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Abstract

Let A ⊆ [n] × [n] be a set of pairs containing the diagonal D = {(i, i) | i =
1, . . . , n}, and such that a ≤ b for all (a, b) ∈ A. We study formulae for the
generating series FA(x) =

∑
w xw where the sum is over all words w ∈ [n]∗ that

avoid A, i.e., (wi, wi+1) 6∈ A for i = 1, . . . , |w| − 1. This series is a rational function,
with denominator of the form 1−∑T µA(T )xT , where the sum is over all nonempty
subsets T of [n]. Our principal focus is the case where the relation A is µ-positive,
i.e., µA(T ) ≥ 0 for all T ⊆ [n], in which case the form of the generating function
suggests a cancellation-free combinatorial encoding of words avoiding A. We supply
such an interpretation for several classes of examples, including the interesting class
of cycle-free (or crown-free) posets.

1 Introduction

Let X be a finite set, and let A ⊆ X×X be a relation on X. We consider the set L(A)
of words whose letters are elements of X, and whose adjacent letters avoid the pairs in
A. In other words, if w = w1w2 · · ·wm, then w ∈ L(A) if and only if (wi, wi+1) 6∈ A
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for i = 1, . . . , m − 1. In this paper we will consider the problem of enumerating words
in L(A) in the special case when A is a reflexive and acyclic relation on X. A typical
example is the following: let X = {1, 2, 3} and A = {(1, 1), (2, 2), (3, 3), (1, 3)} so that
L(A) is the set of words in {1, 2, 3} avoiding repeated letters and also avoiding the pair
(1, 3). If w = w1w2 · · ·wm is a word in L(A), let xw denote the monomial xw1xw2 . . . xwm

where the xi are commuting indeterminates. Then

FA(x1, x2, x3) =
∑

w∈L(A)

xw =
(1 + x1)(1 + x2)(1 + x3)

1− x1x2 − x2x3 − x1x2x3
(1)

and

FA(t, t, t) =
(1 + t)3

1− 2t2 − t3
=

(1 + t)2

1− t− t2
(2)

It follows from (2) that, for this particular relation A, the number f(k) of words in L(A)
of length k is a Fibonacci number.

For any relation A, we will call the series FA(x1, x2, . . .) defined as in (1) the pair-
avoiding series for A. Our intent is not to add to the huge literature devoted to techniques
for enumerating words avoiding various patterns (e.g., [4],[9], [11], [12]). Rather, we are
interested in the combinatorics suggested by the form of equations such as (1) and (2). In
particular, when the geometric series in (1) is expanded, the resulting series has positive
terms. We will identify several large classes of examples for which this phenomenon
occurs. Our goal will be to give combinatorial interpretations of all relevant coefficients
and bijective correspondences, wherever formulas such as (1) suggest that these exist.

If A is a reflexive, acyclic relation on X, and |X| = n, we may label the elements of X
with the elements of [n] = {1, 2, . . . , n} so that (a, b) ∈ A implies a ≤ b. Such a relation
A ⊆ [n]× [n] will be called monotone. In Section 2 we prove that for monotone relations
A,

FA(x) =

∏n
i=1(1 + xi)

1−∑T⊆[n]
T 6=∅

µA(T )xT
(3)

where µA(T ) ∈ Z, and xT =
∏

w∈T xw. It is natural to consider the case when µ(T ) ≥ 0
for all T ⊆ [n], and we will say that a relation A is µ-positive if it has this property. For
such relations, we have a positive expansion

FA(x) =
∑

T0,T1,T2,...

xT0
∏
i

µA(Ti) xTi . (4)

where the sum is over all finite sequences of subsets of [n] with Ti 6= ∅ for i > 1. The
form of (4) suggests that for µ-positive A the nonnegative integer µA(T ) should have a
direct combinatorial meaning, and that there should exist an encoding of words in L(A)
by sequences of sets with positive weights determined by the values of µA. We will solve
this problem for two large classes of µ-positive monotone relations on [n], namely the
following.

V -free relations. These are defined by the condition

xAy and xAz imply yAz or zAy. (5)
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This class includes all examples whose incidence matrices are column-convex, i.e. xAz
implies yAz for all y such that x < y < z. For V -free relations A, µA(T ), it turns out
that µA(T ) can be interpreted as the number of winning positions (minus 1) in a simple
combinatorial game associated with A. An analogous theory exists for monotone relations
that are Λ-free, where this is defined by a condition dual to (5).

Cycle-free (=crown-free) posets. These are posets P with a natural labeling whose
underlying comparability graph contains no chordless cycles of length > 3. Equivalently,
P contains no induced subposet order-isomorphic to a crown (see section 4 for precise
definitions). We will show that, for any poset (cycle-free or not), µA(T ) is equal to the
value of the Möbius function µA(0̂, 1̂), computed in the poset obtained by adding a 0̂ and
1̂ to T . We show, further, that a poset P is µ-positive if and only if it is cycle-free, and
in this case, µA(T ) is equal to the number of connected components of T minus 1.

For both of the above examples, we will give complete encoding and decoding algo-
rithms corresponding to the positive expansion formula (4).

This paper is organized as follows. Section 2 reviews some enumerative techniques
needed to derive formula (3) for arbitrary monotone relations A. In Section 3 we present
a basic paradigm for encoding and decoding of words, in the spirit of (4), and in Section 4
we prove that these algorithms are valid in their simplest form if and only the relation A is
V -free. Section 5 develops some general theory relevant to the poset case, and proves that
posets are µ-positive if and only if they are cycle-free. Section 6 shows how to adapt the
algorithms in Section 3 to the cycle-free poset case. Section 7 explores several interesting
special cases in more detail, and Section 8 discusses analogues of our main results for
rearrangements of a multiset.

2 The pair-avoiding series for monotone relations

We begin by developing some general techniques for computing the pair-avoiding series
FA(x). We will rely on a simple determinant formula from [11] (Chapter 4) which is
well-suited to our problem. This material is well known, but we have included a complete
derivation to make our treatment self-contained.

Theorem 2.1 Let A ⊆ [n]× [n] be an arbitrary relation. Let A = [n]× [n] −A denote
the relation complementary to A. Then

FA(x) =
det (I + XA)

det (I −XĀ)
, (6)

where A and Ā denote the n × n incidence matrices of A and A, respectively, and X =
diag(x1, . . . , xn).

Proof. Let J denote the n× n matrix all of whose entries equal 1, so that Ā = J − A.
The (i, j)-entry of (XĀ)k−1X gives the contribution to FA(x) from words of length k that
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begin with i and end with j, so

FA(x) = 1 +
n∑

i,j=1

∑
k≥1

[(XĀ)k−1X]ij

= 1 +
n∑

i,j=1

[(I −XĀ)−1X]ij

= 1 + trace (I −XĀ)−1XJ (7)

since for all n× n matrices K,

n∑
i,j=1

[K]ij = trace KJ.

Now
det (I + M) = 1 + trace M

for any matrix M with rank(M) = 1, so, from (7),

FA(x) = det (I + (I −XĀ)−1XJ)

=
det (I + XA)

det (I −XĀ)
(8)

as claimed.

Theorem 2.1 is a special case of a more general result in [11] (Section 2.8), which uses
inclusion-exclusion to give the generating series for words avoiding an arbitrary collection
of subwords, not restricted, as in this paper, to words of length 2. Note also that, if
the numerator of (6) is replaced by 1, one obtains the generating function appearing in
MacMahon’s “Master Theorem” ([20]; see also [5]) which enumerates restricted permuta-
tions (also called rearrangements) of a multiset. This is not a coincidence; indeed, there
is a precise connection between our results and the general theory of multiset rearrange-
ments, and we will explain this connection in Section 8.

As a corollary of Theorem 2.1 we obtain a useful reciprocity theorem for pair-avoiding
series, due independently to Gessel [9] and Carlitz, Scoville, and Vaughan [4].

Corollary 2.2 Let A ⊆ [n]× [n] be an arbitrary relation. Then

FA(x) =
1

FA(−x)

Theorem 2.1 gives our main formula (3) as an immediate corollary, and also yields
several different explicit expressions for µA(T ), as we show next. Let M [T, T ] denote
the principal submatrix obtained by restricting the matrix M to the rows and columns
determined by T ⊆ [n].
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Corollary 2.3 If A is a monotone relation on [n] then

FA(x) =

∏n
i=1(1 + xi)

1−∑T⊆[n]
T 6=∅

µA(T )xT
(9)

where µA(T ) ∈ Z for all T ⊆ [n], T 6= ∅. Moreover,

µA(T ) = − det (A− J)[T, T ] =
∑
S⊆T

S∈L(A0)

(−1)|S|−1 (10)

where A0 = A− D. Here, D denotes the diagonal relation on [n], and we identify a set
S with the word obtained by writing its elements in increasing order.

Proof. From (6) we have

FA(x) =
det (I + XA)

det (I + X(A− J))

=
det (I + XA)∑

T⊆[n] det (X(A− J)[T, T ])

=
det (I + XA)∑

T⊆[n] x
T det (A− J)[T, T ]

.

