Document Type
Journal Article
Role
Author
Standard Number
1944-8244
Journal Title
ACS Applied Materials and Interfaces
Volume
3
Issue
11
First Page
4451
Last Page
4458
Publication Date
2011
Abstract
The physisorption of gases on surfaces depends on the electrostatic and dispersion interactions with adsorbates. The former can be tuned by introducing charge variations in the material, and the latter can be tuned by chemical substitution. Using atomistic Monte Carlo calculations, the Henry's law constants, and isosteric heats of adsorption of CH4, CO2, N2, O2, H2S, SO2, and H2O on graphene, two-dimensional polyphenylene (2D-PP), fluorographene, and fluoro(2D-PP) surfaces are used to demonstrate the tunability of these two types of interaction. With the exception of H2O, fluorination and nanoporosity-induced charge variations reduce the binding of the adsorbates. Gas separations relevant for CO2 sequestration, biogas upgrading, SO2 pollution control, and air dehumidification are considered, and in most cases, the nanoporosity and fluorination reduce the selectivity of adsorption. The exceptions are separations involving adsorption of H2O and the SO2/N2 separation, where the large dipole moments of the adsorbed species leads to enhanced binding relative to the nonpolar species. --author-supplied description
Repository Citation
J. Schrier, “ Fluorinated and Nanoporous Graphene Materials As Sorbents for Gas Separations ” ACS Appl. Mater. Interfaces , 3 , 4451 - 4458 (2011).