1′E), University of Bergen, Norway. Twelve poly-
ethylene enclosures measuring 2 m diameter, 8 m deep,
hereafter referred to as mesocosms, were moored to a
raft approx. 200 m from shore. During assembly, ap-
proximately 20,000 L of unfiltered fjord seawater was
enclosed in each mesocosm and monitored for 17 days.
Three of the twelve mesocosms were amended on two
consecutive days with pulses of inorganic nitrogen and
phosphorus in Redfield ratio proportions in order to in-
duce a phytoplankton bloom (total additions 4 μM ni-
trate, 0.25 μM phosphate; hereafter referred to as replete
mesocosms). Mesocosms were bubbled with ambient air
for two days after nutrient additions to facilitate mixing.
Samples for nutrient analysis (N and P) were filtered
through a combusted GF/F filter and stored at − 20 oC.
Nutrients were quantified using a Lachet Quick-
Chem8500 Nutrient Analyzer Flow Injection Analysis
System at the Rutgers Nutrient Analysis Facility. On
May 15, nutrient measurements were determined to be
11.0 μM nitrate/nitrite and 1.4 μM phosphate. Meso-
cosm temperatures were monitored daily and average
fluctuations at 1 m depth ranged from 10 to 11 oC.
Water was obtained from the replete mesocosms every
two days over a 15-day period and either processed im-
mediately for determination of chlorophyll a concentra-
tion, cell enumeration, and nucleic acid acquisition, or
spiked with 410 nM (100 ng mL−1) 2-heptyl-4-quinolone
(HHQ) or solvent vehicle controls and incubated for 24
h on land-based mesocosms. The HHQ concentration
used in these experiments are based off the IC50 con-
centration for E. huxleyi reported in Harvey et al. (2016).
On every experiment day, ~ 80 L of water from 1m
depth was collected via a 5-L Niskin bottle, passed
through a 200-μm mesh filter to remove larger zoo-
plankton, pooled in large carboys, and transported im-
mediately to a 10 °C cold room for further processing.

Equal volumes were collected from the triplicate meso-
cosms. The water was then dispersed among nine, 4.7-L
polycarbonate bottles that had been acid-washed and
rinsed in 18.2 mΩ water (Millipore Milli-Q). Triplicate
bottles representing time zero controls were immediately
processed for determination of chlorophyll a concentra-
tion, cell enumeration, and nucleic acid acquisition (de-
tails below). The remaining bottles were amended in
triplicate with either 410 nM (100 ng mL−1) HHQ dis-
solved in dimethyl sulfoxide (DMSO) or an equal con-
centration (0.1% v:v) of DMSO to serve as a solvent
vehicle control. These six bottles were mixed well before
incubation for 24 h in a land-based mesocosm contain-
ing flow-through surface seawater matching in situ tem-
peratures. Window screen shading was used to replicate
light levels corresponding to a depth of 1 m in the fjord-
based mesocosms (7500 lx). The total time between
subsampling the mesocosms and incubating the bottles
was under 1 h. After a 24-h incubation, the bottles were
recovered and processed in a 10 °C cold room for
determination of chlorophyll a concentration, cell enu-
meration, and for some experiments, nucleic acid acqui-
sition as described below.

Chlorophyll a measurements
Samples to determine chlorophyll a concentration were
taken daily (for 17 days) from triplicate replete and con-
trol mesocosms at a depth of 1 m, and from HHQ and
DMSO-spiked bottles after 24 h of incubation. Water
samples (approx. 150 mL) were filtered under low vac-
uum pressure through 25-mm Whatman GF/F filters
(effective pore size 0.7 μm). Filters were immediately ex-
tracted in vials containing 6 mL of 95% ethanol for 12–
15 h in the dark at room temperature. Chlorophyll a
concentrations were determined using a Turner TD700
fluorometer as previously described [42, 43]. Ethanol
blanks were included, and samples were corrected for
pheophytin using a drop of 10% hydrochloric acid prior
to re-reading each sample.