But A is upper unitriangular, so

det (I + XA) =
n∏

i=1

(1 + xi),

and expression (9) follows, with the determinantal form of (10).
For the second part of (10), note that the elements of L(A0) can be constructed

uniquely by applying the following combinatorial construction to the elements of L(A):
for each word w ∈ L(A), replace every symbol a by an arbitrary nonempty string of a’s,
in all possible ways. This gives us immediately the equation

FA0(x) = FA(
x1

1− x1

, . . . ,
xn

1− xn

),

and so replacement of xi by xi

1+xi
, i = 1, . . . , n gives

FA(x) = FA0(
x1

1 + x1
, . . . ,

xn

1 + xn
). (11)

Now, if A0 denotes the complement of A0 then all elements of L(A0) are strictly increasing
words. We will identify such words S with the underlying set of symbols, and write i ∈ S
to indicate that the symbol i appears in the increasing word S. Then directly from the
definition of the series F we get

FA0
(x) =

∑
S∈L(A0)

∏
i∈S

xi.
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Applying Corollary 2.2 to this last expression, substituting in (11) and multiplying in the
numerator and denominator by

∏n
i=1(1 + xi) yields

FA(x) =

∏n
i=1(1 + xi)∑

S∈L(A0)

∏
i∈S(−xi)

∏
i6∈S(1 + xi)

. (12)

The constant term in the denominator is 1, arising from the empty word. This gives a
second proof of expression (9), with the alternating sum form for (10).

Example 2.4 Let n = 3 and A = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}. Then

A =

 1 1 0
0 1 1
0 0 1


and so

FA(x) =

∣∣∣∣∣∣∣
1 + x1 x1 0

0 1 + x2 x2

0 0 1 + x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 −x1

−x2 1 0
−x3 −x3 1

∣∣∣∣∣∣∣
=

(1 + x1)(1 + x2)(1 + x3)

1− x1x3 − x1x2x3

.

Example 2.5 Let n = 4 and let A be the monotone relation defined by the incidence
matrix

A =


1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1


then

FA(x) =
(1 + x1)(1 + x2)(1 + x3)(1 + x4)

1− x1x2 − x3x4 + x1x2x3x4
, (13)

In this example we have µA({1, 2, 3, 4}) = −1, showing that, in general, the integer
coefficient µA(T ) appearing in (9) can assume both positive and negative values.

The presence of negative coefficients in (13) may be expected, since the combinatorial
components of (9) and (10) involve cancellation in a variety of ways. It is thus surprising
to discover the phenomenon of µ-positivity in several large families of relations. We devote
the remainder of this paper to studying the combinatorial significance of µA is these cases.
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3 A simple decoding model

Suppose that A is a µ-positive monotone relation. Following (4), we seek a bijection
between words w ∈ L(A) and certain sequences

(T0, (T1, x1), (T2, x2), . . . , (Tk, xk)) (14)

where the Ti are subsets of [n] (with Ti 6= ∅, i > 0) and xi represents a “marking” of Ti for
i = 1, . . . , k. Here T0 denotes an arbitrary (possibly empty) subset. It should be noted
that the symbols xi appearing in (14) are distinct from (and have nothing to do with) the
indeterminates xi appearing in, e.g., (13). This bijection should be weight-preserving, in
the sense that it preserves the underlying multisets of letters. In order for such a bijection
to exist, the number of possible markings of Ti must equal µA(Ti) for each i, by (4). We
refer to (14) as a coding sequence for w, and the individual terms (Ti, xi) as codons.

If µA(T ) ≤ |T | for all T ⊆ [n], then one potential marking scheme for T consists
of choosing elements x from a special set M(T ) ⊆ T of “markable” elements, where
|M(T )| = µA(T ) for each T . Assuming that all codons have this form, let us consider the
following simple algorithm for decoding sequences (T0, (T1, x1), (T2, x2), . . . , (Tk, xk)) into
words w ∈ L(A):

Algorithm A (Basic Decoding Algorithm):

(1) Initially let w = [T0]↓. (Here [T ]↓ denotes the string obtained from T by writing its
elements in decreasing order.)

(2) If w has been defined, adjoin (T, x) to w by the rule

w(T, x) 7−→
{

wx[T − x]↓ if the result is in L(A)
w[T ]↓ otherwise

(3) Repeat (2) with (T1, x1), (T2, x2), . . . , (Tk, xk), until all codons have been adjoined.

In order for Algorithm A to work (i.e. to be well defined and give a bijection) certain
conditions on both the relation A and the sets M(T ) must be satisfied. The precise
requirements are contained in the following theorem.

Theorem 3.1 Suppose that A is a µ-positive monotone relation on [n], and that for each
nonempty subset T ⊆ [n] a subset M(T ) ⊆ T has been assigned, such that |M(T )| = µ(T )
for all T . Suppose further that Algorithm A defines a weight-preserving bijection between
words w ∈ L(A) and coding strings (T0, (T1, x1), (T2, x2), . . . , (Tk, xk)). Then

(1) A is V -free, and

(2) For each T , M(T ) = W (T )− {max(T )}, where W (T ) is the set of winning positions
in the combinatorial game NIMA(T ), whose rules are given below.

Conversely, if A and M(T ), T ⊆ [n] satisfy conditions (1) and (2), then A is µ-positive
and Algorithm A is bijective.
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Definition of the game NIMA(T ): A chip or stone is placed on an element of T , and
two players take turns moving it. Legal moves from element i ∈ T are to any j ∈ T for
which i 6= j and iAj. A player loses if no legal moves are possible. A winning position is
one from which an eventual win can be forced by the player who moves to it.

Informally, k is winning if there are no legal responses in T , or if every legal response
is losing. This rule suffices to define unique sets of winning and losing positions for any
finite acyclic directed graph. For example, these sets can be defined iteratively as follows:
the sinks are winning, and predecessors of sinks are losing; remove these vertices and all
incident edges and repeat, until no vertices remain. This type of game has been studied,
for example, in Chapter 14 of [2], where the set of winning positions in a graph G is called
the kernel of G.

The proof of Theorem 3.1 is contained in the next section, along with some other lem-
mas and remarks about V -free relations. We conclude this section with several examples
to illustrate the algorithm.

Example 3.2 For the Fibonacci example in Section 1, we have W ({123}) = {23},
W ({12}) = {12}, and W ({23}) = {23}, so that M({123}) = {2}, M({12}) = {1}, and
M({23}) = {2}. Furthermore, M(T ) = ∅ for all other nonempty T ⊆ {123}. Hence the
valid codons (T, x) are (321, 2), (21, 1), and (32, 2). Here, and in subsequent examples, we
are denoting codons (T, x) by ([T ]↓, x), i.e., with the elements of T written in decreasing
order. As an exercise, the reader may check that, Algorithm A gives the decoding

(31)(32, 2)(321, 2)(21, 1)(321, 1) 7−→ 312323121231

Example 3.3 Let A = D, the diagonal relation on [n]× [n]. Then L(A) is the set of all
words without repeated letters, sometimes called Smirnov words (after [23]; see also [11],
p. 68). Then, for any T 6= ∅, all positions are winning and we have M(T ) = T−{max(T )}.
For each nonempty T there are |T |−1 codons (T, x). The reader may check that Algorithm
A gives the decoding

(31)(32, 2)(321, 1)(21, 1)(321, 1) 7−→ 312313212132

We note that, for this example, Algorithm A can be simplified to the rule: decode w(T, x)
as wx[T −x]↓ unless the last letter of w equals x, and in that case decode it as w[T ]↓. We
also note that, in this example, formula (9) becomes

FD(x) =

∑n
i=0 ei(x)

1−∑n
i=2(i− 1)ei(x)

, (15)

where ei(x) is the i-th elementary symmetric function of x. This generating function
appears in [25], where it arises as the coloring polynomial of a path. It is also interesting
to note that if the numerator in (15) is replaced by 1, one gets MacMahon’s generating
function for derangements of a multiset [20, Chapter 3]. See Section 8 for an explanation
of the relationship between our formula and MacMahon’s.
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Example 3.4 Let A = D ∪ {(i, i + 1) | 1 ≤ i ≤ n− 1}. Suppose T consists of k “blocks”
of consecutive elements, with adjacent blocks separated by at least 2. For example,
the decreasing word 9876321 consists of 2 blocks, namely 9876 and 321. The markable
elements of T are the 3rd, 5th,. . . largest elements in the block containing the largest
elements, and the 1st, 3rd, 5th,. . . largest elements in the other blocks. For example, the
markable elements of 9876321 are 7,3,1. Thus if the blocks of T have lengths b1, . . . , bk

then

|M(T )| = −1 +
k∑

i=1

⌈
bi

2

⌉
,

where d e is the ceiling function. The reader may verify that Algorithm A gives the
decoding

(2)(321, 1)(5431, 3)(6532, 3)(7631, 3) 7−→ 2132543136527631

Example 3.5 Let A be the column-convex relation defined by the incidence matrix

A =



1 0 0 0 1 0
0 1 0 1 1 0
0 0 1 1 1 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1


,

The reader may check that Algorithm A gives the decoding

(32)(641, 4)(431, 1)(65432, 4) 7−→ 3264143146532

4 Proof of Theorem 3.1

We will first prove the necessity of conditions (1) and (2), assuming that a marking
scheme M(T ), T ⊆ [n] has been specified, and Algorithm A is well-defined and bijective.
Our objective is to show that A is V -free, and that, for each nonempty T , M(T ) =
W (T )− {max(T )}. This part of the proof will proceed by a series of short lemmas.

