Document Type

Journal Article

Role

Author

Standard Number

0035-8711

Journal Title

Monthly Notices of the Royal Astronomical Society

Volume

426

Issue

2

First Page

1178

Last Page

1184

Publication Date

2012

Abstract

CO measurements of z ∼ 1–4 galaxies have found that their baryonic gas fractions are significantly higher than those for galaxies at z = 0, with values ranging from 20 to 80 per cent. Here, we suggest that the gas fractions inferred from observations of star-forming galaxies at high-z are overestimated, owing to the adoption of locally calibrated CO–H2conversion factors (αCO). Evidence from both observations and numerical models suggests that αCO varies smoothly with the physical properties of galaxies, and that αCO can be parametrized simply as a function of both gas-phase metallicity and observed CO surface brightness. When applying this functional form, we find fgas ≈ 10–40 per cent in galaxies with M* = 1010–1012  M. Moreover, the scatter in the observed fgasM* relation is lowered by a factor of 2. The lower inferred gas fractions arise physically because the interstellar media of high-z galaxies have higher velocity dispersions and gas temperatures than their local counterparts, which results in an αCO that is lower than the z = 0 value for both quiescent discs and starbursts. We further compare these gas fractions to those predicted by cosmological galaxy formation models. We show that while the canonically inferred gas fractions from observations are a factor of 2–3 larger at a given stellar mass than predicted by models, our rederived αCOvalues for z = 1–4 galaxies result in revised gas fractions that agree significantly better with the simulations.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.