Document Type

Journal Article

Role

Author

Standard Number

0035-8711

Journal Title

Monthly Notices of the Royal Astronomical Society

Volume

425

Issue

2

First Page

1121

Last Page

1128

Publication Date

2012

Abstract

It is well established observationally that the characteristic angular momentum axis on small scales around active galactic nuclei (AGN), traced by radio jets and the putative torus, is not well correlated with the large-scale angular momentum axis of the host galaxy. In this paper, we show that such misalignments arise naturally in high-resolution simulations in which we follow angular momentum transport and inflows from galaxy to sub-pc scales near AGN, triggered either during galaxy mergers or by instabilities in isolated discs. Sudden misalignments can sometimes be caused by single massive clumps falling into the centre slightly off-axis, but more generally, they arise even when the gas inflows are smooth and trace only global gravitational instabilities. When several nested, self-gravitating modes are present, the inner ones can precess and tumble in the potential of the outer modes. Resonant angular momentum exchange can flip or re-align the spin of an inner mode on a short time-scale, even without the presence of massive clumps. We therefore do not expect that AGN and their host galaxies will be preferentially aligned, nor should the relative alignment be an indicator of the AGN fuelling mechanism. We discuss implications of this conclusion for AGN feedback and black hole (BH) spin evolution. The misalignments may mean that even BHs accreting from smooth large-scale discs will not be spun up to maximal rotation and so have more modest radiative efficiencies and inefficient jet formation. Even more random orientations/lower spins are possible if there is further unresolved clumpiness in the gas, and more ordered accretion may occur if the inflow is slower and not self-gravitating.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.