Lemma 4.1 If m = max(T ), then m 6∈M(T ), i.e., m cannot be marked.

Proof. Otherwise, the coding sequence (m)(T, m) has no valid decoding, since neither
mm[T −m]↓ nor m[T ]↓ are valid words in L(A).

Lemma 4.2 If xAy, with x, y ∈ T , then x and y are not both in M(T ).

Proof. Otherwise we have (x)(T, x) 7→ x[T ]↓ and (x)(T, y) 7→ x[T ]↓, and Algorithm A is
not injective.
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Lemma 4.3 If x 6= m is an element with no successors in T , then x ∈ M(T ). More
generally, if x 6= m is an element whose only successors in T are not markable, then
x ∈M(T ).

Proof. Otherwise the word x[T − x]↓ ∈ L(A) cannot be obtained from Algorithm A,
and Algorithm A is not surjective.

The preceding lemmas show that x 6= m is markable if and only if none of its successors
are markable, which proves that M(T ) = W (T )−{max(T )}, as desired. The next lemma
shows that A must be V -free.

Lemma 4.4 If xAy, xAz, and y < z, then yAz.

Proof. Otherwise the coding sequence (x)(zy, y) has no proper decoding, and Algorithm
A is not well defined.

This completes the first part of the proof of Theorem 3.1. To complete the proof,
we must show that conditions (1) and (2) imply that A is µ-positive, and Algorithm A
is both injective and surjective. Although it is not difficult to prove each of these last
two statements independently, we will prove only that Algorithm A is surjective (which
is somewhat easier), and then complete the proof by a counting argument. The following
lemma will be helpful.

Lemma 4.5 If A is V -free and z ∈ T , then there is a unique element z∗ ∈ W (T ) such
that zAz∗. Equivalently, if a position z in NIMA(T ) is not winning, then there is a
unique winning response to it.

Proof. If z 6∈ W (T ), there must be some winning response y ∈ W (T ), with zAy. If
there were another such response, say y′, then the V -free condition implies either yAy′ or
y′Ay, implying that either y 6∈W (T ) or y′ 6∈W (T ). This is a contradiction.

Lemma 4.6 If conditions (1) and (2) of Theorem 3.1 hold, then Algorithm A is surjec-
tive.

Proof. Suppose that w ∈ L(A). If the letters of w are decreasing, then clearly w is
the image of (w). Otherwise, there is a unique factorization w = w0 z u where u is a
decreasing subword preceded by the letter z, which is an ascent. Let U denote the set of
letters in u, and let T = U ∪ {z}. Let z∗ be the unique element in T specified by Lemma
4.5. Then the following rule shows how to obtain w by adjoining a codon to a shorter
word in L(A).

• If z = z∗ ∈W (T ) and z∗ 6∈ U , then w0(T, z∗) 7→ w.

• Otherwise, w0z(U, z∗) 7→ w.

A straightforward induction argument now shows that Algorithm A is surjective, and the
proof is complete.

The next lemma enables us to compute the number of valid coding sequences of a
given length, and thus verify that Algorithm A is injective.
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Lemma 4.7 If A is V -free, then A is µ-positive, and

µA(T ) = |WA(T )| − 1

for all T ⊆ [n].

Proof. For T ⊆ [n] and a ∈ T , let

c(a, T ) =
∑

S⊆T, min(S)=a

S∈L(A0)

(−1)|S|−1. (16)

Then by the alternating sum in (10), we have

µA(T ) = −1 +
∑
a∈T

c(a, T ). (17)

Further, it is an easy consequence of (16) that

c(a, T ) = 1 −
∑
aAb

b6=a, b∈T

c(b, T ), (18)

Clearly, c(m, T ) = 1 for m = max(T ), and it is easy to show by induction, using (18) and
Lemma 4.5, that

c(a, T ) =

{
1 if a ∈ WA(T )
0 if a 6∈ WA(T )

The lemma now follow immediately.

Corollary 4.8 For all L ≥ 0, the number of words w ∈ L(A) of length L equals the
number of coding sequences (T0, (T1, x1), . . . , (Tk, xk)) with

∑
i=0,k |Ti| = L.

Proof. This follows from Lemma 4.7 and (4).

Combining Lemma 4.6 and Corollary 4.8, we obtain that Algorithm A is bijective, and
this completes the proof of Theorem 3.1.

Note that there is another decoding algorithm that is equally simple as Algorithm A –
we could form the words in step (2) of the algorithm by adding [T−x]↓x or [T ]↓ on the left
of w. In this case, we obtain a result similar to Theorem 3.1, where the V -freeness of A is
replaced by Λ-freeness, and sources play the role of sinks in the definition of NIMA(T ).

Finally, we note that the proof of Lemma 4.6 contains an encoding algorithm which
inverts Algorithm A under the assumption that A is V-free. We state it separately, as
follows:

Algorithm B (Basic Encoding Algorithm): Assume that A is V-free and w ∈ L(A).

(1) If w decreasing, output ([w]↓) and terminate; otherwise write w = w0zu where z is an
ascent and u is decreasing. Denote the set of letters in u by U .

(2) If z 6∈ U , delete zu from w and output (U ∪ {z}, z) if this is a valid codon; otherwise
delete u from w and output (U, z∗).

(3) Repeat the process, scanning w and building a coding sequence from right to left, until
w is empty.
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5 Transitive relations (posets)

In this section we consider the case when A is both monotone and transitive, i.e. it defines
a poset, with the integers {1, . . . , n} forming a natural labelling. For a poset P , let µ(P )
denote µP̂ (0̂, 1̂), where P̂ is the poset obtained from P by adjoining a 0̂ and 1̂, and µP̂

denotes the Möbius function of P̂ (see [24] for definitions and basic properties of Möbius
functions). We begin by observing that the coefficient µA(T ) appearing in (9) can be
interpreted as a Möbius function.

Lemma 5.1 Suppose that A ⊆ [n] × [n] is a transitive monotone relation. Then for all
T ⊆ [n],

µA(T ) = µ(T̂ ) (19)

Here we regard T as a subposet of [n], obtained by restriction of the relation A.

Proof. This follows directly from the alternating sum in (10) and the well-known formula
computing µ as an alternating sum over chains (see, for example, [24], Proposition 3.4.5).
Note that each S ∈ L(A0) in the alternating sum in (10) corresponds to a chain in the
poset corresponding to T .

In view of (19), we can identify transitive µA-positive monotone relations by deter-
mining for which posets P it is true that µ(Q) ≥ 0 for all nonempty induced subposets
Q ⊆ P . A poset P with this property will be called µ-positive. We will show that such
posets can be completely characterized. First a technical definition: call P cycle-free if
its underlying comparability graph is a chordal or triangulated graph, i.e., it contains no
chordless cycles of length greater than three. Equivalently, a poset is cycle-free if it has
no induced subposets of the form
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y3

···

···

xn

yn

with n ≥ 2. The excluded posets are called crowns. Cycle-free posets have been studied
by several authors, e.g., [16], [18], and [26], Chapter 5; see also [10] for a general exposition
of triangulated graphs.

Theorem 5.2 A poset P is µ-positive if and only if it is cycle-free.

Proof. The condition is clearly necessary, since adjoining a 0̂ and 1̂ to a crown gives a
poset with µ(0̂, 1̂) = −1. Suppose, on the other hand, that P contains no crowns, and
that Q is µ-positive for all proper subposets Q ⊆ P . We will show that µP̂ (0̂, 1̂) ≥ 0.

Consider first the case where P contains a chain of length greater than two. Then
there is an element x ∈ P such that the intervals [0̂, x] and [x, 1̂] each have more than two
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elements. These intervals are both of the form Q̂ for nonempty proper subsets Q ⊆ P .
Hence we have µP̂ (0̂, x) ≥ 0 and µP̂ (x, 1̂) ≥ 0. A simple but useful identity (due originally

to Baclawski; see also [24], Lemma 3.14.3) states that for any poset P̂ with a 0̂ and 1̂,
and any x ∈ P̂ − {0̂, 1̂},

µP̂ (0̂, 1̂) = µP̂−x(0̂, 1̂) + µP̂ (0̂, x)µP̂ (x, 1̂) (20)

Since µP̂−x(0̂, 1̂) ≥ 0 by assumption, the result follows in this case.
Next suppose that every chain in P has length at most two, i.e. the Hasse diagram of

P is a bipartite graph. By assumption, this graph is also a forest. If P consists entirely
of isolated points, the result is trivial. Otherwise the bipartite graph has an “endpoint”
x, which we may assume to be a maximal element. Now µP̂ (0̂, x) = 0, so using (20) again
we have

µP̂ (0̂, 1̂) = µP̂−x(0̂, 1̂) + µP̂ (0̂, x)µP̂ (x, 1̂) = µP̂−x(0̂, 1̂) ≥ 0

and the proof is complete.
It is worthwhile to have a good constructive characterization of cycle-free posets. For

this we need some more machinery.

