Document Type

Journal Article



Standard Number


Journal Title

Monthly Notices of the Royal Astronomical Society





First Page


Last Page


Publication Date



We present a model for the CO molecular line emission from high-redshift Submillimetre Galaxies (SMGs). By combining hydrodynamic simulations of gas-rich galaxy mergers with the polychromatic radiative transfer code,SUNRISE, and the 3D non-LTE molecular line radiative transfer code,TURTLEBEACH, we show that if SMGs are typically a transient phase of major mergers, then their observed compact CO spatial extents, broad linewidths and high excitation conditions (CO spectral energy distribution) are naturally explained. In this sense, SMGs can be understood as scaled-up analogues to local ultraluminous infrared galaxies (ULRIGs). We utilize these models to investigate the usage of CO as an indicator of physical conditions. We find that care must be taken when applying standard techniques. The usage of CO linewidths as a dynamical mass estimator from SMGs can possibly overestimate the true enclosed mass by a factor of ∼1.5–2. At the same time, assumptions of line ratios of unity from COJ= 3–2 (and higher lying lines) to CO (J= 1–0) will oftentimes lead to underestimates of the inferred gas mass. We provide tests for these models by outlining predictions for experiments which are imminently feasible with the current generation of bolometer arrays and radio-wave spectrometers.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.