Cell enumeration by flow cytometry
Both phytoplankton and bacterial cell concentrations
were determined daily from triplicate replete and control
mesocosms using samples collected at a depth of 1 m,
and from HHQ and DMSO-exposed communities after
24 h of incubation. Cell concentrations were determined
from 200-μL samples using a Guava Technologies easy-
Cyte BG HT flow cytometer (EMD Millipore). Samples
were diluted in sterilized seawater to ensure < 500
cells μL−1 and avoid coincidence counting. Phytoplank-
ton populations were resolved live based on their for-
ward scatter, red (695/50), and yellow (575/25) emission
parameters with 488-nm excitation. For bacteria/archaea
enumeration, 5 mL of sample was preserved using
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glutaraldehyde (final concentration 0.5%) and frozen at
− 80 °C until analysis could be conducted (less than 2
months post experiment). Bacteria/archaea populations
were resolved after staining samples with the DNA inter-
calating SYBR green I dye in the dark for at least 55 min
based on their forward scatter and green (512/18) emis-
sion parameters with 488-nm excitation. Instrument-
specific easyCheck beads were used for quality control
and all samples were run at 0.24 μL s−1 for 3 min each.
The abundance of three major phytoplankton groups
(pico-, nano-, and Synechococcus spp.) determined by
flow cytometry was converted to carbon biomass
(μg C L−1) using published conservative conversion fac-
tors: 255 fg C cell−1 for Synechococcus [44], 1500
fg C cell−1 for picoeukaryotes [45], and 2763 fg C cell−1

for nanoeukaryotes, assuming an average cell diameter
of 6 μm [46, 47].
Using both chlorophyll and cell abundance data, popu-

lation changes in growth rate due to HHQ exposure
were calculated using the exponential growth equation:
growth rate = ln (A24/A0)/T24−T0 where A is abundance
and T is time. Significant differences in growth rates of
populations exposed to HHQ relative to the DMSO con-
trol were determined using a one-way analysis of vari-
ance (ANOVA) for each experiment. Alpha was set at
p < 0.05 for all comparisons.

Plankton identification
The relative abundance of various larger plankton as-
semblages (20–200 μm) at 1 m depth was analyzed at the
start of every experiment using an automated FlowCam
(Fluid Imaging Technologies). Samples were prepared
and analyzed as previously described in [48]. In brief,
100–200mL of sample was fixed in buffered formalin
(final concentration 1% v:v) and stored at 4 °C prior to
analysis. Fixed samples were passed through a 200-μm
mesh and ~ 90 mL was analyzed on Autoimage mode
using a 300-μm flow cell and a flow rate of 2 mL min−1,
for a particle capture efficiency of 39.7%. Approximately
5000–10,000 images were captured per sample and
analyzed based on cell morphology.

Biomass collection and DNA isolation
Triplicate microbial biomass samples from the HHQ
addition experiments were taken at time zero (T0) dir-
ectly from the pooled mesocosm sample and after 24 h
(T24) exposure to either 410 nM HHQ (100 ng mL−1) or
a DMSO (0.1 % v:v) solvent vehicle control. In a 10 °C
cold room, microbial biomass was harvested by passing
between 0.8 and 2 L of sample through a 1-μm polycar-
bonate filter followed by a 0.2-μm polycarbonate filter
via serial filtration with a peristatic pump. The microbial
communities collected on these filters are referred to
throughout as particle-associated (1–200 μm fraction)

and free-living (0.2–1 μm fraction) communities. A peri-
staltic pump system fitted with silicon tubing and filter
holders were flushed with 18.2 mΩ water (Millipore
Milli-Q) between samples to prevent sample carry-over.
Each sample was filtered in less than 30min, then im-
mediately placed in cryovials, flash frozen in liquid nitro-
gen, and stored at − 80 °C until DNA isolation. DNA was
isolated from 1 μm and 0.2 μm polycarbonate filters
using an established protocol [49] with recent modifica-
tions [50], including steps to remove RNA contamin-
ation. Briefly, polycarbonate filters were thawed on ice
and placed in lysing matrix E tubes containing 400 μL of
phenol to chloroform to isoamyl alcohol (25:24:1, pH
8.0) and 400 μL of 2X TENS Buffer (100 mM Tris-HCl,
pH 8.0, 40 mM EDTA, 200 mM NaCl, 2% SDS), agitated
for 10 min using a horizontal vortex adapter, and centri-
fuged at 14,000 rpm for 6 min. The aqueous phase was
carefully transferred to Phase Lock Gel (PLG) tubes
(Quanta Bio) containing 375 μL chloroform, mixed via
gentle inversion, and centrifuged at 14,000 rpm for 6
min. The supernatant was transferred to a sterile micro-
centrifuge tube and incubated with 0.5 μL of RNase A
(100 mg/mL; Qiagen) at 37 °C for 30 min after mixing by
gentle inversion. After RNase treatment, samples were
transferred to a new PLG tube containing 300 μL of 7.5
M ammonium acetate and mixed by gentle inversion be-
fore the addition of 700 μL of chloroform and additional
mixing by inversion. These tubes were centrifuged at 14,
000 rpm for 6min, and the supernatant was transferred to
a sterile microcentrifuge tube in which DNA was recov-
ered by alcohol precipitation using 360 μL of ice-cold iso-
propanol containing 2 μL of linear acrylamide (5mg mL−1;
AMRESCO). Samples were mixed thoroughly by repeated
inversions before incubating on ice for 1 h. DNA pellets
were formed by centrifugation (14,800 rpm for 15min at
4 oC), at which point the isopropanol was removed and
the DNA pellet was washed with 500 μL of ice-cold 75%
ethanol. DNA pellets were again formed (14,800 rpm for
8min at 4 oC) before removing the ethanol by decanting
and drying the pellets in a laminar flow hood for 2–5min.
Pellets were resuspended in 40 μL of nuclease-free water,
and the total DNA yield was quantified using a NanoDrop
2000 spectrophotometer (Thermo Scientific) with yields
ranging from 0.2–4.5 μg total DNA.