Definition 5.3 Let P be a cycle-free poset. Denote by Top(P ) the set of x ∈ P such that
the elements above x in P are linearly ordered. Similarly, let Bot(P ) denote the set of
x ∈ P such that the elements below x are linearly ordered.

Lemma 5.4 If P is a cycle-free poset, then

Top(P ) ∪ Bot(P ) = P

Proof. If an element x lies above two incomparable elements and below two others, those
four elements form a chordless 4-cycle.

Lemma 5.5 If P is a cycle-free poset, then

Top(P ) ∩ Bot(P ) 6= ∅

In other words, there exists an element x ∈ P such that the set of all y comparable to x
forms a chain.

Proof. An old result, due independently to Dirac (1961) and also Lekkerkerker and
Boland (1962), states that any triangulated graph contains a simplicial vertex, i.e, a
vertex whose neighbors form a clique. (See [10] for a proof.) Our lemma simply restates
this result in the language of partially ordered sets.

Corollary 5.6 Let P be a cycle-free poset. Then P may be constructed by successively
adjoining a sequence of elements x1, x2, . . . , x|P | such that for each i, the set of elements
comparable to xi in {x1, x2, . . . , xi} forms a chain.
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Corollary 5.6 translates into a constructive (recursive) algorithm, as follows. To obtain
a cycle-free poset of size n + 1, start with a cycle-free poset P of size n, and then either

• pick an element y ∈ Bot(P ) and add an element x covering y,

• pick an element z ∈ Top(P ), and add an element x covered by z,

• pick elements y ∈ Bot(P ) and z ∈ Top(P ) with y < z, and add an element x
covering y and covered by z,

• add a single isolated element x.

The following diagram illustrates a cycle-free poset. The reader may wish to verify
that it can be constructed by the algorithm just described.
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In the algorithm presented above, one can enlarge the class of allowable operations some-
what, for example:

• add an element x which is a new top (or bottom) to P .

This operation preserves the cycle-free property, but the element added is not neces-
sarily simplicial.

The above results show that cycle-free posets are dismantlable in the sense of [15].
This means that one can reduce P to the empty poset by removing a succession of doubly
irreducible elements. (An element of a poset P is doubly irreducible if it covers and is
covered by at most one element of P .) However, the existence of a reduction via simplicial
elements (as above) is a special property of cycle-free posets: every simplicial element is
doubly irreducible, but not conversely. It is easy to construct examples of dismantlable
posets that are not cycle-free.

The class of cycle-free posets includes a large number of familiar families whose Hasse
diagrams are “cycle-free” in the usual graph-theoretic sense, for example: top-rooted
forests, bottom-rooted forests, bipartite forests. However, the two conditions are not
equivalent: for example, the following poset has no cycles in its Hasse diagram, but is not
cycle-free.
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The next lemma gives a combinatorial interpretation for µ(Q) when Q ⊆ P and P is
µ-positive.

Lemma 5.7 Suppose that P is µ-positive (or, equivalently, cycle-free). Then

µ(Q) = (number of connected components of Q)− 1,

for all subsets Q ⊆ P .

Proof. We prove this for Q = P by computing µP̂ (0̂, 1̂) recursively, from bottom to top,
using the rule

µ(0̂, x) = −
∑
y<x

µ(0̂, y)

In this computation, if x ∈ Bot(P ) but x is not a root, i.e., a minimal element of P , then
the value of µ(0̂, x) is zero. Hence such elements may be deleted from P without changing
µP̂ (0̂, 1̂). Similarly the non-root elements of Top(P ) may be deleted, and hence we may
assume that P is bipartite. Since there are no cycles, there is at least one endpoint x ∈ P ,
i.e., an element x related to exactly one other y ∈ P . Such may also be deleted without
changing µP̂ (0̂, 1̂). This process may be repeated until P consists entirely of isolated
points, and in this case the result is immediate.

6 Encoding/decoding for cycle-free posets

If P is a top-rooted forest, then P is V -free, and hence the methods of Section 3 apply
directly, giving an encoding algorithm for this case. For more general cycle-free posets,
the situation is more complicated and requires some more machinery.

Definition 6.1 (Height of an element.) Suppose that a poset P is cycle-free, with a
natural labelling λ : P → [n]. If T is a subset of P and a ∈ P , let T [a] denote the path
component of a in the comparability graph of T ∪ {a}. Define

h(a, T ) = max{λ(z) | z ∈ T [a]}.

Further, let
h(T ) = max{λ(z) | z ∈ T}.

Lemma 5.7 suggests a marking rule in which

M(T ) = {x ∈ T | λ(x) = h(x, T ) < h(T )}.

In other words, M(T ) consists of the maximum-labeled elements in each of the path
components of T in the comparability graph of P , excluding the element whose label
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equals h(T ). This rule gives the correct number of codons and coding sequences. However,
Algorithm A is generally neither injective nor surjective in this case, and a rather subtle
modification is required to make it work. To explain the details precisely, we need two
more definitions.

Definition 6.2 (Relative height.) If T is a subset of P , define T/b = {x ∈ T | x 6≤P b}.
Then h(a, T/b) is called the height of a relative to (T, b).

Definition 6.3 (Stability.) If a and b are elements of P , and T is a subset of P , then a
is stable relative to (T, b) if h(a, T/b) ≤ h(b, T/a).

The last definition is somewhat tricky, so we will give several examples to illustrate it.

Example 6.4 Consider the poset

u u u
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4 5 6

1

Then:

• h(1, {6, 5, 4}/4) = 6 and h(4, {6, 5, 4}/1) = 4, so 1 is unstable relative to
({6, 5, 4}, 4).

• h(2, {6, 5, 4, 1}/4) = 5 and h(4, {6, 5, 4, 1}/2) = 4, so 2 is unstable relative to
({6, 5, 4, 1}, 4).

• h(1, {6, 5, 4}/5) = 6 and h(5, {6, 5, 4}/1) = 5, so 1 is unstable relative to
({6, 5, 4}, 5).

• h(2, {6, 5, 4, 1}/5) = 4 and h(5, {6, 5, 4, 1}/2) = 5, so 2 is stable relative to
({6, 5, 4, 1}, 5).

The modified decoding algorithm can now be described. As before, given a coding se-
quence

(T0, (T1, x1), (T2, x2), . . . , (Tk, xk)),

our object is to produce a word w ∈ L(A) having the same weight.

Algorithm C (Decoding for Cycle-Free Posets):

(1) Initially let w = [T0]↓.

(2) If w has been defined, adjoin codon (T, x) to w as follows:
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• Preparation step: if w is nonempty, let z denote the last element of w, and
suppose that z <P x. If z is unstable relative to (T, x), then insert z in T and
delete it from w. Repeat this step until z 6<P x, w is empty, or z is stable.

• Then apply the rule

w(T, x) 7−→
{

wx[T − x]↓ if z 6<P x or w is empty
w[T ]↓ otherwise

(3) Repeat step (2) with (T1, x1), (T2, x2), . . . , (Tk, xk), until all codons have been adjoined.

Example 6.5 Using the data in Example 6.4 as a guide, the reader may check that for
the poset P in that example, Algorithm C gives the following decodings:

(21)(654, 4) 7−→ 46521

(21)(654, 5) 7−→ 26541

We can now state the principal theorem of this section.

Theorem 6.6 If P is a cycle-free poset with a natural labeling, then Algorithm C gives a
weight-preserving bijection between coding sequences (T0, (T1, x1), . . . , (Tk, xk)) and words
in L(A).

Proof. We must prove that the algorithm is well defined, and also that it is bijective.
To prove the former, it suffices to prove that step (2) always produces a valid word in
L(A). In case z 6<P x or w is empty, the algorithm produces wx[T − x]↓, which is a
valid word, since if t+ denotes the maximum-labelled element of T , nothing larger than
t+ is ever added to T . In the alternative case, z <P x, z is stable with respect to (T, x),
and the algorithm produces w[T ]↓, which is a valid word unless z <P t+. But z <P t+

is impossible, since then we would have t+ = h(z, T/x) ≤ h(x, T/z) ≤ t+, which implies
that there exists a chordless path1 from x to t+ that does not contain z. Combining
this path with the path t+ → z → x yields a cycle which either is chordless or contains
a chordless cycle of length greater than three, contradicting the cycle-free hypothesis.
Hence the algorithm produces valid words in all cases.

