Document Type

Journal Article

Role

Author

Standard Number

0035-8711

Journal Title

Monthly Notices of the Royal Astronomical Society

Volume

433

Issue

1

First Page

69

Last Page

77

Publication Date

2013

Abstract

We show that the mass fraction of giant molecular cloud (GMC) gas (n ≳ 100 cm−3) in dense (n ≫ 104 cm−3) star-forming clumps, observable in dense molecular tracers (LHCN/LCO(1–0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback, as well as the star formation efficiencies in the most dense gas. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback/star formation. In models with weak/no feedback, much of the mass in GMCs collapses into dense subunits, predicting LHCN/LCO(1–0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the LHCNLCO relation (because SNe heat lower density material, not the high-density gas). Changing the strength of radiation pressure (which acts efficiently in the highest density gas), however, has a much stronger effect on LHCN than on LCO. We show that degeneracies between the strength of feedback, and efficiency of star formation on small scales, can be broken by the combination of dense gas, intermediate-density gas and total star formation rate (SFR) tracers, and favour models where the galaxy-integrated star formation efficiency in dense gas is low. We also predict that the fraction of dense gas (LHCN/LCO(1–0)) increases with increasing GMC surface density; this drives a trend in LHCN/LCO(1–0) with SFR and luminosity which has tentatively been observed. Our results make specific predictions for enhancements in the dense gas tracers in unusually dense environments such as ultraluminous infrared galaxies and galactic nuclei (including the galactic centre).

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.