Amplicon sequencing and analysis
Sequencing libraries were prepared and sequenced by
the Georgia Genomics and Bioinformatics Core at the
University of Georgia targeting the V4–V5 region of the
16S rRNA gene and the V9 region of the 18S rRNA
gene. Libraries were sequenced using the Illumina MiSeq
platform to produce 300 + 300 nt paired reads. Reads
were quality trimmed and amplicon sequence variants
(ASVs) identified using the DADA2 package (V1.9.1; (58)).
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Taxonomic assignments were made using the IDTAXA al-
gorithm [51] and the training set for the SILVA small sub-
unit rRNA database (release 132) within the DECIPHER
package (V2.9.2; [52, 53]) for 16S rRNA gene reads, and a
native implementation of the naïve Bayesian classifier
method [54] within DADA2 using the training set for the
Protist Ribosomal Reference database (PR2; V4.10.0) [55]
for 18S reads. 16S rRNA gene reads identified as chloro-
plast sequences at the order level were further classified
by BLASTn searches of the PhytoRef database down-
loaded September 2018 [56]. Diversity and community
composition analyses were performed using the phyloseq
package (V1.26.0; (69)) and differential abundances were
determined using a combination of DESeq2 (V1.22.1;
[57]) and EdgeR (V3.24.1; [58]) after comparisons using
the DAtest package (V2.7.11; [59]). In order to compre-
hensively examine how microbial community composition
was impacted by HHQ over the course of the bloom, T0

DNA samples from all experiments, and T24 DNA sam-
ples from experiments 1, 3, 5, and 7 were chosen to pre-
pare 16S and 18S rRNA gene amplicon libraries for
sequencing. Libraries targeting the V4–V5 region of the
16S rRNA gene were constructed using the following
primers: 515F (5′-GTGYCAGCMGCCGCGGTAA-3′)
and 926R (5′-CCGYCAATTYMTTTRAGTTT-3′) to ob-
tain longer amplicons, reduce biases against archaea and
the SAR11 clade, and obtain eukaryotic plastid sequences
[60, 61]. Libraries targeting the V9 region of the 18S rRNA
gene were constructed using the following primers:
Euk1391F (5′-GTACACACCGCCCGTC-3′) and EukBr
(5′-TGATCCTTCTGCAGGTTCACCTAC-3′) to target
microbial eukaryotic lineages [62, 63]. PCR amplification
was performed following the protocols and standards rec-
ommended by the Earth Microbiome Project for prepar-
ation of 16S and 18S rRNA amplicons for Illumina
sequencing ([63]); earthmicrobiome.org), and libraries
were prepared using procedures outlined in the Illumina
16S metagenomic sequencing library preparation guide
[64] using an input of 25 ng of DNA. Amplicon libraries
were multiplexed in two sets of 72 and sequenced using
the Illumina MiSeq platform to produce 300 + 300 nt
paired reads. After demultiplexing, three samples were
found to contain anomalously low information (< 300
reads each) and were removed from further analysis. Of
the remaining samples, a median total of approx. 150 K
raw paired-end reads were obtained for each sample
(range approx. 14 K—1.2 million due to variations in
library loading).

Read processing and identification of amplicon sequence
variants
Processing of amplicon reads and figure generation were
done using R (V3.5.1; https://www.R-project.org). Pre-
processing of reads and inference of amplicon sequence

variants (ASVs) was performed using the DADA2 package
(V1.9.1), providing de novo identification of high-resolution
exact sample sequences [65, 66]. After removal of primer
sequence and inspection of read quality profiles, reads were
truncated as follows to remove low-quality nucleotides
while maintaining sufficient (> 20 nt) overlap between
paired reads: 16S rRNA reads truncated at 245 nt (forward)
and 195 nt (reverse); 18S rRNA reads truncated at 200 nt
(forward) and 180 nt (reverse). Reads were filtered and phiX
contamination removed using DADA2 standard filtering
parameters. Error rates were determined using the first
billion bases of each dataset prior to dereplication and
inference of ASVs. Paired reads were then merged (ca. 99%
of reads successfully merged) and reads with unex-
pected lengths (< 1% of reads) and chimeras (ca. 2%
of reads) were identified and removed using the de-
fault DADA2 parameters.
The castor package (V1.3.4; [67]) was used to calculate