Using Lemma 5.7 and formula (4) we can deduce that the number of words of a given
weight equals the number of coding sequences of that weight. Hence to complete the
proof it suffices to prove that Algorithm C is surjective. The proof begins as in the proof
of Lemma 4.6. Let w ∈ L(A), and consider the factorization w = w0 z u, where z is
the rightmost ascent in w, and u is a maximal decreasing subword. Let U be the set of
letters occurring in u, let T = U ∪ {z}. Our goal is to determine a word w′ and a codon
(T ′, z∗) so that w is obtained by adjoining (T ′, z∗) to w′. The first task is to determine
an appropriate “markable” z∗ ∈ T . The choice of z∗ is somewhat tricky, and requires the
following lemma.

1Note that, although this was not possible in the original codon (T, x), new elements may have been
added to T in step 2 of Algorithm C.
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Lemma 6.7 Given w ∈ L(A), let z and T be defined as in the previous paragraph. If z
is not a maximal element of T , then there exists a unique maximal element z∗ ∈ T such
that z <P z∗ and h(z, T/z∗) < h(z, T/z).

Proof. Let z+ be the element of T such that h(z, T/z) = λ(z+), i.e., z+ has the maximum
label among all elements y ∈ T connected to z by a path that begins with an upward step
and does not use any elements <P z. Let

z <P γ1 >P γ2 <P · · · <P z+ (21)

be a chordless path with this property, and assume further (without loss of generality)
that γ1 is a maximal element of T . Then z∗ = γ1 satisfies the conclusion of the lemma,
since if there were a path from z to z+ in T/z∗, then combining it with (21) gives a cycle
that is either chordless or contains a chordless cycle of length greater than three. Similar
reasoning shows that γ1 is the unique element with the stated property.

Example 6.8 Consider the poset

u u u

u u u

u

�
�
��

�
�
��

@
@

@@

@
@

@@

�
�
��2 3 7

4 5 6

1

If w = 1 6 5 4 3 2, then z = 1, h(z, T/z) = z+ = 6, z∗ = 4, and h(z, T/z∗) = 5. If w =
2 7 5 1, then z = 2, h(z, T/z) = z+ = 5, z∗ = 5, and h(z, T/z∗) = 2. If w = 2 7 6 5 4 3 2 1,
then z = 2, h(z, T/z) = z+ = 6, z∗ = 4, and h(z, T/z∗) = 5.

Continuing with the proof of Theorem 6.6, if h(z∗, T ) = λ(z∗), then (T, z∗) is a codon
and we can proceed as in Lemma 4.6. However, in general h(z∗, T ) > λ(z∗), and we must
identify and remove a collection of elements from T before the analog of Lemma 4.6 can
be implemented. For the details of this procedure, we require two more lemmas.

Lemma 6.9 Suppose that T and z∗ are as defined above, and α and α′ are elements of
T such that α, α′ ≤P z∗. If

h(α, T/z∗) = h(α′, T/z∗),

then either α ≤P α′ or α′ ≤P α.

Proof. If α and α′ are incomparable, let β ∈ T be the element such that h(α, T/z∗) =
h(α′, T/z∗) = λ(β). Combining the path from z∗ to α to β with the path from β to α′

to z∗, we obtain a cycle which is either chordless or contains a chordless cycle of length
greater than three.
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Lemma 6.10 Let P be any finite poset, and let f : P → Z be any function with the
property that, if α and β are incomparable elements of P , then f(α) 6= f(β). Then there
exists a unique permutation α1, α2, . . . , α|P | of the elements of P such that

(1) αi 6<P αi+1 for all i < |P |, and

(2) f(αi) > f(αj) for all j > i such that αj 6<P αi.

Proof. As before, if x ∈ P we let P/x denote the set {y ∈ P | y 6≤P x}. Consider the
set

A = {x ∈ P | f(x) > f(y) for y ∈ P/x}.
Let x ∈ P be an element for which f(x) is maximum, and such that x is maximal with this
property. From our assumption about f , it follows that x ∈ A, and hence A is nonempty.
We claim that the elements of A form a totally ordered subset of P . Suppose, otherwise,
that a, b ∈ A with a and b incomparable. Then a ∈ P/b and b ∈ P/a, which implies that
f(a) > f(b) and f(b) > f(a), which is a contradiction. This establishes the claim.

Since A is nonempty and totally ordered, we can define α1 = max(A). Next, remove α1

from P and define α2 in a similar fashion, continuing with α3, etc., to obtain a permutation
α1, α2, . . . , α|P | of P . Clearly, this permutation satisfies condition (2). To prove condition
(1), it suffices to show that α1 6<P α2. Suppose, to the contrary, that α1 <P α2. We have

f(α2) > f(y) for all y ∈ (P − α1)/α2.

But (P − α1)/α2 = P/α2, since α1 <P α2. Thus α2 ∈ A, which implies that α2 was the
proper choice instead of α1 in the initial step of the construction. This is a contradiction,
and hence α1 6<P α2.

To prove that the permutation α1, α2, . . . , α|P | is unique, suppose that

β1, β2, . . . , βk, α1, βk+2, . . . , β|P | (22)

is some other permutation satisfying conditions (1) and (2), with β1 6= α1. Then β1 ∈ A,
by (2), and hence β1 <P α1. Define A2, A3, . . . , Ak to be the sets corresponding to A for
the segments of permutation (22) beginning with β2, β3, . . . , βk. It follows from condition
(2) that α1 and βi are both in Ai, for i = 2, . . . , k, and hence α1 and βi are comparable for
each i. We claim that, in fact, βi <P α1 for all i. To see this, suppose first that α1 <P β2.
Then we have

β1 <P α1 <P β2

and hence β1 <P β2, contradicting condition (1). Hence β2 <P α1, and a similar argument
applies to each successive βi. In particular, βk <P α1, which contradicts (1), and so we
conclude that β1 = α1. A straightforward induction proves that βi = αi for all i, which
completes the proof of uniqueness and hence of Lemma 6.10.

Example 6.11 Consider the following poset P with function values f(x) as shown.
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If we denote each element x by the corresponding f(x), then the unique permutation
specified by Lemma 6.10 is

7 6 4 3 2 1 5

We continue now with the proof of Theorem 6.6. To prove surjectivity of Algorithm
C, we must show that, to each word w ∈ L(A) we can find a word w′ ∈ L(A) and a
codon (T ′, x′) such that w equals the result of adjoining (T ′, x′) to w′. The process will be
presented in the form of an algorithm, essentially constructing an inverse for Algorithm
C.

Algorithm D (Encoding for Cycle-Free Posets):

(1) Given w ∈ L(A), let U be the set of letters in the word u, where w = w0 z u and z is
the rightmost ascent in w. Let T = U ∪ {z}.

(2) If z is a maximal element of T , let z∗ = z. Otherwise choose z∗ as in Lemma 6.7.

(3) Let U0 be the set of elements α < z∗ in U such that h(α, T/z∗) > λ(z∗). For each
α ∈ U0, define f(α) = h(α, T/z∗).2

(4) Let α1α2 . . . αk be the unique permutation of U0 specified by Lemma 6.10.

(5) Define w′ and (T ′, x′) as follows:

• If z = z∗ and z 6∈ U , then w′ = w0 α1α2 . . . αk and (T ′, x′) = (T − U0, z
∗).

• Otherwise w′ = w0 z α1α2 . . . αk and (T ′, x′) = (U − U0, z
∗).

It remains to show that, if Algorithm D yields w′ and (T ′, x′) as output, then w′ is a valid
word, (T ′, x′) is a valid codon, and w′ (T ′, x′) 7→ w as a consequence of Algorithm C. We
state these results as a series of lemmas.

Lemma 6.12 w′ ∈ L(A).

Proof. Suppose first that z = z∗ and z 6∈ U , so that w′ = w0α1α2 · · ·αk. If w′ 6∈ L(A),
then by Lemma 6.10 (1), we necessarily have z′ ≤P α1, where z′ denotes the last letter of
w0. But α1 <P z∗ = z, so that z′ <P z, which implies w 6∈ L(A), a contradiction.

Suppose next that z <P z∗ or z ∈ U , so that w′ = w0zα1 · · ·αk. If w′ 6∈ L(A),
we necessarily have z ≤P α1. Since α1 ∈ U0, h(α1, T/z∗) > λ(z∗), which implies

2Note that, by Lemma 6.9, f satisfies the hypotheses of Lemma 6.10.
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h(z, T/z) > λ(z∗). Following the construction in Lemma 6.7, let z+ be the element
of T with h(z, T/z) = λ(z+), and consider the chordless path (21) from z to z+, where
now γ1 = z∗.

We claim that α1 6≥P γ2, since otherwise (to avoid chordless cycles of length 4) the
elements ≥P α1 (including z∗) would have to be linearly ordered. This would force
h(α1, T/z∗) = λ(α1) < λ(z∗), contradicting the fact that α1 ∈ U0. The following picture
suggests how the elements we have been considering might be arranged in P .
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Here λ(α+
1 ) = h(α1, T/z∗). Note that

h(γ2, T/z∗) = λ(z+) > λ(α+
1 ) = h(α1, T/z∗) > λ(z∗)

Thus both α1 and γ2 are in U0. Using the notation of step (3) of Algorithm D, we have
f(γ2) > f(γ1), and, since α1 6≥P γ2, this means that γ2 precedes α1 in the order specified
by Lemma 6.10. This contradicts the assumption that α1 was the first element of that
order, and the proof is complete.

Lemma 6.13 (T ′, x′) is a valid codon, i.e., λ(x′) = h(x′, T ′) < h(T ′).

Proof. We have (T ′, x′) = (T − U0, z
∗) or (U − U0, z

∗). Suppose that h(z∗, T ′) > λ(z∗).
Then, since z∗ is maximal in T , there exists an element y <P z∗ in T ′ such that h(z∗, T ′) =
h(y, T ′/z∗). Clearly, h(y, T ′/z∗) ≤ h(y, T/z∗). Thus we have

λ(z∗) < h(z∗, T ′) = h(y, T ′/z∗) ≤ h(y, T/z∗)

This implies y ∈ U0, which implies y 6∈ T ′, a contradiction. Finally, if m is the maximum-
labelled element of T , then z∗ = m is impossible, since z <P z∗ and w ∈ L(A).

Lemma 6.14 w′ (T ′, x′) 7→ w as a consequence of Algorithm C.

Proof. There are two cases. If

w′ = w0α1α2 · · ·αk and (T ′, x′) = (T − U0, z
∗),

then z = z∗ and z 6∈ U . Step (2) of Algorithm C begins by inserting unstable elements into
T . From step (3) of Algorithm D, we see that each αi satisfies h(αi, T/z∗) > λ(z∗), and

the electronic journal of combinatorics 11(2) (2006), #R28 21



this implies that each αi is initially unstable, since trivially h(αi, T/z∗) = h(αi, T
′/z∗).

We need to show that αi is unstable with respect to the set T+ = T ′ ∪ {αi+1, . . . , αk},
i.e. it remains unstable after αi+1, . . . , αk have been added. But this is guaranteed by the
ordering in step (4) of Algorithm D, which insures that h(αi, T/z∗) > h(αj, T/z∗) for all
αj with j > i and αi 6>P αj. Hence Algorithm C inserts each of the αi, as desired. If z′ is
the last element of w0, z′ causes step (2) of Algorithm C to terminate, since z′ 6≤P z = z∗.

In the second case we have

w′ = w0zα1α2 · · ·αk and (T ′, x′) = (U − U0, z
∗).

Again, step (2) of Algorithm C inserts each of the elements αi, and it remains to show
that z causes this step to terminate, i.e., z is stable. We have h(z, T/z) ≤ h(z∗, T/z) since
z∗ lies on a path from z to z+ (see the proof of Lemma (6.12)). Trivially, h(z, T/z∗) ≤
h(z, T/z). Combining these last two statements, we get

h(z, T/z∗) ≤ h(z, T/z) ≤ h(z∗, T/z),

and hence z is stable. This completes the proof.

7 Specializing to length

If we set x1 = x2 = · · · = xn = t in the pair-avoiding series FA(x), we get the ordinary
generating function FA(t) that enumerates words in L(A) by length. From (12), we obtain
immediately

FA(t) =
(1 + t)n∑

S∈L(A0)
(−t)|S|(1 + t)n−|S| ,

and thus if the longest word in L(A0) has length M , we can cancel the factor (1 + t)n−M

in the numerator and denominator of this expression, to obtain

FA(t) =
(1 + t)M∑

S∈L(A0)
(−t)|S|(1 + t)M−|S| . (23)

Note that, equivalently, M is simply the height of the relation A. When M < n, we
have applied a non-trivial cancellation to obtain (23), so combinatorial explanations do
not follow immediately from specializing the algorithms we have considered earlier in this
paper. We conclude by providing combinatorial explanations for two cases of (23), which,
in turn, raise other questions worth exploring.

7.1 13-avoiding words on {1, 2, 3}
This example was introduced in the introduction. Let A = {(11), (22), (33), (13)}, with
n = 3. Then

FA(t) =
(1 + t)3

1− 2t2 − t3
=

(1 + t)2

1− t− t2
,
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where the first form of the answer comes from (12), and the second from (23). If f(L)
denotes the number of words in L(A), the first form of the answer shows that f satisfies
the recurrence

f(L) = 2f(L− 2) + f(L− 3), L ≥ 3.

Since there are two codons of weight 2 and one of weight 3, Algorithm A gives a sim-
ple combinatorial interpretation of this recurrence. Explaining the Fibonacci recurrence
suggested by the second form of the answer is less straightforward, but there are fairly
simple solutions. Here is one: given a word w in L(A) of length L ≥ 3, remove the last
two letters if w ends in 23 or 32. Otherwise remove the last letter. The number of words
obtained in each case is f(L−2) and f(L−1), respectively, and it is easy to see that this
correspondence is bijective.

7.2 Bipartite/Alternating Forests

If a cycle-free poset has height 2, it may be represented as a bipartite graph which is also
a forest. When endowed with a natural labelling, such a poset becomes an alternating
forest, in the sense of [21] and [22]. When the forest is an alternating tree, the generating
function FA(t) has an especially simple form.

Theorem 7.1 Suppose the relation A is defined by an alternating tree with n vertices.
Then

FA(t) =
(1 + t)2

1− (n− 2)t
. (24)

Consequently, if f(L) denotes the number of words in L(A) of weight L, then

f(L) = (n− 1)2(n− 2)L−2, L ≥ 2, (25)

Both of these results depend only on n and L, and not on the tree itself.

Proof. From (23), we obtain

FA(t) =
(1 + t)2

(1 + t)2 − nt(1 + t) + (n− 1)t2
,

which gives (24). Formula (25) for f(L) then follows, since

FA(t) = 1 + nt +
(n− 1)2t2

1− (n− 2)t
.

We now give a combinatorial explanation for (24) and (25). First, some notation.
Since A is defined by a tree, there is a unique (alternating) path between any pair of
distinct vertices. For a, b ∈ [n], a 6= b, let pa(b) be the vertex immediately preceding b on
the unique path from a to b in the tree defining A. Given w ∈ L(A) of length L− 1 ≥ 2,
where w = w0ij (so i, j are the last two letters of w), let k = pi(j). Then consider any
m ∈ [n], with m 6= j, k, and from the pair w, m construct w′ as follows:
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Case 1: If wm ∈ L(A), then w′ = wm = w0ijm;
Case 2: otherwise, w′ = w0imj.

Note that w′ is a word in L(A) of length L: for Case 1 this is immediate; for Case 2
this follows because we have jAm, and i 6= j, so iAm is only possible for m = k, which
is not an allowable choice of m. We claim also that every word w′ in L(A) of length L
is created uniquely in the above construction (referred to below as the tree construction),
and we leave it to the reader to check this, say, by specifying the inverse mapping. Thus,
since there are n− 2 choices of m for each word w, we have a combinatorial proof that

f(L) = (n− 2) f(L− 1), L ≥ 3,

for a relation defined by an alternating tree.
The following more general result holds for a relation defined by any bipartite graph.

Theorem 7.2 If A is defined by any bipartite graph with n vertices and E edges, then

FA(t) =
(1 + t)2

1− (n− 2)t + (E − n + 1)t2
. (26)

Proof. This follows immediately from (23).

We conclude the paper with a combinatorial explanation of (26), which uses the above
tree construction, and is given in two stages. First, we consider the case where A is
defined by a connected graph. In this case, find a spanning tree of the graph, and let T
be the relation defined by this spanning tree. Let the d = E − n + 1 non-tree edges of
A be given by {x1, y1}, . . . , {xd, yd}, where the xi are minimal elements of A, and the yi

are maximal elements of A. Now note that L(A) ⊆ L(T ), so given w = w0ij ∈ L(A),
we also have w ∈ L(T ). Apply the above tree construction to w, m (where m 6= j, k, and
k = pi(j) in the tree relation T ). The construction again produces a word w′ ∈ L(T ) of
length L, but also there are w′ /∈ L(A) that are constructed. These extras are:

• for each t = 1, . . . , d, one occurrence of w′ = w0imj = w0xtyt pxt(yt),

• for each t = 1, . . . , d and each i 6= xt, one occurrence of w′ = w0ijm = w0ixtyt.