the nearest sequenced taxon distance (NSTD) for each 16S
rRNA ASV in our dataset compared to a set of 6780 16S
rRNA gene sequences derived from closed bacterial and ar-
chaeal genomes downloaded from the NCBI RefSeq data-
base described by [68] and compared to 16S rRNA gene
sequences from reference genomes used by PICRUSt [69].
Reference sequences were aligned with our ASVs using
MAFFT (V7.388), and phylogenetic trees were generated
using RAxML (V8.2.11) with default settings in the Gen-
eious software package (V10.2.2). NSTDs were averaged to
determine the nearest sequenced taxon index (NSTI) for
our study. The NSTI was found to be 23.9% and 23.8%
when compared to the NCBI RefSeq and PICRUSt data-
bases, respectively. Given these NSTI values and the fact
that we do not focus our analyses on proportional changes
of ASVs within a sample [70], we chose not to correct for
16S gene copy number to avoid introducing additional
noise and to increase the comparability of our results to
other amplicon sequencing studies based on the recom-
mendations of [71].

Core diversity and community composition analyses
Tables produced by the DADA2 pipeline were imported
into the phyloseq package (V1.26.0; [71] to evaluate core
diversity metrics and community composition. Rarefaction
curves were produced using the ggrare function with
default settings in the ranacapa package (Additional file 7:
Figure S7). Prior to diversity analysis, 16S ASVs that could
not be identified at the domain level and 18S ASVs that
could not be identified at the supergroup level were
removed. Chloroplast sequences in the 16S data further
identified through a BLASTn search of the PhytoRef data-
base were separated into a distinct phyloseq object. The
remaining 16S taxa were further processed to separate
ASVs identified as cyanobacteria at the phylum level. 18S
taxa were filtered to remove heterotrophic protists and
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material derived from fragments of larger zooplankton
(e.g., Metazoa). Each subset was pruned to remove ASVs
that were no longer present. Taxa remaining in each sub-
set were grouped at the order (16S) or division (18S) level,
and the relative abundance of the top four (chloroplast
reads) or five (all other subsets) groups (approx. 75–99%
of the total identifiable community) was compared using
the plot_bar function in phyloseq.
Tukey box plots displaying the Shannon alpha-

diversity index were produced using the plot_richness
function (Additional file 2: Figure S2c, d and Additional
file 8: Figure S8). Singletons were removed from each
subset and read counts were transformed to be propor-
tional prior to ordination by non-metric multidimen-
sional scaling using the Bray-Curtis distance metric.
Ordinations were also constructed by principal coordin-
ate analysis based on weighted UniFrac distances after
aligning ASVs using the DECIPHER package (V2.9.2)
and construction of phylogenetic trees using the phan-
gorn package with default settings (V2.4.0; [72]). Signifi-
cance testing of ordinations by PERMANOVA analysis
was conducted with 999 permutations using the vegan
package (V2.5.2; [73]).

Differential relative abundance determination
Given the large number of methods currently available to
determine differential relative abundance in amplicon se-
quence data and debates regarding their utility [74–77], we
employed the DAtest package (V2.7.11; [59]) to identify
which methods are most appropriate for our specific data-
set. Samples were pre-processed to group low abundance
ASVs (< 3 reads in < 3 samples) into a single aggregate fea-
ture using the preDA function. The testDA function was
then run over a range of effect sizes to compare each
method’s ability to identify differentially abundant ASVs
(seed set to 123). Of the 25 methods tested, DESeq2
(V1.22.1; [57]) and EdgeR (V3.24.1; [58]) with relative log
expression normalization consistently produced the high-
est values for the area under the receiver operating charac-
teristic curves and spike detection rates and the lowest
false positive and false discovery rates, particularly at
higher effect sizes. Relative abundance differences between
ASVs exposed to HHQ or a DMSO solvent control for 24
h were then calculated for all methods using the allDA
function and ASVs identified as significant (BH-adjusted p
value < 0.1, corresponding to ≤ 0.94 expected false posi-
tives) were compared among methods using the vennDA
function. DESeq2 and EdgeR with relative log expression
normalization were consistently the most conservative
methods (i.e., identified the lowest number of significantly
different ASVs), and we chose to focus our analyses on
ASVs that exhibited significant changes in relative abun-
dance according to both methods.
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PRJNA513038 (http://www.ncbi.nlm.nih.gov/bioproject/513038).
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