Note that these extras are easy to count: if we remove the last two letters from all such
w′, then we obtain each word w0i in L(A) of length L−2 exactly d = E−n+1 times, i.e.
from words obtained by appending, for t = 1, . . . , d, either yt pxt(yt) or xtyt according to
which of the above cases applies. Thus the total number of extras is (E−n+1) f(L−2),
and we now have completed a combinatorial proof that

f(L) = (n− 2) f(L− 1)− (E − n + 1) f(L− 2), L ≥ 3, (27)

for a relation defined by a connected bipartite graph with E edges and n vertices. This
proof has involved correction for an overcount, since if the connected graph is not simply
a tree, then E − n + 1 > 0.
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We now turn to a combinatorial proof of (27) in the case of a relation A′ defined
by a graph which is not connected. Suppose that A′ is defined by a graph with c + 1
components, c ≥ 1. Add c edges {u1, v1}, . . . , {uc, vc} to the graph, where the ui are
minimal elements of A′, and the vi are maximal elements of A′, so that the resulting
graph is connected (for an isolated vertex, arbitrarily assign it to the set of minimal or
maximal vertices). Let A be the relation defined by this connected graph, and let T be
the relation defined by a spanning tree. Suppose that w = w0ij ∈ L(A′) is a word of
length L − 1. We use T to define pi(j), and then for each m 6= j, pi(j) apply the tree
construction to w, m, obtaining a word w′ of length L. It is straightforward to check that
this map is injective, and that, as in the previous argument, the resulting words are all
in L(A′) with d = (E + c) − n + 1 exceptions. Moreover, there are w′ ∈ L(A′) that are
not constructed. The omitted cases are:

• for each s = 1, . . . , c, one occurrence of w′ = w0usvsus,

• for each s = 1, . . . , c and each i 6= us, one occurrence of w′ = w0iusvs.

These cases are also easy to count: if we remove the last two letters from all such w′,
then we obtain each word w0i ∈ L(A′) of length L − 2 exactly c times, i.e., from words
obtained by appending, for s = 1, . . . , c, either usvs or vsus, according to which of the
above cases applies. Thus the total number of omitted cases is is c f(L− 2), and we now
have completed a combinatorial proof that

(n− 2) f(L− 1) = f(L) + d f(L− 2)− c f(L− 2), L ≥ 3,

for a relation defined by a bipartite graph with E edges and n vertices, where d is the
number of edges of A not in a spanning tree of A. But A has E + c edges, and a spanning
tree of A has n− 1 edges, so d− c = E − n + 1, and (27) follows.

In the disconnected case, we can have E−n+1 < 0. As an example of this, consider the
13-avoiding words on {1, 2, 3}, and additional edge {u1, v1} = {2, 3}. The combinatorial
construction above has the simplified statement that was given in Section 7.1.

In both the connected and disconnected case, we can have E − n + 1 > 0, in which
case the combinatorial construction above involves correction for overcounting. As of
this writing, we do not know how to introduce such a correction into our algorithms
for arbitrary relations, or even posets (which would be required when we don’t have
µ-positivity).

8 Rearrangements of a multiset

In this section we explain the relationship between our results and the theory of rear-
rangements of a multiset, as developed in [5] (see also [17] for an excellent exposition of
this topic). 3

3We thank the referee for asking questions that prompted us to add this section.
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Suppose X is a set of n elements, which we now assume to have a linear ordering. If
M is a multiset formed from the elements of X, a rearrangement σ of M is a two-line
array

(
M

σ(M)

)
, where the first row consists of the elements of M in weakly increasing order,

and the second row is a permutation of those elements. Alternately, we will represent σ
by (and consider equivalent to σ) any array obtained by permuting the columns of σ, as
long as columns with identical first row entries appear in the same order.

If A is an arbitrary relation on X, let K(A) denote the set of rearrangements σ of X

containing no column
(

x
y

)
with (x, y) ∈ A, i.e., K(A) is the set of rearrangements that

“avoid” A in columns. Let GA(x) be the generating series for K(A), where σ is marked
by xσ(M) as before. Then, by the MacMahon Master Theorem [20],

GA(x) =
1

det(I −XĀ)
, (28)

where Ā is the n × n matrix defined in Theorem 2.1. Comparing this with Theorem 2.1
and proceeding as in Corollary 2.3 we obtain

GA(x) =
1

1−∑T µA(T )xT
, (29)

where µA is defined as in Corollary 2.3.4 Examining the proof of Corollary 2.3, we see
that (28) and (29) hold for arbitrary relationsA, not necessarily assumed to be monotone.

When A is monotone, formulae (9) and (29) differ only by a multiplicative factor of
the form

∏n
i=1(1+xi). The next lemma gives a simple bijection linking these two formulae.

Lemma 8.1 Suppose that A is a monotone relation. Then there is a bijection

w ←→ (S, σ)

between words w ∈ L(A) and pairs (S, σ), where S ⊆ X and σ ∈ K(A).

Proof. Suppose that w ∈ L(A). There exists a unique factorization w = w(1)w(2) · · ·w(m)

into subwords w(i) such that, if bi denotes the first letter of w(i), i = 1, . . . , m, then bi is
the unique smallest letter in w(i) and b1 ≥ b2 ≥ · · · bm. The bi are the weak left-to-right
minima of w, i.e., the letters b such that a ≥ b for all a preceding b in w.

Since w avoids A, each x ∈ X can appear at most once as a singleton word among
the w(i). Moreover, such a word must be the rightmost w(i) for which bi = x. Delete all
such singleton words, and define S to be the set of elements contained in them. Next,
denoting the remaining subwords in left-to-right order by w(1), w(2), . . . , w(k), associate to
each w(i) a “generalized cycle” γ(i), constructed as a two-line array by writing w(i) in the
first row, and then cyclically shifting it one step to the left to form the second row. Finally,
construct a rearrangement σ by concatenating the two-line arrays of γ(k), γ(k−1), . . . , γ(1)

(in that order, i.e., reversed) and sorting the first row of the resulting array in weakly

4Despite a superficial resemblance, our µ is not the same as the Möbius function appearing in [5],
Chapters 2 and 5.
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increasing order. (The operation of concatenation and sorting is one interpretation of the
“intercalation product” defined in [5]). It is easy to check that the map from w to (S, σ)
is a bijection with the desired properties, and the proof is complete.

We call σ the canonical rearrangement constructed from w(1), . . . , w(k). By a gener-
alized cycle, or sometimes just a cycle, we will always mean a two-line array in which
the minimum element b occurs uniquely, as the first element of the first row and the last
element of the second row. Our factorization of w into subwords w(i) is a variation on
one that appears in [5], called the descending decomposition of a word. Although our
construction is slightly different, we will also use this phrase to describe it. See also [17],
especially Theorem B of Section 5.1.2, and Problem 5.1.2 #5, which accounts precisely
for the absence of cycles of length one in rearrangements σ ∈ K(A).

Example 8.2 Let A be the diagonal relation on X = {1, . . . , 5}, so that L(A) consists
of Smirnov words (see Example 3.3). Let

w = 3 4 5 3 2 4 1 3 2 1 3 1 .

Then the descending decomposition of w is

3 4 5 | 3 | 2 4| 1 3 2 |1 3| 1,

so that S = {1, 3}. Removing S and concatenating the remaining cycles in reverse order
give the two-line array (

1 3 1 3 2 2 4 3 4 5
3 1 3 2 1 4 2 4 5 3

)
.

After sorting the last array, we obtain

(S, σ) =

(
{1, 3} ,

(
1 1 2 2 3 3 3 4 4 5
3 3 1 4 1 2 4 2 5 3

))
.

By analogy with our earlier results, it is also natural to ask whether (29) has a direct
combinatorial explanation when A is µ-positive, i.e., an encoding of rearrangements σ ∈
K(A) by sequences of codons. We will not answer this question for arbitrary A, or even
monotone relations in general, but will solve the problem completely for V-free relations
by giving an encoding/decoding algorithm for rearrangements analogous to that given
for words in Sections 3 and 4. When applied to the diagonal relation (Smirnov words),
this algorithm gives a combinatorial interpretation of MacMahon’s generating function for
derangements of a multiset (formula (15) with the numerator replaced by 1), as discussed
in Example 3.3.

Suppose that A is a V-free monotone relation. By Lemma 4.7, A is µ-positive, and
we seek a bijection between rearrangements σ ∈ K(A) and coding sequences

Σ = ((T1, x1), (T2, x2), . . . , (Tj, xj)) (30)

the electronic journal of combinatorics 11(2) (2006), #R28 27



where each (Ti, xi) is a codon (based on A) as defined in Section 3. Note that coding
sequences (30) differ from those of (14) only in the absence of an initial subset T0. We
will give a decoding algorithm that utilizes Algorithm A of Section 3. The first step is
to break the coding sequence (30) into subsequences which are decoded into generalized
cycles and then combined to give a rearrangement σ.

Algorithm A′ (Decoding Algorithm for Rearrangements) The input is a coding
sequence Σ of the form (30) with codons defined by A, and the output is a rearrangement
σ ∈ K(A) of the underlying multiset. The relation A is assumed to be V-free.

(1) Read Σ from left to right, keeping track of the minimum element bi in each Ti. If
bi ≤ bj for all j < i, i.e., bi is a weak left-right minimum, break the string and form
a new coding sequence beginning with (Ti, xi). The result is an ordered list of coding
sequences Σ(1), Σ(2), . . . , Σ(k), each of the form (30). In each Σ(i), the minimum
element bi occurs uniquely, and appears in the leftmost codon.

(2) Decode each Σ(i) using Algorithm A of Section 3 (in all cases, T0 is the empty set),
obtaining an ordered list of words w(1), w(2), . . . , w(k) in L(A).

(3) If w(i) fails to avoid A as a circular word, i.e., if w(i) factors as xuy with (y, x) ∈ A,
replace the initial segment x[T − x]↓ in w(i) by [T ]↓. Here (T, x) denotes the initial
codon of Σ(i). Shift w(i) cyclically so that bi appears in the first position, to obtain
words ŵ(i), i = 1, . . . , k, each representing a cycle γ̂(i) ∈ K(A).

(4) Let σ be the canonical rearrangement constructed from ŵ(1), . . . , ŵ(k) by concatenating
the γ̂(i) in reverse order, as in the proof of Lemma 8.1.

Example 8.3 Let A be the relation defined in Example 3.4, i.e., the diagonal relation
plus adjacent pairs (i, i + 1). Let Σ be the coding sequence

(7653, 5)(63, 3)(865, 6)(86, 6)(321, 1)(64, 4)(4321, 2)(621, 2)(542, 2).

Step (1) of Algorithm A′ breaks Σ into subsequences Σ(i), i = 1, . . . , 5, as follows:

(7653, 5) | (63, 3)(865, 6)(86, 6) | (321, 1)(64, 4) | (4321, 2) | (621, 2)(542, 2).

Steps (2) and (3) decode each Σ(i) as a cyclically shifted word ŵ(i), as follows:

3 5 7 6 | 3 6 8 6 5 8 6 | 1 3 2 4 6 | 1 4 3 2 | 1 5 4 2 6 2.

Forming two-line arrays, concatenating in reverse order, and sorting, we obtain the canon-
ical rearrangement σ =(

1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 5 6 6 6 6 6 6 7 8 8
5 4 3 6 1 1 4 2 2 6 5 2 3 6 4 8 7 2 1 8 5 3 3 6 6 6

)
.

Theorem 8.4 If A is a V-free monotone relation, then Algorithm A′ gives a bijection
between the set of all coding sequences of the form (30), with codons defined by A, and
the set of all rearrangements σ ∈ K(A).
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Proof. Using the fact that A is V-free, it is readily verified that step (3) of this algorithm
always yields a word ŵ(i) ∈ L(A) that avoids A circularly. This in turn implies that
γ̂(i) ∈ K(A) for all i, and hence σ ∈ K(A).

Algorithm A′ constructs σ from cycles γ̂(i) such that the smallest element bi of γ̂(i)

occurs uniquely, and such that b1 ≥ b2 ≥ · · · ≥ bk. This decomposition into cycles can
be uniquely reconstructed from σ. Hence, to prove Theorem 8.4, it suffices to prove
that Algorithm A′ gives a bijection between coding sequences and cycles, when restricted
to coding sequences of type (30) with the property that the minimum element occurs
uniquely, in the first codon. We will say that such a coding sequence is of cyclic type. If
Σ is of cyclic type, let D̃(Σ) denote the cycle obtained by applying Algorithm A′ of this
section. We will construct an encoding Ẽ(γ) of cycles γ ∈ K(A), and show that D̃ and
Ẽ are inverses.

If w is a word in L(A), denote by E(w) the encoding of w by a coding sequence of
the form (14), obtained by applying Algorithm B in Section 4. Note that E(w) is not
necessarily of the form (30), i.e., it may contain a nonempty T0.

Suppose that γ ∈ K(A) is a generalized cycle with minimum element b and first line
w′. Define w∗ to be the unique cyclic shift of w′ with the property that either (a) w∗ is a
decreasing word, or (b) w∗ = auv, where a is an ascent, u is a decreasing subword, and
b appears in u. It is immediate that w∗ ∈ L(A). The encoding Ẽ can now be described
precisely:

Algorithm B′ (Encoding Algorithm for Cycles) The input is a cycle γ ∈ K(A),
and the output is a coding sequence Ẽ(γ) of cyclic type.

(1) Define w∗ as in the previous paragraph.

(2a) If w∗ is decreasing, output Ẽ(γ) = ((W, b∗)) and terminate. Here W denotes the set
of letters in w, and b∗ denotes the unique (winning) successor of b in W , as defined
in Lemma 4.5.

(2b) If w∗ = auv is not decreasing, write

E(w∗) = E(auv) = (T0, (T1, x1), . . . , (Tn, xn)),

the coding sequence of type (14) obtained by applying Algorithm B to w∗.

(3) If T0 = ∅, define

Ẽ(γ) =

{
((T1, x1), (T2, x2), . . . , (Tn, xn)) if b ∈ T1

((T2, x2), . . . , (Tn, xn), (T1, x1)) if b 6∈ T1.

(4) If T0 = {a}, first write

E(uva) = (T ′
0, (T

′
1, x

′
1), . . . , (T

′
m, x′

m)).

Then define

Ẽ(γ) =

{
((T ′

0, a
∗), (T ′

1, x
′
1), . . . (T

′
m, x′

m)) if b ∈ T ′
0

((T ′
1, x

′
1), . . . (T

′
m, x′

m), (T ′
0, a

∗)) if b 6∈ T ′
0.
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It is easy to verify that, in the coding sequence constructed in Step (2), T0 is always
either the empty set or the singleton {a}. Furthermore, one can check that Steps (3) and
(4) always result in a coding sequence of cyclic type.

We will outline the case-by-case analysis needed to prove that Ẽ(D̃(Σ)) = Σ, where Σ
is of cyclic type. We omit the details, which are straightforward but somewhat tedious.
Given Σ = ((T1, x1), (T2, x2), . . . , (Tj, xj)), let w = w(i) be the word constructed initially
in Step (3) of Algorithm A′, i.e., before performing the cyclic shift to get ŵ(i). There are
seven possibilities for w, with b ∈ T1 in each case:

(i) w = x1[T1 − x1]↓ · · · y with j ≥ 2, x1 6= b, y 6A x1 ,

(i′) w = x1[T1 − x1]↓ with j = 1, x1 6= b, b 6A x1 ,

(ii) w = [T1]↓ · · · s with j ≥ 2, sAx1 ,

(ii′) w = [T1]↓ with j = 1, bAx1 ,

(iii) w = b[T1 − b]↓ · · ·xj [Tj − xj ]↓ with j ≥ 2,

(iii′) w = b[T1 − b]↓ with j = 1,

(iv) w = b[T1 − b]↓ · · · t[Tj ]↓ with j ≥ 2, xj = t∗ .

Step (4) of Algorithm A′ then constructs γ = D̃(Σ) =
(

w′
w′′

)
, where w′ and w′′ are appro-

priate cyclic shifts of w. When Ẽ is applied to γ using Algorithm B′, the first step is to
compute w∗, which is also a cyclic shift of w. In cases (ii′) and (iii′) above, w∗ is decreasing
(in both cases w∗ = [T1]↓), and we immediately obtain Ẽ(γ) = Σ in these cases. For the
remaining five cases, we write w∗ = auv, as follows:

(i) w∗ = x1[T1 − x1]↓ · · · y
(i′) w∗ = x1[T1 − x1]↓

(ii) w∗ = s[T1]↓ · · ·
(iii) w∗ = xj [Tj − xj ]↓ b[T1 − b]↓ · · ·
(iv) w∗ = t[Tk]↓ b[T1 − b]↓ · · ·

Step (2b) of Algorithm B′ computes E(w∗) = (T0, (T1, x1), . . . , (Tn, xn)). In cases (i), (i′),
and (iii) we get T0 = ∅, and one can check that Step (3) gives Ẽ(γ) = Σ, as desired. In
cases (ii) and (iv) we get T0 = {s} and T0 = {t}, respectively. Similar reasoning gives
Ẽ(γ) = Σ in each of these cases as well, completing the argument that D̃ is injective.
Surjectivity of D̃ now follows by a cardinality argument similar to that of Corollary 4.8,
and the proof of Theorem 8.4 is finished.

9 Final remarks

It has occurred to us that formulae such as (3), (23), (24), (26), and (29) may have
interpretations in a more algebraic setting, e.g., as Poincaré series of certain rings or
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modules. In that case, combinatorial constructions such as Algorithms A–D, A′, B′, and
the mappings in Section 7 might also have algebraic significance.

Although we have not established precise connections of this sort, several colleagues
(including Victor Reiner and Takayuki Hibi) have drawn our attention to papers such
as [7], where crown-free posets appear, [13], where chordal graphs play a central role,
and [19], where formula (24) appears explicitly as a Poincaré series. It seems that Koszul
algebras feature prominently on the algebraic side (see, e.g., [1], [3], [14], [19]). We suggest
that this might be an interesting area for further investigation.
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